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SUMMARY

To support effective decision making, engineers should comprehend and manage various uncertainties
throughout the design process. Unfortunately, in today’s modern systems, uncertainty analysis can become
cumbersome and computationally intractable for one individual or group to manage. This is particularly true
for systems comprised of a large number of components. In many cases, these components may be developed
by different groups and even run on different computational platforms. This paper proposes an approach
for decomposing the uncertainty analysis task among the various components comprising a feed-forward
system and synthesizing the local uncertainty analyses into a system uncertainty analysis. Our proposed
decomposition-based multicomponent uncertainty analysis approach is shown to be provably convergent in
distribution under certain conditions. The proposed method is illustrated on quantification of uncertainty for
a multidisciplinary gas turbine system and is compared to a traditional system-level Monte Carlo uncertainty
analysis approach. Copyright © 2014 John Wiley & Sons, Ltd.
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NOMENCLATURE

dm Number of inputs to Component m
fm Input-output function associated with Component m
K Kernel function
km Number of outputs of Component m
L Bandwidth parameter in kernel density estimation
neff Effective sample size
P Proposal distribution function
P n Proposal empirical distribution function
p Proposal density function
Q Target distribution function
Qn Weighted proposal empirical distribution function
Qnm Random variable with distribution function Qn

q Target density function
t Integration variable
w Importance sampling weights
x Vector of system variables
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xIm Vector of variables with indices in the set Im
xJm Vector of variables with indices in the set Jm
xKm Vector of variables with indices in the set Km
xOm Vector of variables with indices in the set Om
xSm Vector of variables with indices in the set Sm
xTm Vector of variables with indices in the set Tm
xUm Vector of variables with indices in the set Um
xVm Vector of variables with indices in the set Vm
Ym Random vector of inputs to Component m
ym Vector of inputs to Component m
Dm Domain of integration for Component m
Im Set of indices of the system variables that are inputs to Component m
Jm Set of indices of all of the inputs and outputs associated with the first m � 1

components, as well as the indices of the system inputs of Component m
Km Set of indices in Jm with the exception of those indices in Im
Mi i th set of components
Om Set of indices of the outputs of Component m
Sm Set of indices of new system inputs to Component m
Tm Set of indices of the shared inputs of Component m with any of the previous m � 1

components’ inputs or outputs
Um Set of indices of the inputs and outputs of the first m components
Vm Set of indices of the inputs and outputs of Component m
… Generic distribution function
� Generic density function
O� Estimate of a density function, �
1 Indicator function

1. INTRODUCTION

Multidisciplinary analysis is an extensive area of research, intended to support today’s modern engi-
neered systems, which are designed and developed by multiple teams. In addition to the difficulties
associated with the design of such systems, the need to enhance performance and efficiency often
drives the design to its physical limits. Therefore, the current methodology of modeling a base-
line scenario and taking into account safety factors may no longer be sufficient. Instead, a rigorous
characterization and management of uncertainty is needed, using quantitative estimates of uncer-
tainty to calculate relevant statistics and failure probabilities. The estimation of these quantities
requires an uncertainty analysis of the entire system. However, uncertainty analysis of the entire
system may be cumbersome because of factors that result in inadequate integration of engineering
disciplines, subsystems, and parts, which we refer to collectively here as components. Such factors
include components managed by different groups, component design tools or groups housed in dif-
ferent locations, component analyses that run on different platforms, components with significant
differences in analysis run times, lack of shared expertise among groups, and the sheer number of
components comprising the system.

This paper proposes a different vision for system uncertainty analysis—decomposition of the
multicomponent uncertainty analysis task, performing uncertainty analysis on the respective com-
ponents individually, and assembling the component-level uncertainty analyses to quantify the
system uncertainty analysis. We propose a rigorous methodology with guarantees of convergence
in distribution, inspired by decomposition-based multidisciplinary optimization methods [1–4].
This paper specifically considers the problem of propagating uncertainty through a feed-forward
multicomponent system to quantify the uncertainty of the system outputs of interest.

The challenges of system uncertainty analysis, illustrated on the left in Figure 1, often lie in
integrating the components and in the computational expense of simulating the full system.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
DOI: 10.1002/nme



DECOMPOSITION-BASED UNCERTAINTY ANALYSIS

Figure 1. The proposed method of multicomponent uncertainty analysis decomposes the problem into
manageable components, similar to decomposition-based approaches used in multidisciplinary analysis and
optimization, and synthesizes the system uncertainty analysis without needing to evaluate the system in

its entirety.

Past work has tackled these challenges through the use of surrogate modeling and/or a simplified
representation of system uncertainty. Using surrogates in place of the higher fidelity components
in the system provides computational gains and also simplifies the task of integrating components
[5]. Using a simplified uncertainty representation (e.g., using mean and variance in place of full dis-
tributional information) avoids the need to propagate uncertainty from one component to another.
Such simplifications are commonly used in uncertainty-based multidisciplinary design optimiza-
tion methods as a way to avoid a system-level uncertainty analysis (see e.g., [6] for a review of
these methods and their engineering applications). Such methods include implicit uncertainty prop-
agation [7], reliability-based design optimization [8], moment matching [9], advanced mean value
method [10], collaborative reliability analysis using most probable point estimation [11], and a
multidisciplinary first-order reliability method [12].

Recent methods have exploited the structure of the multicomponent system to manage the com-
plexity of the system uncertainty analysis. A likelihood-based approach has been proposed to
decouple feedback loops, thus reducing the problem to a feed-forward system [13]. Dimension
reduction and measure transformation to reduce the dimensionality and propagate the coupling
variables between coupled components have been performed in a coupled feedback problem with
polynomial chaos expansions [14–16]. Multiple models coupled together through a handful of
scalars, which are represented using truncated Karhunen-Loève expansions, have been studied for
multiphysics systems [17]. A hybrid method that combines Monte Carlo sampling and spectral
methods for solving stochastic coupled problems has also been proposed [18, 19]. The hybrid
approach partitions the coupled problem into subsidiary subproblems, which use Monte Carlo sam-
pling methods if the subproblem depends on a very large number of uncertain parameters and
spectral methods if the subproblem depends on only a small or moderate number of uncertain param-
eters. Another method solved an encapsulation problem, without any probability information; upon
acquiring probabilistic information, solution statistics of the epistemic variables were evaluated at
the post-processing steps [20, 21].

Our approach tackles the complexity of uncertainty quantification in a multicomponent system
through decomposition. As illustrated on the right in Figure 1, we decompose the system uncertainty
analysis into individual component-level uncertainty analyses that are then assembled in a provably
convergent manner to the desired system uncertainty analysis. Many benefits that were not present in
the previous works are gained through decomposing the system uncertainty analysis. Such benefits
include managing the system through divide and conquer, exploiting team disciplinary expertise,
avoiding the challenges of tight analysis integration among components, and being consistent with
many organizational structures.

