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Abstract

Lattice-like structures can provide a combination of high stiffness with light weight that is useful in
many applications, but a resolved finite element mesh of such structures results in a computationally
expensive discretization. This computational expense may be particularly burdensome in many-query
applications, such as optimization. We develop a stress-constrained topology optimization method for
lattice-like structures that uses component-wise reduced order models as a cheap surrogate, providing
accurate computation of stress fields while greatly reducing run time relative to a full order model.
We demonstrate the ability of our method to produce large reductions in mass while respecting a
constraint on the maximum stress in a pair of test problems. The ROM methodology provides a
speedup of about 150x in forward solves compared to full order static condensation and provides a
relative error of less than 5% in the relaxed stress.

Keywords— Topology optimization, model reduction, substructuring, static condensation, stress constraint,
ground structure

1 Introduction

Lattice-like structures are advantageous in many applications due to their combination of high stiffness and light
weight. Applications include aerospace structures [26], medical uses such as prostheses or implants [41], and
the traditional use of trusses as supports in structural engineering. Interest in lattice-like structures has further
increased as advances in additive manufacturing enable their production. Their analysis using a standard finite
element method (FEM) requires a high-dimensional discretization to capture the complex geometry, especially
when accurate computation of localized quantities – for example, stress – is needed. Optimization is then expen-
sive, requiring many evaluations of this high-dimensional model. In this work, we present a stress-constrained
topology optimization (TO) formulation for lattice-like structures that leverages component-wise reduced or-
der models (ROMs) as a surrogate, providing accurate computation of the stress field while greatly reducing
computational cost relative to a FEM analysis.

TO of lattice-like structures is often based on asymptotic homogenization. Such techniques are compelling
when the final design should be composed of material with a periodic structure. These techniques may solve a
macroscopic design problem in which the optimization variables control the geometry of unit cells throughout the
domain [4]; a microscopic design problem, designing a unit cell with particular properties as first seen in [31]; or a
combination of the two as in [42]. Homogenization has been applied to stress-constrained problems, for example
in [7]. Other methods also assume a periodic structure, for example, the generalized and high-fidelity generalized
method of cells [1]. ROMs have been applied to this family of techniques [28, 39, 40]; however, together with
homogenization, these methods share limiting assumptions on length scale and periodicity. The length scale of
unit cells should be much less than that of macroscopic features, and the approximation may not be accurate if
material does not satisfy the periodicity assumption. In particular, the behavior of stress near the boundary of
the material is not well understood [7].
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Several other existing techniques in TO also apply to design of lattice-like structures. Ground structure
approaches for truss optimization [45, 11] rely on a beam model for truss members and make the optimization
variables the cross-sectional areas of truss members. This approximation is invalid when truss members become
too thick. Deng and To in [8] develop a method that projects the ground structure onto a background finite
element mesh, eliminating the thin beam assumption. In a similar vein, the family of methods related to moving
morphable components (MMC) [15, 25] represent a structure as a collection of discrete geometric components
whose shape and position are controlled by the optimization parameters, and model the resulting structure by
projecting component geometries on a background mesh. Zhang, Gain, and Norato in [43] and Zhang et al. in
[44] apply such projection-based methods to solve stress-constrained TO problems. The shared shortcoming of
these approaches for our purposes is the requirement of a sufficiently fine background mesh to capture small-scale
structural features accurately. Substructuring methods accelerate solution of a high-resolution model by rewriting
equations in terms of a reduced set of degrees of freedom, alleviating the computational cost associated with a
fine discretization. In [24], we apply substructuring-based model order reduction in the form of port-reduced
static condensation (PRSC) [10] to compliance minimization. Wu et al. solve the same problem using a related
approach in [38]; [37] and [21] are additional examples of substructuring-based model order reduction to TO.
Finally, there is an extensive body of work applying conventional (i.e., density-based or level set) TO methods
to stress-constrained problems, and these approaches could be used to design lattice-like structures given a fine
enough discretization. See, for example, [22, 16] for examples in density-based optimization to which we refer in
our approach, and [18, 27] for examples of level set approaches to stress-based optimization. Methods based on
augmented Lagrangian techniques to address stress constraints without aggregation are promising due to their
ability to directly enforce a maximum stress constraint locally; see, for example, [30], and [32] for a comparison of
the performance of aggregation vs. local strategies. Using PRSC in conjunction with an augmented Lagrangian
optimization strategy is possible, but outside the scope of this work.

In this paper we leverage PRSC to efficiently solve stress-constrained TO problems, which are not addressed
in the previous literature on substructuring for TO. Our approach is both a ground structure and a substructuring
method. We constrain the design space by choosing a fixed arrangement of subdomains (“components”) of which
all possible designs are a subset. We apply PRSC to construct a surrogate model parameterized by a component-
wise density parameter, which penalizes stiffness using the SIMP scheme [5]. Then, we minimize the mass of the
structure subject to a constraint on the maximum stress implemented using the qp-relaxation of Bruggi [6] to
address the “singularity problem” [29], and stress aggregation in the form of the Kreisselmeir-Steinhauser (KS)
functional to convert the infinite-dimensional stress constraint to a small number of differentiable constraints
that approximate the max function. Constraints are defined by aggregating over non-overlapping aggregation
domains, as in [22, 16]. Finally, after optimization we postprocess by removing components with densities less
than a prescribed minimum value. Due to the component-wise formulation this postprocessing results in a well-
defined geometry without additional postprocessing steps, unlike the result from an element-wise density based
TO. Both during optimization and in the postprocessed design, we avoid stress singularities by carefully choosing
components such that the domain boundary is smooth. Our original contributions are:

• The component-wise formulation of stress constraints, and in particular the heuristics used to achieve a
conservative optimization result without adaptively modifying the constraint definition;

• Rewriting of stress constraints using component-wise ROM operators for an additional computational
speedup;

• Sensitivity analysis of the stress constraints in the context of the component-wise model; and

• Our postprocessing method.

The remainder of this paper is organized as follows. In Section 2, we provide a brief overview of PRSC,
introducing the notation required for the rest of our discussion. Section 3 describes our optimization formulation:
the material model, constraint formulation, objective function, and postprocessing methodology. Following this
description, in Section 4 we present mass minimization results for an L-bracket and a cantilever beam geometry,
along with studies of ROM accuracy and performance. Finally, we give our conclusions.