The remainder of the paper is organized as follows. Section 2 presents background on the uncer-
tainty analysis methods employed. In Section 3, we describe the algorithm including its technical
elements. Section 4 provides the convergence analysis and presents an a posteriori indicator to
assess the effects of the assumptions underlying the decomposition. In Section 5, we present the
results on an aerospace system application problem. Finally, conclusions are drawn in Section 6.
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2. PROBLEM STATEMENT

Uncertainty analysis is the process of quantifying uncertainty in component outputs that arise
from uncertainty in component inputs [22], sometimes referred to as forward propagation of
uncertainty. Computational methods for component uncertainty analysis can be classified into two
groups: intrusive and non-intrusive techniques. Intrusive approaches require access to the exist-
ing computational components, which may not always be possible. Non-intrusive approaches,
also known as sampling-based methods, do not require modification of existing computational
components and instead treat the components as a ‘black-box’. This paper focuses on sampling-
based methods and in particular pseudorandom Monte Carlo simulation, due to its broad
applicability.

As shown in Figure 1, we wish to perform system uncertainty analysis by propagating uncertainty
in system inputs to uncertainty in system outputs. We aim to do this by performing uncertainty
analyses on system components in a local ‘offline phase’ (ahead of time, decoupled from other com-
ponent analyses) followed by a synthesis of the component-level analyses in an ‘online phase’. This
online synthesis step should ensure that system uncertainty analysis results are achieved in a prov-
ably convergent manner, while avoiding any evaluations of the system in its entirety. Specifically,
our goal is to develop a decomposition-based uncertainty analysis methodology where the quan-
tities of interest estimated from our decomposition-based approach converge in distribution to the
true quantities of interest of the integrated feed-forward system.

Definition 1
A system is a collection of M coupled components. Each component has an associated func-
tion that maps component input random variables to component output random variables. Let
x D .x1; x2; : : : ; xd /

T be the vector of system variables, composed of the inputs and outputs of
each component of the system, where shared inputs are not repeated in the vector. For Compo-
nent m, where m 2 ¹1; 2; : : : ;M º, let Im � ¹1; 2; : : : ; dº denote the set of indices of the system
variables corresponding to inputs to Component m and let Om � ¹1; 2; : : : ; dº denote the set of
indices corresponding to the outputs from Component m. Define dm D jImj and km D jOmj. We
denote the function corresponding to Component m as fm W Rdm ! Rkm , which maps that com-
ponent’s random input vector, XIm W �! Rdm , where � is the product sample space of the input
random vector, into that component’s random output vector, XOm D fm.XIm/. A system whose
components can be labeled such that the inputs to the i th component can be outputs from the j th

component only if j < i is a feed-forward system.

For a feed-forward system, a system-level Monte Carlo uncertainty analysis propagates uncer-
tainty through the system’s components by propagating realizations of the random inputs to the
system in a serial manner. That is, realizations are propagated through the system on a component-
by-component basis, requiring components with outputs that are inputs to downstream components
to be run prior to running downstream components. This can be problematic if components are
housed in different locations or owned by different groups, due to communication challenges and
the possible transfer of large datasets. Furthermore, any changes to upstream components (e.g.,
modeling changes and changes in input uncertainty distributions) will require re-computing all
downstream uncertainty analyses. The next section describes our proposed methodology to address
these challenges, by decomposing the system-level uncertainty analysis into a set of offline local
uncertainty analyses at the component level.

3. DECOMPOSITION-BASED MULTICOMPONENT UNCERTAINTY ANALYSIS

This section first presents an overview of our approach, and then describes the methodological ingre-
dients of importance sampling and density estimation. We then describe the details of an essential
element contributed by our approach: accounting for dependencies among system variables.
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Figure 2. The process depicts the local uncertainty analysis and global compatibility satisfaction for Com-
ponent m. First, local uncertainty analysis is performed on the component. Second, global compatibility
satisfaction uses importance sampling to update the proposal samples so as to approximate the target

distribution. Finally, an update step accounts for dependence among variables.

3.1. Overview of multicomponent uncertainty analysis

Our proposed decomposition-based multicomponent uncertainty analysis approach comprises two
main procedures: (1) local uncertainty analysis: perform a local Monte Carlo uncertainty analysis on
each component using their respective proposal distributions; and (2) global compatibility satisfac-
tion: resolve the coupling among the components without any further evaluations of the components
or of the system as a whole. Figure 2 represents the local and global steps of our approach for a
generic component.

Each local uncertainty analysis is carried out in a decoupled offline phase. The challenge created
by decomposition is that the distribution functions of the inputs for each component are unknown
when conducting the local uncertainty analysis. Therefore, we propose an initial distribution func-
tion for each component input, which we refer to as the proposal distribution function. Local
uncertainty analysis uses the proposal distribution function to generate samples of the uncertain
component inputs and propagate them through the component analysis to generate corresponding
samples of component outputs.

In the online phase, we learn the true distribution function of the inputs of each component. We
refer to these true distribution functions as the target distribution functions. For those component
inputs that correspond to system inputs, the target distribution functions represent the particular
specified scenario under which we wish to perform the system uncertainty analysis. For those
component inputs that correspond to coupling variables (i.e., they are outputs from upstream com-
ponents), the target distribution functions are specified by the uncertainty analysis results of the
corresponding upstream component(s).

Global compatibility satisfaction is ensured by starting with the most upstream components of the
system and approximating their respective target distribution functions using importance sampling
on the corresponding proposal distribution functions. The densities of updated output samples of
these components are then represented using density estimation. We construct joint densities among
the inputs and outputs of these upstream components to account for any dependencies that were not
captured in the marginal densities of each component’s outputs. Once this is complete, downstream
components receive their respective target distribution functions, and the process of importance
sampling and accounting for dependence is repeated through the system.

The theoretical analysis presented in Section 4 requires that components can be represented
by piecewise functions each of which are one-to-one and continuously differentiable on sets of
finite measure. In addition, the density estimation steps of the approach will suffer loss of accu-
racy if the underlying densities are not sufficiently smooth. This restricts the class of problems for
which we can expect good convergence of the decomposition-based approach. For smooth problems,
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Figure 3. Three components of a feed-forward system shown from the system Monte Carlo perspective (left)
along with the same components exercised concurrently from the perspective of the decomposition-based

multicomponent uncertainty analysis (right).

methods such as stochastic Galerkin and stochastic collocation can yield faster convergence than
Monte Carlo simulation for problems of moderate dimension. In this paper, we set up our mathe-
matical framework using Monte Carlo simulation, due to its broader generality; while we do not
develop the theory here, our general approach of decomposing into local uncertainty analysis and
global compatibility satisfaction could also be combined with stochastic Galerkin and stochastic
collocation methods. We also note that if importance weights could be computed without requir-
ing density estimation (the subject of our ongoing work), then our decomposition approach will be
applicable to a more general class of multidisciplinary engineering problems, including those that
exhibit irregular dependencies, steep gradients, and sharp transitions.

To describe our decomposition-based approach more concretely, we consider the specific case
of a three-component feed-forward system, shown in Figure 3, although our approach extends to
multiple components and other forms of component feed-forward coupling. The system inputs are
.�1; �2; �3/

T , and �6 is the system output quantity of interest. The coupling variable �4 is an out-
put of Component 1 and an input of Component 3, and the coupling variable �5 is an output of
Component 2 and an input of Component 3. Thus, the local uncertainty analysis for Component
1 involves evaluating f1 with sample realizations of the proposal distribution functions of �1 and
�2 in order to generate samples of �4. Similarly, the local uncertainty analysis for Component 2
involves evaluating f2 with sample realizations from the proposal distribution functions of �2 (inde-
pendent of the samples of �2 drawn for Component 1) and �3, to generate samples of �5, and the
local uncertainty analysis of Component 3 involves the evaluation of f3 with sample realizations
from proposal distribution functions of �4 and �5 to generate samples of �6. The key challenges
in decomposing the uncertainty analysis for this system are as follows: (1) the local Monte Carlo
simulation for f3 is performed before the target distribution function of the coupling variables �4
and �5 is known, and (2) the dependence between �4 and �5 due to �2 is not accounted for in the
local analyses.

Starting from the upstream components, here Component 1 and Component 2, importance sam-
pling assigns weights to the computed samples so as to approximate the input target distribution
functions of each component using the samples previously simulated during local analysis from
the input proposal distribution functions. The result is an updated output target marginal distribu-
tion function of �4 and �5 that requires no further evaluations of the Component 1 or Component
2 functions. To account for the dependence between �4 and �5, we construct the joint density of
.�4; �5/

T using a conditioning process that is described in detail in Section 3.5 and again requires
no further evaluations of the component functions. We then use importance sampling for Compo-
nent 3 to yield an updated output target distribution function for �6. As a result, the system input
target distribution functions are propagated downstream to quantify the distribution function of
the output quantity of interest, here �6, without having to perform a full system-level uncertainty
analysis. As shown in Section 4.1, under some mild assumptions on the component functions, the
results of the decomposition-based approach converge in distribution to the true variables of the
feed-forward system.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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3.2. Local uncertainty analysis

To simplify notation in the presentation of the local analysis for Componentm, we define ym D xIm ,
the vector of inputs to Component m. We define the proposal distribution function for the inputs of
Component m as

P.ym/ D
Z
Dm

p.t/ dt; (1)

where ym D .ym;1; ym;2; : : : ; ym;dm/
T ; p.ym/ is the proposal density of the input random vec-

tor, Ym D .Ym;1; Ym;2; : : : ; Ym;dm/
T , and ym;j denotes the j th component of the vector ym. The

domain of integration is Dm D .�1; ym;1� � .�1; ym;2� � � � � � .�1; ym;dm/; t is a dummy
variable of integration, and we assume that the input random variables of each component are con-
tinuous. The local uncertainty analysis of Component m uses Monte Carlo simulation to generate n
samples,

®
yim
¯n
iD1

, from the proposal distribution function P.ym/, where yim denotes the i th sam-
ple. We propagate those samples through the component, computing the corresponding component
outputs

®
fm

�
yim
�¯n
iD1

.
The proposal distribution function P.ym/ represents our ‘best guess’ at describing the uncertainty

in the inputs of Component m, made before we receive distributional information from upstream
components or system inputs. Choosing an appropriate proposal distribution is important but can
be difficult because the target is unknown at the time the proposal is specified. The difficulties are
that the target density must be absolutely continuous with respect to the proposal density, and at the
same time, the proposal should adequately capture the dependence structure and high probability
regions of the target. If the condition of absolute continuity is not satisfied, then the computation of
the importance sampling weights (described in more detail in the next section) will fail. Therefore,
it is typical to choose a conservative proposal distribution function, ensuring that the support of the
proposal is sufficiently wide to encompass the full range of input values expected from upstream
components or from system inputs. If the proposal has appropriate support, but does not adequately
capture the structure of the target, then our convergence results in Section 4 still hold, but the number
of samples needed in the offline stage (to achieve a desired accuracy level) may be prohibitive. The
quality of the proposal distribution and its impact on the uncertainty assessment results are discussed
in Section 4.2.

3.3. Sample weighting via importance sampling

We define the target distribution function of the inputs for Component m as

Q.ym/ D
Z
Dm

q.t/ dt; (2)

where q.ym/ is the target density of Ym. We use importance sampling to weight the pre-computed
proposal samples,

®
yim
¯n
iD1

, ensuring that the weighted proposal input empirical distribution
function converges pointwise to the target input distribution function.

Lemma 1
Let Qn.ym/ be the weighted proposal empirical distribution function for the inputs to Component
m, computed using n samples. We write

Qn.ym/ D
nX
iD1

w
�
yim
�

1i .ym/; (3)

where 1i .ym/ is the indicator function of the event
°
yim;j � ym;j ;8j 2 ¹1; 2; : : : ; dmº

±
; w

�
yim
�
/

q.yim/
p.yim/

and subject to the condition that the weights sum to unity, and q is absolutely continuous with

respect to p. Then
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lim
n!1

Qn.ym/ D Q.ym/; (4)

where Q is the input target distribution function for Component m.

Proof
See, for example, Reference [23]. �

Lemma 1 shows that the weighted proposal input empirical distribution function converges to the
input target distribution function. By applying Skorokhod’s representation theorem and assuming
that each fm.ym/ is continuous, it is straightforward to show (see, e.g., [24]) that the correspond-
ing empirical distribution of the component outputs converges to the distribution function of the
target outputs. Thus, all that is required to ensure that we can change from proposal to target dis-
tribution functions for each component, without further model evaluations, is the ability to estimate
the proposal and target input densities pointwise to provide the sample weights. We discuss how we
accomplish this in the next section.

Algorithm 1 describes the importance sampling procedure. This process is shown notionally in
Figure 4. The left plot in Figure 4 shows the contours, in solid, of an example proposal density and
samples from that density as dots. Target density contours are shown on the same plot as the dashed
curves. Importance sampling provides a weight for each red sample, where the relative weights of
the samples are reflected by the size of the blue dots on the right plot of Figure 4.

We note here that if a poor proposal distribution function is selected, then the importance sampling
algorithm may encounter sample impoverishment and therefore result in a poor convergence rate.
Therefore, it is desirable to select a conservative proposal distribution function to account for the
unknown target distribution function at the local uncertainty analysis step.

Algorithm 1: Importance Sampling for Component m.
Data: Target input distribution Q and density q, proposal distribution P and density p.
Result: Sample importance weight, ¹wiºniD1:
Sampling:
Generate n samples,

®
y1m; y

2
m; : : : ; y

n
m

¯
, i.i.d. from P ;

Importance Sampling:
for i 2 ¹1; : : : ; nº do

Assign to sample yi the weight wi /
q.yim/
p.yim/

I

end
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Figure 4. The importance sampling process uses the realizations (red dots on left figure) generated from a
proposal distribution P.�1; �2/ (corresponding density shown as red solid contour on left figure) to approxi-
mate a target distributionQ.�1; �2/ (blue dash contour on left figure), by weighting the proposal realizations,

(blue dots on right figure).
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3.4. Density estimation for estimating importance weights

Algorithm 1 computes importance weights that are the ratio of the target density to the proposal
density for a given sample. Because we employ here a sample-based approach to uncertainty prop-
agation, we require a means of estimating proposal and target densities from a set of samples. In
particular for some continuous random variable „ with distribution function ….�/ and a density
�.�/, we require that for any density estimate, O�.�/,

lim
n!1

O�.�/ D �.�/ (5)

at all points of continuity of the density �.�/. For this, we use kernel density estimation,

O�.�/ WD
1

nLd

nX
iD1

K

�
� � �j

L

�
; (6)

whereL > 0 is a bandwidth parameter with the property that lim
n!1

L D 0 andK is a kernel function
satisfying

0 6 K.t/ 61; (7)

Z
Rd
K.t/ dt D 1; (8)

Z
Rd
K.t/� dt D 0; (9)

Z
Rd
K.t/ jjtjj2 dt <1; (10)

where t 2 Rd and jj � jj is the Euclidean norm. Then, lim
n!1

O�.�/ D �.�/ at every point � of conti-

nuity of �.�/ [25, 26]. The Gaussian kernel function and mean integrated squared error bandwidth
parameter selection criteria are implemented throughout all examples in this manuscript [27].