2 An overview of port-reduced static condensation

Port-reduced static condensation (PRSC) is developed in [10] and further discussed in [2, 33, 34, 17, 24] and
others. The discussion below is a high-level overview of the technique in which we seek to introduce only the
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Figure 1: Illustration of PRSC nomenclature in a two-component system; red segments of the boundary
are ports, with their global index and index set shown.

concepts and notation needed to describe the use of PRSC for component-wise TO and perform the required
sensitivity analysis.

PRSC applies to solution of an elliptic PDE on a domain Ω ⊂ Rn (where n = 2 or 3 in general, but we focus
on n = 2 here) given in weak form by

a(u, v;µ) = f(v;µ), ∀v ∈ X (1)

Here, a : H1(Ω) × H1(Ω) → R is a bilinear form, taken to be coercive so that the problem (1) is well-posed;
f : H1(Ω) → R is a linear form; µ ∈ M is a vector in M ⊂ Rnm

, parametrizing both the linear and bilinear
forms; X ⊂ H1(Ω) is a finite dimensional function space arising from a finite element discretization of (1) and
incorporating essential boundary conditions; and u, v ∈ X are the solution to (1) and a test function, both residing
in X.

PRSC reduces the number of degrees of freedom in (1) by applying static condensation, before further reducing
the problem dimension via projection-based model reduction. Ω is decomposed into nc subdomains Ωi, i ∈
{1, . . . , nc}, termed “components”. The bilinear and linear forms may now be decomposed as

a(u, v;µ) =

nc∑
i=1

ai (ui, vi;µi) (2)

f(v;µ) =

nc∑
i=1

fi (vi;µi) (3)

where ui and vi are the restrictions of u and v to Ωi; ai and fi are the restrictions of a and f to act on functions
in X|Ωi

; and µi ⊂ Rnm
i , with nmi the dimension of the parameter space for component i, is a parameter vector

containing only those parameters in µ to which ai and fi are sensitive.
Each component is assigned a set of nγi “ports”, {γi,j , j ∈ 1, . . . , nγ

i }, which are subsets of the boundary of Ωi

where Ωi may (but is not required to) interface with another component Ωi′ . That is, if Ωi ∩Ωi′ is non-empty, it
corresponds to port γi,j and γi′,j′ respectively on Ωi and Ωi′ . Ports may also be unconnected to any neighboring
component, or have a Dirichlet boundary applied. Ports on the same component are assumed to be disjoint.

Now Ω is fully defined by specifying the component domains Ωi, i ∈ {1, . . . , nc}, and the connections between
them in the form of port pairs (γi,j , γi′,j′). Although the members of this port pair refer to subsets of Ωi and Ωi′

(“local ports”) respectively, since they coincide in space we also refer to them as a single “global port”. A single,
unconnected port also corresponds to a single global port. Global ports are denoted by Γp, p ∈ {1, . . . , nΓ} and
defined by an index set πp = {(i, j), (i′, j′)}, for connections of two local ports, or πp = {(i, j)} for disconnected
ports. The correspondence between global and local ports is illustrated in Fig. 1. We also define a mapping Gi

such that given a local port γi,j , Gi(j) maps j to the index p of the global port Γp.
The restriction of X to γi,j (its “port space”) is denoted Pi,j . Where a global port Γp is the coinci-

dence of two local ports, πp = {(i, j), (i′, j′)}, their port spaces are identical: Pi,j = Pi′,j′ . Letting the
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dimension of Pi,j be nγi,j , define a basis
{
χi,j,k ∈ Pi,j , k ∈

{
1, . . . , nγ

i,j

}}
for Pi,j , and a “lifted port basis”{

ψi,j,k ∈ X|Ωi
, k ∈

{
1, . . . , nγ

i,j

}}
, where ψi,j,k|γi,j

= χi,j,k and ψi,j,k|γi,j′ = 0, j′ ̸= j. We lift the port bases by
solving

ai
(
ψi,j,k, v;µi;0

)
= 0, ∀v ∈ Bi

ψi,j,k = χi,j,k on γi,j

ψi,j,k = 0 on γi,j′ , j
′ ̸= j.

(4)

The global lifted port basis associated to Γp is given by Ψp,k = ψi,j,k + ψi′,j′,k if πp = {(i, j), (i′, j′)}, or
Ψp,k = ψi,j,k if πp = {(i, j)}, where port basis functions are extended by zero outside of their domain.

In addition to port spaces, each component has a “bubble space” defined as

Bi ≡
{
v ∈ Xi : v|γi,j

= 0, j ∈ {1, . . . , nγ
i }
}
. (5)

Define two classes of parameter dependent “bubble functions” by solution of the equations

ai (bi,j,k (µi) , v;µi) = −ai (ψi,j,k, v;µi) , ∀v ∈ Bi (6)

ai

(
bfi (µi) , v;µi

)
= fi (v;µi) , ∀v ∈ Bi (7)

where bi,j,k, b
f
i ∈ Bi. With these definitions, the solution to (1) on Ωi may be written as:

u(µ)|Ωi = bfi (µi) +

nγ
i∑

j=1

nγ
i,j∑

k=1

UGi(j),k (µ) (bi,j,k(µi) + ψi,j,k) (8)

with Up,k unknown coefficients.
Defining interface functions ϕi,j,k(µi) by

ϕi,j,k(µi) ≡ ψi,j,k + bi,j,k(µi) (9)

and global interface functions Φp,k(µ) by

Φp,k(µ) ≡
∑

(i,j)∈πp

ϕi,j,k(µi), (10)

the global solution to (1) may be written as

u(µ) =

nc∑
i=1

bfi (µi) +

nΓ∑
p=1

nΓ
p∑

k=1

Up,k (µ) Φp,k (µ) . (11)

Substituting (11) in (1) and restricting test functions to the space spanned by the interface functions leads to the
condensed system of equations

K(µ)U(µ) = F(µ), (12)

where the entries of K and F are

K(p,k),(p′,k′) = a (Φp,k (µ) ,Φp′,k′ (µ) ;µ) (13)

and

F(p,k) = f (Φp,k (µ) ;µ)−
nc∑
i=1

a
(
bfi (µi),Φp,k (µ) ;µ

)
. (14)

A pair (p, k) identifies a single degree of freedom in the linear system (12): the coefficient of Φp,k in (11). The
Schur complement consists of local contributions from each component, analagous to element stiffness matrices
in a FEM. These contributions are defined by

Ki
(j,k),(j′,k′) = ai (ϕi,j,k(µi), ϕi,j′,k′(µi);µi) . (15)
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We make use of this definition in sensitivity analysis.
In this description we have referred only to a collection of nc different subdomains Ωi and termed these “com-

ponents”. In practice a distinction is made between reference and instantiated components. Each instantiated
component is associated to a corresponding reference component, where the number of reference components
is small, but nc may be very large. An offline data set needs only to be constructed for the small number of
reference components, and is used to construct the linear system (12) using efficient operations on the offline
data set. To simplify the presentation of PRSC we have avoided introducing separate notation for instantiated
and reference components and describing the correspondence between the two, but these details are key to the
efficient implementation of the method.