If the set of points of continuity of �.�/ is of measure 1, then in the limit as n ! 1, O�.�/ is
a density of the distribution function ….�/. To ensure this criterion, we require that the inputs to a
given system be absolutely continuous random variables. Further, as discussed in Reference [24],
the component functions, fm, must be such that there are sets ¹I1; I2; : : : ; Ikº that partition the
component input space Rdm , such that fm W Ii ! Rkm is strictly one-to-one and continuously
differentiable for each set i .

3.5. Accounting for dependence among variables

The weighting of samples via importance sampling in the global compatibility step of our multi-
component uncertainty analysis approach ensures that we achieve the target marginal distribution
functions of a given component’s inputs. However, the dependencies among variables, such as �4
and �5 in the system shown in Figure 3, are not captured. These dependencies must be recovered in
order to achieve the correct results.

For example, consider again the system presented in Figure 3. The dependence between �4 and
�5 caused by the common dependence on �2 can be accounted for by considering the target density
of .�4; �5/T and the dependence structure as follows [24]:

q.�4; �5/ D

Z
�2

q.�2; �4; �5/d�2 D

Z
�2

q.�2; �4/ � q.�5j�2/d�2 D

Z
�2

q.�2; �4/ � q.�2; �5/

q.�2/
d�2:

(11)
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Here, q.�2; �4/ is the target density associated with input �2 and output �4, which was constructed via
importance sampling for Component 1. Likewise, q.�2; �5/ is the target density associated with input
�2 and output �5, which was constructed via importance sampling for Component 2. We construct
q.�4; �5/ using Equation (11), which uses the system’s inherent dependence structure to yield the
correct target input distribution function to Component 3.

To generalize the concept, consider the construction of the target density of the inputs to the first
m components of an M -component feed-forward system, where the inputs to Component i cannot
be the outputs of Component j unless j < i . Recall from Definition 1 that x D .x1; x2; : : : ; xd /T is
the vector of system variables, Im � ¹1; 2; : : : ; dº is the set of indices of the system variables cor-
responding to inputs to Component m, and Om � ¹1; 2; : : : ; dº is the set of indices corresponding
to the outputs from Component m. We further define Sm � ¹1; 2; : : : ; dº to be the set of indices of
new system inputs to Component m, where new system inputs refer to those inputs that are not out-
put from any component, are not inputs to any previous component, and are assumed independent.
Then, let Vm D Im [ Om, which is the set of indices of the inputs and outputs of Component m,
let Um D [miD1Vm, which is the set of indices of the inputs and outputs of the first m components,
and let Tm D

�
[m�1iD1 Vi

�
\Im, which is the set of indices of the shared inputs of Componentm with

any of the previous m� 1 components’ inputs or outputs. We also define Jm D Um�1 [ Sm, which
is the set of indices of all of the inputs and outputs associated with the first m � 1 components, as
well as the indices of the system inputs of Component m, and let Km D Jmn Im. By constructing
the target density of the variables with indices in the set Jm, we correctly capture the dependence
among the inputs to Componentm. We denote by xJm the vector of system variables corresponding
to those indices in the set Jm (and similarly for the other sets defined previously).

For the example system given in Figure 3, with m D 3, we have that x D .�1; �2; �3; �4; �5; �6/T .
The indices in each of the sets for m D 1; 2; and 3 are given in Table I. For this example, the tar-
get densities required for each component are q

�
xJ1

�
D q.�1; �2/; q

�
xJ2

�
D q.�1; �2; �3; �4/, and

q
�
xJ3

�
D q.�1; �2; �3; �4; �5/. The target densities, q .xJm/, contain the correct dependence struc-

ture for the inputs, xIm , to Component m. We write the target density of these inputs as q .xIm/
for each Component m. The evaluation of the input target density, q

�
xiIm

�
, at proposal input sam-

ples, xiIm , for each Componentm, ensures that we can properly weight the proposal samples to each
component of the system according to Algorithm 1.

Lemma 2
The target density of the inputs and outputs of the first m � 1 components and the inputs to
Component m, where m > 3, is given by

q .xJm/ D

Qm�1
kD1 q

�
xVk

�
Qm�1
lD2 q

�
xTl
� q .xSm/ ; (12)

where if Sm D ¹;º, then q .xSm/ D 1.

Table I. Index sets for the system presented in Figure 3.

m D 1 m D 2 m D 3

I1 D ¹1; 2º I2 D ¹2; 3º I3 D ¹4; 5º
O1 D ¹4º O2 D ¹5º O3 D ¹6º
S1 D ¹1; 2º S2 D ¹3º S3 D ¹;º
V1 D ¹1; 2; 4º V2 D ¹2; 3; 5º V3 D ¹4; 5; 6º
U1 D ¹1; 2; 4º U2 D ¹1; 2; 3; 4; 5º U3 D ¹1; 2; 3; 4; 5; 6º
T1 D ¹;º T2 D ¹2º T3 D ¹4; 5º
J1 D ¹1; 2º J2 D ¹1; 2; 3; 4º J3 D ¹1; 2; 3; 4; 5º
K1 D ¹;º K2 D ¹1; 4º K3 D ¹1; 2; 3º
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Proof

Qm�1
kD1 q

�
xVk

�
Qm�1
lD2 q

�
xTl
� q .xSm/ D q

�
xV1

� q �xV2
�

q
�
xT2

� � � � q
�
xVm�1

�
q
�
xTm�1

�q .xSm/ (13)

D q
�
xV1

� q �xV2
�

q
�
xT2

� Qm�1
kD3 q

�
xVk

�
Qm�1
lD3 q

�
xTl
� q .xSm/ (14)

D q
�
xU2

� Qm�1
kD3 q

�
xVk

�
Qm�1
lD3 q

�
xTl
� q .xSm/ (15)

D q
�
xUm�1

�
q .xSm/ (16)

D q .xJm/ ; (17)

where Equation (15) follows from the definition of a conditional probability density (see, e.g., [24])
and Equation (17) follows because the system inputs of Component m are considered independent
from all other system variables. �

Once we have the density q .xJm/, we can evaluate the input target density, q .xIm/, required by
Component m with the correct dependence among the inputs. We note here that for a system with
m D 1 component, there is no dependence structure to resolve. For m > 2, the input target density
for Component m is given by

q .xIm/ D

Z
supp.XKm/

q .xKm/ q .xJm jxKm/ dxKm ; (18)

where supp .XKm/ is the support of the random vector XKm . We note here that Equation (18) is
the expected value of the conditional density, q .xJm jxKm/ with respect to q .xKm/. The density
q .xKm/ is obtained similarly to q .xJm/ using the densities in Equation (12) with the variables in
xIm marginalized out. The target input density, q .xIm/, only needs to be evaluated at the proposal
samples as specified in Algorithm 1. A procedure for evaluating this density at the proposal samples,
using Monte Carlo simulation to evaluate Equation (18) and Lemma 2 to construct q .xJm jxKm/,
is given in Algorithm 2. Algorithm 2 avoids the challenge of estimating high-dimensional densities
with kernel density methods by assembling the large densities q .xJm/ and q .xKm/ using the smaller
dimensional component densities q

�
xVi
�

and q
�
xTi
�
. As a result, the largest dimension estimated

with kernel density methods is that of the component with the largest cardinality, jVi j.