This description of PRSC so far only includes static condensation. Model reduction is incorporated by using
a reduced port basis {

χ̃i,j,k ∈ Pi,j , k ∈ {1, . . . , ñγi,j}
}
,

with reduced port basis dimension ñγi,j < nγi,j , and corresponding lifted port basis functions ψ̃i,j,k. In presenting
the Schur complement system, we have used the notation for the full order model; however, the reduced order
system may be derived by substituting the reduced lifted port basis and its dimension wherever the full order lifted
port basis and its dimension appear. Henceforth, ROM quantities are denoted by adding a tilde to their FOM
counterpart; for example, ũ is the ROM solution for displacement. We determine an appropriate reduced port
basis using the pairwise training procedure described in [10, Algorithm 2] and proper orthogonal decomposition
with respect to the L2 inner product on each port.

3 A component-wise formulation for topology optimization with stress
constraints

Here we present the main contribution of this work: a method for stress-based TO that leverages PRSC to enable
an efficient optimization, even when using a high-resolution discretization. With the use of PRSC, we also inherit
its greatest advantage, which is the ability to reuse the component library constructed in the offline phase to
model any arrangement of instantiated components. This allows the use of the same offline dataset to solve many
TO problems in various geometries.

Below, we describe our methodology in detail: the formulation of the optimization problem, the material model
and parameterization, the form of the aggregated stress constraints, and finally, postprocessing considerations.

3.1 Optimization formulation

Our goal is to solve the problem

minimize
ρ∈{0,1}nc

J (ρ) =

nc∑
i=1

ρi |Ωi|

subject to max
Ω

σ (u) ≤ σmax

a(u, v;ρ) = f(v), ∀v ∈ X,

(16)

where ρ ∈ {0, 1}nc is the parameter vector, containing a density for each component in the system with ρi = 0
meaning that component i is removed and ρi = 1 meaning that component i is fully solid; |Ωi| is the volume of
Ωi; J (ρ) gives the mass of the system; u is displacement; and σ is some yield criterion. The bilinear and linear
forms are defined in the next section in a component-wise fashion, and the global bilinear and linear forms given
by Eqs. 2 and 3. In this work, σ is the von Mises yield stress. σmax is an upper bound on the allowed value of
the yield criterion σ.

To render (16) solvable by a gradient-based optimization solver, we make two changes following common
practice. The first is to allow the component densities to reside in a continuum: ρ ∈ [0, 1]nc . Material properties
for intermediate densities are interpolated by a standard SIMP scheme. Second, because of the non-differentiable
nature of the max function, we replace the constraint in (16) with a differentiable approximation. With these
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modifications, the optimization formulation becomes:

minimize
ρ∈[0,1]nc

J (ρ) =

nc∑
i=1

ρi |Ωi|

subject to gm (u,ρ) ≤ 1, 1 ≤ m ≤ nagg

a(u, v;ρ) = f(v), ∀v ∈ X,

(17)

with the aggregate constraints gm (u,ρ) defined in Section 3.3.2. This is the optimization formulation that we
actually solve. A local minimum of (17) provides an approximation to solution of (16), but the challenging integer
programming problem has been replaced by one solvable using gradient-based nonlinear optimization solvers.

3.2 Material model & component-based parameterization

We model a material described by isotropic linear elasticity. On each component, the bilinear form ai is given by

ai(u, v; ρi) =

∫
Ωi

s(ρi)C(u) · ∇v dx, (18)

where s is the SIMP penalization term and C is the symmetric elasticity tensor given by

C(u) = µ
(
∇u+∇uT

)
+ λ(∇ · u)I, (19)

with λ and µ the Lamé parameters. Note that µ is a fixed material parameter and bears no relation to the
vector of component parameters µi from the discussion of PRSC. In our optimization formulation µi = [ρi], so
we use the scalar parameter ρi in its place. This form for ai satisfies the necessary assumptions to implement the
affine simplification of PRSC described in our previous work [24]. This simplification allows us to compute Schur
complement contributions offline, making the model even more economical than PRSC without this simplification.

The linear form fi is

fi(v) =

∫
Ωi

F · v dx, (20)

where F is the vector of forces applied per unit volume. We assume F to be independent of parameter in this
work; this assumption is not necessary, but simplifies the sensitivity analysis.

We aim to obtain a “black and white” solution, ρi ∈ {0, 1}. To drive the continuous density values to black
and white solutions, we use the solid isotropic material (SIMP) parameterization [3, 46]. The Young’s modulus
is penalized using a power law in the density: Ei ∝ ρpi , with Ei the Young’s modulus of the material in Ωi. In
our optimizations, we choose p = 3. To ensure a well-posed problem, the SIMP parameterization is modified so
that s(ρi) in (18) is given by

s(ρi) = [ρi + (1− ρi)ρmin]
3
, (21)

where ρmin > 0 is chosen to be small (10−3). This ensures that the linear system (12) possesses a solution, but
the stiffness of components with ρi = 0 is negligible compared to components with ρi = 1.

This parameterization is the same as a typical topology optimization using element-wise density variables,
but enables the use of a component-wise ROM to reduce the computational cost because each component ROM
only depends on a single density parameter. In a conventional, element-based density TO, the large dimension of
parameter space makes model reduction impractical. The component-wise scheme has an additional benefit: it
obviates the need for a density filter (as in [22, 16, 30, 23] and others) to avoid checkerboarding. The imposition
of a ground structure intrinsically imposes a length scale without the use of a filter.