Algorithm 2: Accounting for dependence for inputs to Component m, where m > 3.

Data: Target densities q
�
xVi
�

for i D 1; : : : ; m � 1 and proposal samples
®
xiIm

¯N
iD1

.

Result: Target density q .xIm/ evaluated at the proposal samples
®
xiIm

¯N
iD1

.
for i D 1 W N do

Initialize q
�
xiIm

�
D 0;

for s D 1 W S do
xsJm D xiIm .
for j D 1 W .m � 1/ do

Generate sample xsVj from the density q
�
xVj

�
conditioned on the known set xsJm .

xsJm D xsJm [ xsVj .
end
Generate sample xsSm from q .xSm/ conditioned on the known set xsJm .
xsJm D xsJm [ xsSm .
Evaluate q

�
xiIm

�
D q

�
xiIm

�
C 1

S
q
�
xsJm

�
=q
�
xsKm

�
using Equation (12);

end
end
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We note here that form D 2, the input target density may be obtained in a similar fashion to what
is carried out in Algorithm 2. In this case, the innermost for-loop is modified so that samples are
taken from the target density, q

�
xV1

�
, and the new system input density, q

�
xS2

�
.

4. CONVERGENCE ANALYSIS & A POSTERIOR INDICATOR

This section addresses the convergence properties of the decomposition-based multicomponent
uncertainty analysis approach, describes an a posteriori indicator to assess proposal quality, and
presents a simple example to demonstrate convergence.

4.1. Convergence

We prove here that the decomposition-based multicomponent uncertainty analysis approach leads to
the convergence in distribution of all of the variables associated with a given feed-forward system.

Theorem 1
Let fm, for m D 1; 2; : : : ;M , be the functions comprising an M -component feed-forward sys-
tem, where the input spaces of the functions can be partitioned such that on each partition, the
functions are one-to-one and continuously differentiable. Let the system inputs be absolutely con-
tinuous random variables. Then the target random variables for all system variables estimated via
the decomposition-based multicomponent uncertainty analysis procedure converge in distribution
to their respective true target random variables as the number of samples tends to infinity.

Proof
For each component m D 1; 2; : : : ;M , local uncertainty analysis using n samples drawn from
the proposal distribution functions, P .xIm/, results in proposal empirical distribution functions,
P n .xIm/. Define the set M1 as the indices of the components with no dependence on upstream
components, M1 D

®
m 2 ¹1; 2; : : : ;M º W Im \

�
[MiD1Oi

�
D ;

¯
. The target distribution functions,

Q .xIm/, for each componentm 2M1 are therefore known. We estimate the densities Oqm .xIm/ for
m 2M1 from samples of the target distribution functions using a kernel density estimation method
that is strongly uniform convergent [26]. Then, for each m 2M1,

lim
n!1

Oqm .xIm/ D q .xIm/ ; (19)

for all points of continuity of the target density q .xIm/. Because all inputs to the components in the
set M1 are absolutely continuous random variables, the measure of the set of discontinuous points
of q .xIm/ is zero. Equation (3) defines the weighted empirical distribution function Qn .xIm/, and
by Lemma 1, we have

lim
n!1

Qn .xIm/ D Q .xIm/ : (20)

Let Qnm be a random variable with distribution function Qn, and then Qnm
d
�! xIm . Then, for

each set in the partition of the input space of fm, we have by Skorokhod’s representation theorem,

fm
�
Qnm

� d
�! fm .xIm/. Because the boundaries of the sets of the partition comprise a set of

measure zero, this convergence applies over the complete domain of the function.
Then, by Lemma 2, we can obtain samples from the joint distribution function of the inputs

and outputs for all components in M1. We then define M2 as the indices of those compo-
nents with no dependence on upstream components other than those components in M1. That is,
M2 D ¹m 2 ¹1; 2; : : : ;M º W Im \ .[i…M1

Oi / D ;º. The target distribution functions of all inputs
for components m 2M2 are now available; thus, the analysis described previously for M1 applies
to M2. We proceed by defining in turn M3;M4; : : : ;Mk , where [kiD1Mk D ¹1; 2; : : : ;M º, and
obtaining samples from the distribution functions of all of the inputs and outputs for all compo-
nents in each Mi . From the samples generated for the components with indices in Mk , we can
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construct the empirical distribution function of all system variables. By the strong law of large num-
bers, this empirical distribution function converges pointwise to the true distribution function of all
system variables. �

The rate of convergence of our decomposition-based uncertainty analysis depends on several ele-
ments: the rate of convergence of the underlying Monte Carlo sampling, the rate of convergence of
the kernel density estimation, and the quality of the proposal distribution functions relative to their
corresponding targets. As already discussed in Section 3.2, choosing a good proposal distribution
is particularly important for achieving satisfactory convergence rates; a poor choice of proposal can
lead to needing a prohibitive number of samples in the offline phase. While one can provide only
qualitative guidance for proposal selection as discussed in Section 3.2, Section 4.2 presents a quan-
titative metric that compares proposal and target distributions for all inputs and coupling variables,
thus highlighting a posteriori when a poor proposal choice may have compromised accuracy.

We further note here that although we have shown convergence in distribution of all variables
associated with a feed-forward system, for many uncertainty analysis tasks, we may care only about
statistics such as the mean and variance of a quantity of interest. Generally, if we have a function f W
Rs ! R that takes random inputs .�1; �2; : : : ; �s/T , we can estimate the mean of f .�1; �2; : : : ; �s/
using Monte Carlo simulation as

Nf D
1

n

nX
iD1

f
�
� i1; �

i
2; : : : ; �

i
s

�
; (21)

where
�
� i1; �

i
2; : : : ; �

i
s

�T
is the i th sample realization of the random input to the function. By the

strong law of large numbers, Nf
a:s:
�! EŒf .�1; �2; : : : ; �s/� as n ! 1. We may use Monte Carlo

simulation to estimate other integral quantities, such as the variance, as well, with almost sure con-
vergence guaranteed by the strong law of large numbers. In our decomposition-based approach to
uncertainty analysis, if the functions, fm, corresponding to each component in the feed-forward
system are also bounded, then, by an application of Skorokhod’s representation theorem (see, e.g.,
Reference [24]), the estimated mean and variance of any quantities of interest will converge to
the true mean and variance. Thus, our decomposition-based multicomponent uncertainty analysis
methodology can perform typical uncertainty analysis tasks in a provably convergent manner.

4.2. A posteriori indicator

Selection of an adequate proposal distribution function should use expert opinion and/or previous
knowledge from past analyses. However, a poor proposal distribution may detrimentally affect the
convergence performance of the distributed uncertainty assessment approach. In the general case,
we cannot analyze a priori the effects of a given proposal distribution (if we had such information,
we would use it to select a better proposal distribution); instead, we use quantitative indicators to
determine a posteriori if the results are satisfactory.

Drawing from sequential Monte Carlo methods, we evaluate the quality of our proposal
distributions once the importance weights are known, using the effective sample size,

neff D
1PN

iD1

�
w.xi /

�2 ; (22)

where w.xi / is the importance weight associated to proposal sample xi [28–30]. The effective sam-
ple size can range in value from neff D 1 to neff D N . A value of neff D N indicates that the
proposal and target distributions are equivalent, while a value of neff D 1 indicates an extremely
poor proposal distribution where only one sample bears any weight in the weighted empirical dis-
tribution. The effective sample size is thus a suitable measure of the degeneracy of a given proposal
distribution relative to a given target distribution.

To assess the quality of a distributed uncertainty assessment result, we recommend computing
the effective sample size for each component once its target distribution is known. If a component’s
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effective sample size is below a user-specified threshold, this indicates that sample impoverishment
has occurred to a potentially detrimental degree, and we recommend re-evaluating the local uncer-
tainty analysis for that component. Upon completing the local uncertainty analysis of the component
in question, the global compatibility step is computed again and the component’s new effective
sample size is evaluated. In the re-evaluation step, the component’s input target distribution can
be used in place of the poor proposal distribution—of course, this re-evaluation breaks the strictly
offline/online decomposition of our approach, but this recourse is necessary to provide some robust-
ness. The threshold for neff is a user choice; we investigate its effect with a simple example in the
next section. Guidance can also be found in the importance sampling literature [31].

4.3. Convergence example

The following example lays out a step-by-step application of the approach and demonstrates the
convergence in distribution for the system shown in Figure 3. The component functions are

f1 W �4 D �1 C �2

f2 W �5 D �2 C �3

f3 W �6 D �4 C �5:

The first phase of the approach is to conduct the offline analysis for each local component, which
requires selecting proposal distributions for each component’s inputs. In this example, the proposal
distributions selected are Gaussian with conservative variance estimates. For Component 1, we use
�1 � N .�0:5; 1:5/ and �2 � N .1:5; 2:0/. For Component 2, we use �2 � N .�1:0; 2:5/ and
�3 � N .�0:5; 2:5/. For Component 3, we use �4 � N .1:5; 5:0/ and �5 � N .�1:5; 4:5/. (Note
that the proposal distribution for �2 in the local analysis for Component 1 is not necessarily the
same as the proposal distribution for �2 in the local analysis for Component 2.) Based on these
proposal distributions, we conduct a local uncertainty analysis for each of the three components.
In each case, we use a Monte Carlo simulation with n ranging from 100 to 1000 samples. Each
Monte Carlo simulation results in a set of samples of the component outputs (�4 for Component 1,
�5 for Component 2, and �6 for Component 3). For each component, we store the input and output
sample datasets.

The next phase of the approach is the online analysis, which uses those samples pre-computed
in the offline phase and does not require additional evaluations of any of the components. The first
step in the online analysis is to specify target distributions for all system inputs, in this case �1; �2,
and �3. These target distributions represent the particular scenario for which we wish to analyze the
system. In this example, we specify all three system inputs to have standard Gaussian distributions:
�1 � N .0; 1/; �2 � N .0; 1/, and �3 � N .0; 1/. We then begin with the upstream components, here
Component 1 and Component 2. Given the newly specified target distributions and the proposal
distributions assumed in the offline phase, for each component, we compute the importance weights
using Algorithm 1. We apply these importance weights to the corresponding samples of component
outputs, here �4 and �5. This gives updated estimates of the component output distributions. The
next step is to resolve the dependence structure between �4 and �5, induced by the shared input
variable �2. We achieve this using Algorithm 2, which evaluates the joint target density q.�4; �5/
at the input proposal samples of Component 3. The last step of the online phase is to compute the
importance weights for Component 3, using the newly acquired target density q.�4; �5/ evaluations
from Algorithm 2. Applying these importance weights to the pre-computed samples of �6 leads to
the final updated estimate of the system output.

For this particular scenario, we can compute the true system output distribution analytically as
a Gaussian distribution, �6 � N .0; 6/. We compare the numerical results from our decomposi-
tion approach to this analytical solution. The convergence in distribution is demonstrated with the
Cramer von-Mises criterion,

! D

Z 1
�1

.…n.�6/ �….�6//
2 d….�6/; (23)
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Figure 5. The results indicate the output of interest, �6; Cramer von-Mises criterion converges with the
number of samples.

where …n.�6/ and ….�6/ are the empirical and analytical distribution functions of �6, respectively.
The Cramer von-Mises criterion is estimated using Monte Carlo simulation, where samples of �6
are drawn from the analytical distribution ….�6/.

Figure 5 presents the averages over 100 independent simulations of an all-at-once system Monte
Carlo uncertainty analysis and our decomposition-based approach. The decomposition-based results
implemented the kernel density estimation method and used 25 samples, S , to resolve the depen-
dence among variables in Algorithm 2. The result shows that for the same number of overall samples
per component, n, we incur a larger error than the system-level Monte Carlo simulation. This error is
due to Algorithm 1. Specifically, the target measure needs to be absolutely continuous with respect
to the proposal measure, which leads to a conservative choice of proposal density. This in turn means
that there exist proposal samples that have negligible importance weight (‘wasted’ samples). The
closer the proposal distribution to the target distribution, the smaller this offset. This is the price
we pay for decomposition—it is important to emphasize that our goal is not an improvement in
computational efficiency, but rather the ability to manage system complexity and to analyze uncer-
tainty in systems for which an integrated Monte Carlo simulation approach may not be tractable or
feasible. Furthermore, our approach can perform the local uncertainty analysis of each component
concurrently. This could lead to significant further run time improvement compared to the system
Monte Carlo uncertainty analysis, which can perform uncertainty analysis on downstream models
only after their respective dependent upstream components’ uncertainty analyses are complete.

Figure 6 demonstrates the effects of changing the proposal distribution on the convergence of the
decomposition-based approach for this simple example. Here, we consider modifying the proposal
distribution of Component 2 while keeping the proposal distributions of Component 1 and Compo-
nent 3 the same as the previous analysis, with n D 256. The proposal distribution for Component
2 is a bivariate Gaussian distribution with zero mean and diagonal variance set to 1.5, 3.0, 6.0, and
12.0 representing a degradation of the proposal distribution. These four cases result, respectively,
in values of neff D 220; 140; 75, and 40. As the proposal distribution improves, the ratio neff=n

increases (for this example n is fixed), which in turn leads to improved estimation of the outputs of
interest as shown by the decreasing Cramer von-Mises criterion in Figure 6.

5. RESULTS

In this section, we present a demonstration of the decomposition-based multicomponent uncertainty
analysis approach for a gas turbine blade application. We compare the results of our method with
all-at-once Monte Carlo system uncertainty analysis.
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Figure 6. The results show the implications of selecting a poor proposal distribution for component f2
with n D 256. As neff approaches n, indicating a better proposal distribution, the accuracy of our

estimate improves.

Figure 7. The gas turbine application problem contains four components, each representing a disciplinary
analysis: heat transfer, structures, performance, and economics.

5.1. Application

Our application problem consists of four components, each representing a disciplinary analysis:
blade heat transfer, blade lifetime, engine performance, and an economic model. The functional
relationships and random variables are shown in Figure 7. This application is representative of an
organizational multidisciplinary environment where different groups are responsible for different
aspects of the gas turbine design and assessment. The specific objective of our analysis is to quan-
tify the effects of uncertainties throughout the gas turbine design process on the output of interest,
here the economics of the product. We consider the uncertain system inputs shown in Table II.
The distributions shown in the table are the target distributions used for our analysis (i.e., they
represent the particular scenario of interest in the system uncertainty analysis). These target dis-
tributions are considered unknown when conducting the local uncertainty analysis for each of the
four components.
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Table II. Gas turbine system input uncertainty distributions where U.a; b/ represents a uniform
distribution between the lower limit a and upper limit b.