3.3 Imposing stress constraints using the ROM

Our formulation of stress constraints consists in three parts: stress relaxation, aggregation using the KS functional,
and rewriting of the aggregate constraints using ROM operators. Of these parts, the first two are standard practice;
the rewriting using ROM operators is an original contribution.

We note here that while the discussion below assumes the use of the von Mises yield criterion, our methodology
is not limited by this choice. Other yield criteria may be used in its place, with the appropriate corrections to the
derivations in Sections 3.3.4 and 3.3.5 where the form of the von Mises criterion is used explicitly. Criteria which
contain a non-differentiable function such as the absolute value may require rewriting as multiple constraints to
make the constraint formulation differentiable.
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3.3.1 Stress relaxation

It is well known that stress constraints in the absence of some relaxation result in an optimization problem where
minima are contained in a degenerate subspace (the “singularity problem”) [20]. As remarked in [9], this occurs
where material in some region must vanish to reach a local optimum, but the material remains strained so that
solutions for intermediate densities in that region violate constraints. When material has vanished, however, these
constraints should be ignored – the constraint is discontinuous. Stress relaxation smooths this discontinuity to
allow a gradient-based optimization algorithm to reach solutions in the degenerate subspace.

We adopt the qp-relaxation proposed by Bruggi [6], with the particular choice of q = 2.5 as in [22, 16].
Denoting the von Mises yield stress by σvm, the relaxed stress is then given by

σr (u,ρ) |Ωi
= s′(ρi)σvm(ui), (22)

where σvm is the von Mises stress as computed using the stiffness of the base material (not the SIMP penalized
stiffness), and

s′(ρi) = ρ
1/2
i . (23)

We note that the optimization has the trivial solution ρ = 0; in practice, this solution is not reached by the
optimizer. Convergence to the trivial solution, if problematic, could be addressed by imposing a lower bound on
s′(ρi) in the same fashion as in (21). Applying stress relaxation, the stress constraint becomes

max
Ω

σr (u,ρ) ≤ σmax, (24)

which is identical to the constraint in (16) for black and white solutions.

3.3.2 Stress aggregation

We cannot use the constraint (24) in a gradient-based optimization because the max function is non-differentiable.
To circumvent this difficulty, we use stress aggregation to provide a differentiable approximation of the max func-
tion. Aggregation strategies include the p-norm, the Kreisselmeier-Steinhauser (KS) functional, or an “induced
aggregation” functional as described by Kennedy and Hicken [19]. We use a continuous KS aggregation, with
stresses aggregated over multiple aggregation domains (as in [16, 22], and others). For numerical stability in finite
precision arithmetic, we aggregate the ratio of the relaxed stress to the maximum stress, rather than the relaxed
stress itself. The single constraint (24) becomes nagg constraints given by

gm (u,ρ) =
1

p
ln

(
1

α

∫
Ωagg

m

exp

(
p
σr(u,ρ)

σmax

)
dx

)
≤ 1, 1 ≤ m ≤ nagg, (25)

where p and α are fixed parameters of the aggregation. Increasing p results in a closer approximation of the max
function, but also a more difficult optimization problem. α is a normalization, whose determination we address
below. The aggregation domains Ωagg

m are not the same as component domains Ωi, nor even spatially contiguous
domains. Their determination is addressed in the next section. Ideal values of p and nagg are problem dependent,
and studied in our numerical experiments.

The normalization α is computed based on the following observation from [19, Eq. 8]: for given values of ρ
and p, we will have

gm(u,ρ) ≥ max
Ωagg

m

σr(u,ρ)

σmax

if

α ≤
∫
Ωagg

m

exp

(
p

σmax

[
σr −max

Ωagg
m

σr

])
dx. (26)

Let the initial value of ρ in the optimization be ρ0 and the displacement solution for this density field be u0.
Using (26), we compute values of α for each aggregation domain at the initial condition of the optimization as
follows: compute

αk = exp

(
p

σmax

[
max
Ωagg

m

σr
(
u0,ρ0

)])−1 ∫
Ωagg

m

exp

(
p

σmax
σr
(
u0,ρ0

))
dx, (27)

then set α for all aggregates to be equal to the minimum of all αk.
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Figure 2: Illustration of aggregation region assignment for a single component and five aggregation
regions. Elements contained in the same aggregation region are assigned the same color.

3.3.3 Achieving a conservative optimization result

The aggregation described in the previous section is not necessarily conservative; for some values of ρ, the
constraints (25) may be satisfied while the true max stress constraint (24) is not. To consider an optimization
successful, we require satisfaction of the latter. In most cases determining α from Eq. (27) is sufficient to obtain a
conservative optimization solution; where this is not the case, we use a simple heuristic: substitute σ̂max < σmax

for σmax in (25). The choice of σ̂max is problem dependent. Values used are reported in the numerical experiments
– for most, σ̂max = σmax.

This heuristic approach has mathematical justification. Eq. (25) may be rewritten as

gm(u,ρ) =
1

p
ln

[∫
Ωagg

m

exp

(
p
σr(u,ρ)

σmax

)
dx

]
− lnα

p
− 1 ≤ 0. (28)

Thus if α < e, the value of the constraint is increased by a constant factor. A decrease in the upper bound
in the optimization likewise corresponds to a constant increase in the value of gm; therefore the imposition of
σ̂max < σmax may be viewed as a correction to the value of α estimated from (26), necessary because that value
is conservative only for a particular value of ρ.

We also assign aggregation regions differently from previous works. The two main strategies are to either
distribute stress evenly among aggregation regions [22], or to assign the highest stresses to a single aggregation
region, resulting in a better approximation of the maximum in that region [16]. However, because we do not
adaptively reassign regions and cannot know how stresses will be distributed at a given optimization iteration,
neither of these approaches is possible here. Instead, we approximate the effect of an approach that computes an
even distribution of stresses by assigning aggregation regions randomly. For each Ωi, we randomly assign an equal
number of elements to each of the nagg aggregation domains Ωagg

m (illustrated in Fig. 2). Ideally, this assignment
of aggregation regions results in a problem where stresses are evenly distributed between the different aggregation
regions. We show results on the same problem for different assignments of aggregation regions in Section 4.3.2.