Variable Name Description Units Distribution

�1 Tc1 First passage coolant temperature K U.590; 610/
�2 Tc2 Second passage coolant temperature K U.640; 660/
�3 Tc3 Third passage coolant temperature K U.690; 710/
�4 k Blade thermal conductivity W/m/K U.29; 31/
�5 hLE Leading edge heat transfer coefficient W/m2/K U.1975; 2025/
�6 hTE Trailing edge heat transfer coefficient W/m2/K U.975; 1025/
�7 Pm Coolant mass flow rate kg/sec U.0:108; 0:132/
�8 Tg External gas path temperature K U.1225; 1275/
�9 LMP Larson–Miller parameter � U.2:45 � 104; 2:55 � 104/
�10 Fperf Performance factor � U.0:85; 0:95/
�11 Fecon Economic factor � U.0:9; 1:1/

Figure 8. The gas turbine blade profile and mesh, along with the random input variables.

Table III. Heat transfer model input proposal uncertainty distributions.

Variable Name Description Units Distribution

�1 Tc1 First passage coolant temperature K N .595; 75/
�2 Tc2 Second passage coolant temperature K N .645; 75/
�3 Tc3 Third passage coolant temperature K N .705; 75/
�4 k Blade thermal conductivity W/m/K N .29; 1:5/
�5 hLE Leading edge heat transfer coefficient W/m2/K N .2025; 1500/
�6 hTE Trailing edge heat transfer coefficient W/m2/K N .1000; 500/
�7 Pm Coolant mass flow rate kg/sec N .0:12; 10�4/
�8 Tg External gas path temperature K N .1260; 450/

Heat Transfer Model. The blade heat transfer model simulates a cooled gas turbine blade in hot
gas path flow using finite element analysis. The uncertain inputs to this subsystem are shown in
Figure 7. We consider three blade passages, each with its own independent coolant temperature
variable. Thus, there are eight uncertain inputs to this component. External heat transfer along
the pressure and suction side surfaces is computed as

htc.�/ D hTE C .hLE � hTE / � exp

 
�4 �

�
�

c

�2!
; (24)

where � is the chordwise spatial coordinate and c is the blade chord length, here taken as c D 0:04
[m]. The output of the heat transfer model is bulk metal temperature, Tbulk [K]. The relationship
between the input and output variables is computed using a finite element method to solve the
heat equation. The blade profile and mesh along with the random variables are shown in Figure 8.

The local uncertainty analysis for this model is conducted using the proposal distributions
shown in Table III. Note that for our particular demonstration, we have chosen the proposal
variances conservatively to ensure adequate support in the proposal samples, as discussed in
Section 3.3.
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Lifetime Model. The lifetime model estimates the expected time until blade failure assuming a
Larson–Miller [32] nickel super alloy stress-to-failure scenario. As shown in Figure 7, the inputs
to this subsystem are bulk temperature, Tbulk , and the Larson–Miller failure parameter, LMP.
The output is expected time until failure, tfail [h]. The relationship between the input and output
variables is given by

tfail D exp

�
LMP

Tbulk
� 20

�
: (25)

The input proposal distributions assumed for the local uncertainty analysis of this component are
given in Table IV.
Performance Model. A high-fidelity gas turbine performance model would account for compres-
sor coolant flow extraction, leakage losses, and mixing losses, which is beyond the scope of this
work. Instead, a simplified low-fidelity model is implemented to evaluate the maximum power.
The performance model rewards high external hot gas path temperatures and penalizes coolant
flow usage. As shown in Figure 7, the inputs to this subsystem are external gas temperature,
Tgas , performance factor, Fperf , and coolant mass flow, Pm. The performance factor, Fperf , is
introduced to account for the effects on engine performance of randomness associated with other
gas turbine components. The output of the performance model is engine performance, Peng ,
defined as

Peng D Fperf � . Pmo �N � Pm/ � Cp � To �

 
Tg

To
� 2 �

s
Tg

To
C 1

!
; (26)

where To is the inlet compressor temperature, Pmo is the inlet compressor flow rate, N is the
number of gas turbine blades, and Cp is the specific heat at constant pressure. These parameters
are treated deterministically and set to the values To D 300 [K], Pmo D 430 [kg/s], N D 90,
and Cp D 1003:5 [J/kg/K]. The input proposal distributions assumed for the local uncertainty
analysis of this component are given in Table V.
Economics Model. The economics model simulates the revenue from the operating gas turbine.
The model rewards a high-performance gas turbine engine and penalizes a gas turbine engine that
introduces risk of failure. As shown in Figure 7, the inputs to this subsystem are expected time
until failure, tfail , engine performance, Peng , and economic factor, Fecon. The economic factor,
Fecon, is introduced to account for randomness associated with other gas turbine components not
represented in the models. The output is revenue, recon, defined as

recon D Fecon � tfail � Peng � co; (27)

Table IV. Blade lifetime model input proposal uncertainty distributions.

Variable Name Description Units Distribution

�10 LMP Larson–Miller parameter � N .2:5 � 104; 2 � 105/
�12 Tbulk Bulk metal temperature K N .865; 400/

Table V. Performance model input proposal uncertainty distributions.

Variable Name Description Units Distribution

�7 Pm Coolant mass flow rate kg/sec N .0:115; 10�4/
�8 Tg External gas path temperature K N .1240; 500/
�10 Fperf Performance factor � N .0:9; 7:5 � 10�3/
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Table VI. Economics model input proposal uncertainty distributions.

Variable Name Description Units Distribution

�11 Fecon Economic factor � N .1:0; 0:01/
�13 tfail Blade lifetime year N .425; 6 � 104/
�14 Peng Engine performance MW N .120; 150/

where co is the cost of energy, which is treated deterministically and set to the value co D
0:07 [$/kWh]. The input proposal distributions assumed for the local uncertainty analysis of this
component are given in Table VI.
Multicomponent Uncertainty Analysis Results. In the ‘offline phase’, the local uncertainty anal-
yses are carried out for each component individually, using the input proposal distributions
specified in Tables III–VI. Each component uses n independent samples in its local Monte Carlo
simulation. (Note that the number of samples does not need to be the same across components.)
Output samples for each component are stored in a database.

The ‘online phase’ considers a system uncertainty analysis for the system input distributions
shown in Table II. Global compatibility satisfaction begins by considering the Heat Transfer and
Performance components, which have only system inputs and thus require no information from
upstream disciplines. Using Algorithm 1 and kernel density estimation, we obtain target densities
q.�12; �7; �8/ and q.�13; �7; �8/. The same procedure is applied to the Lifetime component using
the recently acquired density q.�12/ to obtain the target density q.�14; �12/. Using target densities
q.�12; �7; �8/, q.�13; �7; �8/, and q.�14; �12/ along with Algorithm 2 with S D 200 samples, we
obtain the desired target density q.�13; �14/ evaluated at the Economic model’s proposal samples.
The global compatibility satisfaction procedure is then performed on the Economics model to
obtain the system output of interest, revenue, with target density q.�15/. The Cramer von-Mises
convergence plots for variables �12, �13, �14, and �15 averaged over 100 independent simulations
are shown in Figure 9. The true distribution is defined by the empirical distribution function
generated using a system Monte Carlo simulation with 106 samples.

The system output of interest distribution function using the decomposition-based uncertainty
analysis approach is given in Figure 10. For comparison, the proposal distribution function and
the system Monte Carlo uncertainty analysis distribution function are also shown in Figure 10.
The results show that the decomposition-based approach propagated, in the online phase, the
target system input uncertainty distributions through the system to obtain an adequate represen-
tation of the system output of interest distribution. We emphasize that this online phase required
no additional evaluations of any of the component models. Our decomposition-based approach
therefore provides a quantitative means of calculating the system output of interest relevant
statistics and failure probabilities.

The small discrepancy between the decomposition-based uncertainty analysis approach and
the system Monte Carlo uncertainty analysis approach is due to the errors introduced by the
finite number of samples used in the density estimation step, the Monte Carlo approximation
used in Algorithm 2, and the sample impoverishment introduced by the requirement that target
distributions be absolutely continuous with respect to their proposal distributions. The sample
impoverishment error can be minimized by using more appropriate proposal distributions. How-
ever, it is not always possible to correctly predict the range of the target distribution. This is one
of the prices to pay for decomposition.
Flexibility of the Decomposition-Based Multicomponent Uncertainty Analysis. A benefit of our
decomposition-based approach is that if any system input distributions are modified, yet remain
absolutely continuous with respect to their proposal distribution, then the system output of
interest distribution function can be re-computed with no additional component analyses. For
example, if the system input variables �5, �6, �8, and �9 are modified from those in Table II
to those in Table VII, then the results given by the system Monte Carlo uncertainty analysis
are invalid. However, our decomposition-based approach can, with no additional evaluations
of any of the component models, evaluate the system output of interest distribution function
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Figure 9. The Cramer von-Mises convergence plots are shown for the intermediate variables �12, �13, and
�14 as well as for the system output of interest, revenue, �15. The solid lines are the results obtained from
a system Monte Carlo simulation. The dashed lines are the results obtained using our decomposition-based

multicomponent uncertainty analysis.
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Figure 10. The system output of interest, revenue, distribution function using n D 8192 samples is shown in
millions of dollars. The solid line is the result obtained from a system Monte Carlo simulation. The dashed
line is the result obtained from the decomposition-based multicomponent uncertainty analysis. The dash-dot

line is the result obtained from the local uncertainty analysis of the Economics model.

as shown in Figure 11. For comparison, the previous system Monte Carlo uncertainty analysis
distribution function and a new system Monte Carlo uncertainty analysis distribution function,
which required evaluating the entire system again, are also shown in Figure 11. The results
show the decomposition-based approach, without re-evaluating any component, approximated
the distribution function accurately.
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Table VII. Updated gas turbine system input uncertainty distributions.

Variable Name Description Units Distribution

�5 hLE Leading edge heat transfer coefficient W/m2/K U.2025; 2075/
�8 Tg External gas path temperature K U.1240; 1280/
�9 LMP Larson–Miller parameter � U.2:425 � 104; 2:525 � 104/
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Figure 11. The system output of interest, revenue, distribution function using n D 8192 samples is shown
in millions of dollars. The solid line is the result obtained from an updated system Monte Carlo simula-
tion, which required evaluating the entire system again. The dashed line is the result obtained from the
decomposition-based multicomponent uncertainty analysis using the online phase only. The dash-dot line is

the result from the previous Monte Carlo uncertainty analysis.
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Figure 12. The bulk metal temperature, �12, is shown on the left. The results shows that the proposal
distribution (dash-dot line) of the bulk metal temperature of the Lifetime model supports the target distri-
bution (dashed line) coming from the Heat Transfer model. The system Monte Carlo uncertainty analysis
results, solid line, required evaluating the Heat Transfer, Lifetime, and Economics model, whereas the
decomposition-based multicomponent uncertainty analysis results were obtained using the online phase
only. The revenue, �15, in millions of dollars is shown on the right. The solid line is the result obtained from
a system Monte Carlo uncertainty analysis. The dashed line is the result obtained from the decomposition-
based multicomponent uncertainty analysis using the online phase only. The dash-dot line is the result

obtained from the previous Monte Carlo uncertainty analysis.
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Likewise, a modification to a component would require the system Monte Carlo uncertainty
analysis approach to recompute the samples associated with the modified component and any com-
ponents that depend on the modified component. In contrast, our decomposition-based uncertainty
analysis approach would only have to perform the local uncertainty analysis on the modified com-
ponent and those components for which the target distribution is no longer absolutely continuous
with respect to the proposal distribution. For example, if the Heat Transfer component modified
the heat transfer enhancement in the cooling channels from a factor of 2.5 to 2.25, then the tar-
get density q.�12/ would still be absolutely continuous with respect to the Lifetime model proposal
density p.�12/ as shown in Figure 12. As a result, the decomposition-based approach would not
require the Lifetime model or the Economics model to perform a local uncertainty analysis whereas
the system Monte Carlo uncertainty analysis approach would. Instead, the decomposition-based
approach evaluates the system output of interest distribution shown in Figure 12 using only the
online phase.

6. CONCLUSION

This paper has presented a new decomposition-based approach to uncertainty analysis of complex
multicomponent systems. The approach is motivated by the advantages brought about by decompo-
sition: managing complexity through a divide-and-conquer strategy, exploiting specific disciplinary
expertise through local analyses, promoting disciplinary/component autonomy while maintaining an
awareness of system-level issues, and being consistent with many organizational structures. These
are essential characteristics to achieve a sustainable strategy that manages uncertainty in the complex
settings of today’s modern engineered systems.

These characteristics are emphasized by drawing analogies between our decomposition approach
to uncertainty analysis and decomposition-based strategies for multidisciplinary optimization. In
the multidisciplinary optimization literature, approaches are often categorized as monolithic versus
distributed, and open consistency versus closed consistency [33–35]. Our approach has a distributed
architecture, that is, the system uncertainty analysis is partitioned into multiple uncertainty analyses.
This is in contrast to a monolithic architecture, which solves the problem in its entirety. Our approach
has open consistency, that is, our samples are initially observations from the incorrect probability
distributions but upon convergence become consistent with the desired distributions. In contrast, a
closed consistency formulation requires that each sample satisfies global compatibility constraints
at every stage of the algorithm.

This paper has focused on a method for the forward propagation of uncertainties through a feed-
forward system. Further research is required to extend the general idea to systems with two-way
coupling and/or feedback loops. Such systems will require iteration between components in the
online phase, thus destroying the clean partition between offline and online phases that we achieve
in the feed-forward case. Despite this drawback, the decomposition can still realize many of the
advantages discussed in the introduction. A further limitation is that the current approach has been
presented only for systems with random variables and random vectors. An important area of future
work is to extend the method to systems that include random fields. This will require drawing on
recent work to couple Karhunen-Loève expansion representations of random fields [14–16]. Lastly,
we note that the examples studied demonstrate the promise of the decomposition-based approach;
however, future work must also address the challenges of scalability. In particular, the density esti-
mation step (required to estimate importance weights) currently limits the number of dependent
variables that can be considered.
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