3.3.4 Efficient computation of aggregates using the CWROM

The aggregation in Eq. (25) is nonlinear in σvm, which is in turn a nonlinear function of displacement. This
nonlinearity prohibits the expression of the constraints in terms of Ũ(ρ) without reconstructing the displacement
field ũ(ρ). However, computing the constraints by reconstructing ũ(ρ) and performing quadrature in a loop
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over elements is inefficient because of the high dimension of the underlying discretization. For example, in our
smaller numerical example of Section 4.2, the mesh underlying the component-wise ROM has about 2.5 million
elements. Integration over each element requires retrieving coefficients of the finite element basis functions, which
are generally not contiguous in memory, and computing values of the non-linear integrand as a function of these
coefficients. While it is not possible to remove the dependence of the cost of aggregation on the FOM dimension,
we reduce the cost by expressing aggregation in terms of more cache-friendly operations using Ũ(ρ) instead of
ũ(ρ).

We rewrite the constraints in terms of the ROM by noting that σvm, which is not linear in displacement, may
be written as a function of the Cauchy stress tensor components. Limiting ourselves to two dimensions, we define
vectors

σm
xx

(
Ũ(ρ)

)
= Sm

xxŨ, σm
yy

(
Ũ(ρ)

)
= Sm

yyŨ, σm
xy

(
Ũ(ρ)

)
= Sm

xyŨ (29)

containing the values of stress tensor components at quadrature points for aggregation region Ωagg
m . We assume

that there are no forces applied except on ports. Then, from the definition of the Cauchy stress tensor and
Eq. (11), the linear operators Sm

xx, S
m
yy, and S

m
xy are given by:

Sm
xx = (2µ+ λ)Φ̃m

x,x + λΦ̃m
y,y

Sm
yy = (2µ+ λ)Φ̃m

y,y + λΦ̃m
x,x

Sm
xy = µ

(
Φ̃m

x,y + Φ̃m
y,x

)
,

(30)

with Φ̃m
x,x a matrix such that

[
Φ̃m

x,x

]
j,k

contains the partial derivative with respect to x of the x component of

the k-th interface function at the j-th quadrature point in Ωagg
m , and Φ̃m

y,y, Φ̃
m
x,y, and Φ̃m

y,x defined similarly.
In terms of the stress tensor component vectors (29), the vector of von Mises stresses at quadrature points in

Ωagg
m is given by

σm
VM

(
Ũ(ρ)

)
=
(
σm

xx ⊙ σm
xx + σm

yy ⊙ σm
yy − σm

xx ⊙ σm
yy + 3σm

xy ⊙ σm
xy

)1/2
, (31)

where ⊙ denotes the Hadamard product and the exponentiation is applied element-wise. We omit the functional
dependence of σm

xx, etc. on Ũ(ρ) for brevity. The vector of relaxed stresses at quadrature points is then

σm
r

(
ρ, Ũ(ρ)

)
= s′

(
ρm
agg

)
⊙ σm

VM , (32)

where ρm
agg contains the value of the density parameter at each quadrature point and s′ is the relaxed stress (23),

applied elementwise.
Taking w to be a vector containing the coefficients for quadrature over Ωagg

m , we can rewrite the constraints
in Eq. (25):

gm

(
ρ, Ũ(ρ)

)
=

1

p
ln

(
1

α
wT

[
exp

(
p

σmax
σm

r

(
ρ, Ũ(ρ)

))])
− 1 ≤ 0, (33)

with exponentiation interpreted elementwise.
Although this expression improves the performance of aggregation by rewriting it in a more cache-friendly

manner, the size of the stress operators in Eq. (30) grows with the number of quadrature points and the dimension
of the ROM, until at some point it is more efficient to compute the aggregates in the obvious fashion. In our
numerical examples, we use a four-point quadrature rule exact for second-order polynomials. Also, because we
assign aggregation regions randomly, the stress operators in (30) cannot be computed offline; instead they are
computed once at the beginning of the optimization. The cost of this computation is insignificant relative to the
total cost of optimization.

To further reduce the cost of computing aggregates, we investigated the use of a second-order Taylor series
expansion to approximate the inner integral in Eq. 25 on each component. This approach is highly effective at
reducing the time to compute constraints, but the approximation is not accurate enough to effectively constrain the
maximum value of stress. Higher order Taylor series approximations quickly become impractical due to excessive
memory requirements. More sophisticated hyperreduction approaches are not investigated here, but could be
used in future work to harness the full potential of the component-wise ROM approach for stress-constrained
optimization.
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3.3.5 Sensitivity analysis of stress constraints

To derive the gradient of the constraint gm with respect to ρ, we note that gm(ρ) depends both directly on ρ
and implicitly through Ũ(ρ), with the latter dependence defined by the forward model. Therefore, the gradient
is given by a total derivative:

∇ρ gm

(
ρ, Ũ(ρ)

)
=
∂gm
∂ρ

+

(
dŨ
dρ

)T
∂gm

∂Ũ
, (34)

where the notation dŨ
dρ indicates the Jacobian matrix with[

dŨ
dρ

]
i,j

=
∂Ũi

∂ρj
.

The action of
(

dŨ
dρ

)T
is computed using the adjoint method. From Eq. (12), we have

dK̃
dρ

Ũ+ K̃
dŨ
dρ

=
dF̃
dρ
. (35)

In our problem settings the forcing is independent of parameter and the above yields

dŨ
dρ

= −K̃−1

[
dK̃
dρ

Ũ

]
. (36)

By substitution in Eq. (34), we obtain the gradient:

∇ρ gm

(
ρ, Ũ(ρ)

)
=
∂gm
∂ρ

−
[
dK̃
dρ

Ũ

]T
λ, (37)

where, making use of the symmetry of K̃(ρ), λ is given by solution of the adjoint equation

K̃(ρ)λ(ρ) =
∂gm

∂Ũ
(ρ). (38)

Note that dK̃
dρ is a third-order tensor; for this sensitivity analysis, its product with Ũ is defined by:[

dK̃
dρ

Ũ

]
ij

=
∑
k

dK̃ik

dρj
Ũk (39)

To close Eq. (34), we require expressions for the partial derivatives of gm. These are found using the chain
rule:

∂gm
∂ρ

=

(
∂σm

r

∂ρ

)T
∂gm
∂σm

r

(40)

∂gm

∂Ũ
=

(
∂σm

r

∂Ũ

)T
∂gm
∂σm

r

. (41)

Defining the vector

e
(
ρi, Ũ(ρ)

)
= exp

[
p

σmax
σm

r

(
ρi, Ũ(ρ)

)]
, (42)

we find from Eq. (33) that ∂gm
∂σm

r
is

∂gm
∂σm

r

=
1

σmax wTe
(
ρ, Ũ(ρ)

) e
(
ρ, Ũ(ρ)

)
⊙w. (43)
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Finally, we require the derivatives of σm
r in Eqs. (40) and (41). With respect to ρ, obtain

∂σm
r

∂ρ
= Pm

(
ds′

dρ
(ρm

agg)⊙ σm
VM

)
⊗ I, (44)

with Pm a prolongation operator taking values in ρm
agg to their corresponding entry in ρ and padding with zeros

for entries in ρ not corresponding to elements in Ωagg
m , and ⊗ denoting a row-wise Kronecker product.

With respect to Ũ, the Jacobian of σm
r is given by

∂σm
r

∂Ũ
= s′

(
ρm
agg

)
⊗ ∂σm

VM

∂Ũ
, (45)

with
∂σm

V M

∂Ũ given by

∂σm
VM

∂Ũ
=

1

2
(σm

VM )
−1 ⊗

[
2σm

xx ⊗ Sm
xx + 2σm

yy ⊗ Sm
yy − σm

xx ⊗ Sm
yy − σm

yy ⊗ Sm
xx + 6σm

xy ⊗ Sm
xy

]
. (46)

3.4 Postprocessing

SIMP penalization does not necessarily succeed at creating black and white solutions. Therefore, we postprocess
by removing components with ρi less than a prescribed minimum value ρmin from the domain entirely, and setting
the densities of remaining components to unity. This reveals some amount of wasted mass in the structure where
a component that was previously attached to another now has a “hanging” port not on a load-bearing path. In
a post-processing step, we substitute streamlined versions of these components from a library of alternatives, as
illustrated in Fig. 3. This procedure decreases the mass of the system from that at the local optimum, often
substantially, and its implementation is simple in the component-wise framework.

4 Numerical results

We present numerical results for a pair of two-dimensional stress constrained problems. In the first, we minimize
mass of an L-shaped bracket subject to a vertical load on its top right tip; in the second, we minimize the mass
of a cantilever beam, also with a vertical load at the top right. Both examples use the same set of reference
components, pictured in Fig. 3, to model different lattice structures as seen in Figures 6, 9, 10, and 11. In this
way the component-wise model is an analogue to the use of beam elements in truss optimization. The examples
share the same material properties: Young’s modulus of 113.8 GPa, Poisson’s ratio of 0.34, and a von Mises
yield criterion of σmax = 880 MPa. Linear elasticity is approximated in two dimensions assuming plane stress
conditions. We demonstrate that our methodology succeeds in creating designs that respect a constraint on
maximum stress while approximating that constraint using PRSC and stress aggregation.

4.1 Problem setup

The reduced order model used for our primary optimization results is trained by collecting 500 snapshots for
each pair of connected reference ports and constructing port bases that capture 99.9% of the total energy of
each snapshot set, unless a different total energy percentage is specified. When training, we compute the POD
for the X and Y components of displacement separately but using the same snapshot set, and apply the total
energy criterion to the POD for each component of displacement separately to determine bases. The regularization
parameter for pairwise training was set to η = 10 [10, Sec. 3.2.2]. The resulting bases contain four basis functions,
including the constant function, for each component of displacement. An example reduced basis is pictured in
Fig. 4. For our primary optimization results, the ROM is constructed using second-order triangular finite elements
and the full basis for a port contains twenty-one basis functions for each component of displacement. We address
the impact of using second-order elements vs. first-order in Section 4.2.3.

All optimizations are initialized from a ground structure composed of fully solid components, i.e., ρ = 1. When
postprocessing, we validate the optimized design by performing analysis with the full-order model. Maximum
stress values in postprocessing are computed using values at cell centers, and at the quadrature points of a nine-
point quadrature rule in each element. We do not consider values of stress on the boundary of an element due to
its discontinuity there.
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Reference 

components

Figure 3: Top: The set of reference components used for optimization in our numerical examples, not
including the reflection of the diagonal strut component. The lattice structure is built from repetitions
of the cell shown and its reflection. Bottom: Selected examples of substitutions made during postpro-
cessing. The full component library contains a component to be substituted for every combination of
hanging ports, and a total of 252 components.
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Figure 4: An example port basis, not including the constant function. The basis functions for the x
component of displacement are shown using a solid line; for the y component, a dashed line.

The optimization problem is solved using an interior point method as implemented in Ipopt [36]. We found
it was necessary to set the parameter theta_max_fact to a small value (0.5 was used in these results) to prevent
large steps into infeasible regions from which it is difficult for the optimizer to escape. For the same reason, we
disable the watchdog procedure that attempts to escape regions of slow convergence by disabling line search for
one iteration. In all of the optimization runs presented, Ipopt’s convergence tolerance was set to 10−6.

The Schur complement system is solved using a Cholesky factorization as implemented in Eigen [14], and all
optimizations are performed without use of parallelism, for reproducibility. Timings are performed on a Linux
server with 2 AMD EPYC 7H12 processors with 64 physical cores and a base clock speed of 2.6 GHz, and 2 TB
of memory.

4.2 Mass minimization of an L-bracket

Our first example addresses the design of an L-shaped bracket, a standard benchmark in stress-based TO. While in
most TO approaches the L-bracket presents a challenge because of its reentrant corner, using the component-wise
methodology, we eliminate this difficulty by a careful choice of the ground structure.

The problem setup for the L-bracket optimization is illustrated in Figure 5. The thickness of the bracket into
the page is taken to be 5 cm. The ground structure contains 4,257 components and 2,427,362 finite elements; the
reduced static condensation system contains 44,214 unknowns while the full order static condensation system has
278,544. The underlying finite element model contains more than 5 million unknowns (not accounting for those
degrees of freedom on ports, which are counted twice). The bracket’s upper boundary is fixed, and a load of
67,500 N is applied as an evenly distributed pressure force over the rightmost two ports at the tip of the bracket.

4.2.1 Optimization results and comparison of aggregation parameters

We solve the optimization (17) for values of the aggregation multiplier p = 10, 15, 25, and 50, and with 1, 5,
10, 15, 20, and 25 aggregation regions. The results are summarized in Table 1, which records the number of
constraint evaluations (Ncons), constraint Jacobian evaluations (Njac), total optimization time, the mass fraction
at convergence (mopt

frac), the mass fraction after postprocessing (mpp
frac), the maximum relaxed stress at convergence

13
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Figure 5: Illustration of the L-bracket geometry and loading condition.
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nagg p Ncons Njac Run time (s) mopt
frac mpp

frac maxσr (MPa) maxσvm (MPa)

1 10 5114 1985 9040 11.2% 8.7% 1215 938
5 10 716 394 1612 14.1% 14.1% 1148 889
10 10 903 524 2345 13.0% 11.5% 1217 888
15 10 649 328 1793 13.6% 13.5% 1229 884
20 10 877 457 2574 13.7% 13.3% 1215 886
25 10 1429 675 4255 13.3% 12.2% 1238 886

1 15 4531 1495 8188 15.5% 13.9% 892 907
5 15 3348 1498 6916 15.6% 13.8% 988 771
10 15 1117 536 2661 15.7% 13.7% 949 799
15 15 1113 502 2832 15.5% 13.6% 929 906
20 15 1362 580 3672 15.3% 12.2% 923 1074
25 15 1046 421 2935 14.8% 11.9% 957 695

1 25 6728 2287 12580 16.4% 13.0% 747 913
5 25 1984 1097 4504 17.6% 14.4% 735 704
10 25 1162 534 2835 17.9% 14.8% 725 698
15 25 1526 603 3960 18.5% 14.6% 707 731
20 25 1350 574 3768 18.0% 15.2% 714 686
25 25 1377 677 4167 19.5% 15.4% 725 765

1 50 - - - - - - -
5 50 4228 1906 8503 19.7% 17.3% 652 651
10 50 2466 1070 5701 21.2% 17.1% 610 602
15 50 2887 1233 7161 21.8% 16.5% 579 617
20 50 1984 826 5442 22.1% 17.8% 557 606
25 50 2489 1068 7116 22.8% 18.0% 560 592

Table 1: Summary of optimization results for varying aggregation parameters. For each combination
of nagg and p, reported are, from left to right: number of constraint evaluations, number of constraint
Jacobian evaluations, total run time, mass fraction at the local optimum, mass fraction after postpro-
cessing, maximum relaxed stress at the optimum, and maximum von Mises stress after postprocessing.
Stresses are computed using the full order model in a postprocessing step.
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Figure 6: Optimization result using 10 aggregation regions and p = 15. Left: locally optimal density
field. Right: the resulting design after postprocessing. Maximum von Mises stress in the postprocessed
design is 799 MPa, compared to σmax = 880 MPa. Before postprocessing, the maximum relaxed stress
was σr = 949 MPa.

(maxσr), and maximum von Mises stress in the postprocessed design (maxσvm). An optimization not terminating
within 10,000 iterations is considered non-convergent, as in the case of the run for p = 50 and nagg = 1. For all
cases, the maximum stress for the optimization algorithm is not reduced from the desired maximum: σ̂max = σmax.
All designs are postprocessed using a dropping tolerance of ρmin = 0.2.

Fig. 6 illustrates the result using 10 aggregation regions and p = 15, a representative optimization result. Many
components at the local optimum have intermediate values of density; however, component densities are clearly
divided between material and void components with densities being either greater than approximately ρ = 0.25,
or close to 0. This motivates our choice of dropping tolerance. Postprocessing creates a fully solid design that
satisfies the desired stress constraint, as well as reducing the mass from the value at the local optimum, since many
components are replaced with lighter substitutes despite having their density increased to 1 from an intermediate
value. The design uses square lattice cells both with and without diagonal reinforcement in different areas of the
design, as well as long, solid struts and larger open cells. We highlight here the flexibility of the component-wise
approach over a design method that assumes a functionally graded structure, with regions composed of periodic
unit cells.

A note is in order here regarding the characteristics of our design as compared to designs created by TO
methods based on element-wise SIMP or level set approaches. Those methods will round the concave corner of
the L-bracket, eliminating the stress singularity in order to satisfy the constraint. In our case, however, the corner
is already rounded in the ground structure by virtue of our choice of reference components. Fig. 7 illustrates the
stress field near the corner in the postprocessed design; it turns out that this corner is not, in fact, the location
of the maximum stress, which occurs in one of the concave corners in the bottom left part of the structure.
This ability to build desirable characteristics in to the ground structure is an advantage of the component-wise
approach, but comes at the price of limiting the design space. Given a sufficiently fine discretization, we expect
that an element-wise SIMP or level set approach will in general find a better design than our method when the
same length scale is imposed, due to the much larger design space. We expect our methodology, on the other hand,
to be capable of producing designs that have nearly the same performance while realizing a large computational
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Figure 7: Illustration of the stress field near the corner of the L-bracket in our postprocessed design.
Shown are cell-centered values of the von Mises stress as computed by the full order model during
postprocessing. Because the component library avoids introducing sharp corners, there is no stress
singularity present, nor a high stress concentration at this corner.

speedup in the optimization process. Performance of the design resulting from our method depends on the set
of reference components; they must be chosen both to enforce desired characteristics such as smooth boundaries,
and to provide a rich enough design space to create performant designs. We explore this point in Sec. 4.3.3.

Although we observe variability in the optimization’s performance, there are some general trends. First,
increasing the aggregation multiplier p results in the expected behavior: designs are more conservative, and the
optimization problem is more difficult. Increasing the number of aggregation regions, however, does not have
a discernable effect on the value of the maximum stress attained in the final design, at least for a moderate
number of aggregation regions as used here. It does appear that adding regions is beneficial for convergence of
the algorithm up to 10-15 regions; for values of p = 15, 25, and 50, the number of constraint evaluations is reduced
enough that overall run time is faster for ten aggregation regions than five, despite requiring twice the number of
adjoint solves for each Jacobian evaluation.

In every case, the postprocessing step results in a mass that is less than or equal to to the objective value at
the local optimum. In a few runs, however, it does result in violating the stress constraint because the nonlinear
optimization cannot account for the changes made to the shape of components. Removing components with a
near-zero density has a negligible effect on the structural response, but the component substitution step may
have a large effect. In the examples using one aggregation region and p = 15 and 25, we observe that component
substitution results in increasing the maximum stress to a level that violates the max constraint, where before
substitution it satisfied or nearly satisfied the constraint. In the example using 20 aggregation regions and p =
15, a large increase in maximum stress is observed; however, this is due to the choice of ρmin = 0.2, which
is too aggressive for this case and removes some components that have a smaller density but are structurally
important. For other examples, the postprocessing step either results in a maximum stress that is less than the
maximum relaxed stress at the local optimum, or increases it by a small amount such that the max constraint is
still respected.

Despite variation across runs, it is clear that with a large enough choice of aggregation multiplier the proposed
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methodology consistently converges to conservative designs with a large mass reduction.

4.2.2 Performance of the ROM

We compare the accuracy of the ROM used for the primary results to results using a ROM trained with a 99.99%
criterion for total energy as well as one using 99% of total energy. We define the following error measures:

eσr
max =

maxΩ σ̃r −maxΩ σr
maxΩ σr

(47)

eσr =
∥σ̃r − σr∥L2

∥σr∥L2

(48)

eu =
∥ũ− u∥L2

∥u∥L2

, (49)

where σ̃r is the relaxed von Mises stress as computed from the ROM solution, σr is the relaxed von Mises stress
computed from the full-order solution, ũ is the ROM displacement, and u is the full-order displacement. The L2

norm has its usual definition.
Reported in Table 2 are these errors for both the full system at the locally optimum parameter value, and

for the postprocessed design. We report results for the designs using an aggregation multiplier of 15; the errors
reported for these designs are representative of those for all designs. The exception is error of 13% in the
postprocessed design for 5 aggregation regions, which is an outlier. In no other case was the error in maximum
stress larger than 10%. The use of a 99.99% total energy criterion is sufficient to reduce the error in maximum
stress to less than 5% in every case, and less than 1% for all but one; the effect on the displacement error is
smaller. Errors when using a ROM capturing only 99% of total energy are large in every case; this criterion is
clearly not strict enough to be useful.

Table 3 additionally reports the resulting number of degrees of freedom and the speedup relative to the full-
order static condensation model for each total energy criterion. We report the speedup for the forward solve,
which includes the cost of factoring the Schur complement matrix and is the largest component of optimization
run time, and the speedup from use of our efficient aggregation scheme relative to the straightforward method
using quadrature. Speedup is measured for the full system as used during the optimization procedure. The 99.9%
total energy model achieves a speedup of more than a two orders of magnitude vs. a full-order static condensation
solve, and the efficient aggregation scheme yields an almost 2.5x speedup vs. straightforward quadrature. In [24],
we found that the full-order static condensation achieved approximately a 5x speedup compared to the underlying
finite element model; thus, we estimate that the 99.9% total energy ROM used in these optimizations will provide
approximately a 750x speedup over a finite element solve using the same mesh.

4.2.3 Comparison to results using first-order elements

We also inquire whether the use of second-order finite elements to construct the ROM is actually beneficial. We
expect that the resulting stresses in element interiors are more accurate, but it is uncertain whether this increased
accuracy has a beneficial effect in the optimization. To determine whether it does, we ran optimizations using
a ROM constructed using first-order elements and a 99.9% total energy criterion to compare to the correspond-
ing results using second-order elements. These optimizations use p = 15 and 10, 15, 20 and 25 aggregation
regions, respectively. The ROM constructed using first-order elements has exactly the same dimension as that
constructed using second-order elements, and the quadrature rule used to compute stress aggregates is identical.
The aggregation regions are also identical to those used for the optimizations in Section 4.2.1.

To compare the optimization results we examine the run time, mass fraction of the postprocessed design,
and the max stresses at the optimum and in the postprocessed design. The latter are computed using both the
full-order first-order finite element model and the full-order second-order finite element model to assess the impact
of second-order elements on accuracy in the stress. The results are summarized in Table 4; the optimization run
time and mass fraction may be compared to the second block in Table 1. We find that the first-order model
underestimates the maximum stress significantly. As a result, the optimized mass fractions are smaller than the
corresponding optimization results with second-order elements, but none of the designs found using first-order
elements is conservative when analyzed using second-order elements. Additionally, in three out of four cases, the
optimization with first-order elements as the model had a longer run time than the second-order optimization.
This is due to the fact that the ROM constructed from first-order elements has the same dimension as that
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Errors at local optimum Errors in postprocessed design

nagg eσr
max eσr eu eσr

max eσr eu

Errors using 99.9% of total energy

1 -0.52% 4.12% 2.80% -0.67% 2.96% 0.63%
5 3.17% 4.46% 4.18% 13.06% 2.93% 4.21%
10 -0.58% 3.67% 2.98% -0.78% 2.84% 5.21%
15 6.42% 3.91% 4.04% -0.98% 2.80% 1.96%
20 0.05% 4.17% 3.19% 0.09% 3.22% 3.35%
25 2.33% 3.78% 3.41% 8.66% 2.54% 4.44%

Errors using 99.99% of total energy

1 0.54% 2.72% 1.83% 0.02% 2.30% 0.49%
5 0.08% 3.05% 2.83% -0.90% 2.28% 4.09%
10 0.02% 2.33% 2.01% 0.09% 2.33% 5.04%
15 4.03% 2.62% 2.68% -0.08% 2.26% 1.94%
20 -0.79% 2.77% 2.11% -0.18% 2.71% 3.24%
25 -0.98% 2.50% 2.27% 0.24% 2.10% 4.34%

Errors using 99% of total energy

1 155.67% 48.38% 25.88% 108.61% 21.24% 8.65%
5 167.64% 42.61% 29.99% 134.32% 21.10% 47.11%
10 160.05% 33.56% 21.75% 149.29% 19.87% 55.57%
15 173.93% 37.32% 30.97% 112.66% 20.84% 23.10%
20 176.95% 43.40% 23.86% 71.62% 19.09% 38.91%
25 140.72% 37.28% 25.13% 197.87% 17.45% 46.89%

Table 2: Comparison of ROM accuracies for different total energy criteria. Reported are relative errors
in the maximum stress and relative errors in stress and displacement as measured in the L2 norm for
both the optimal parameter value and the postprocessed design.

Criterion Total DOFs Forward speedup Aggregate speedup

99% 44,214 224x 2.78x
99.9% 53,056 151x 2.47x
99.99% 70,740 59.6x 1.54x

Table 3: ROM speedups vs. a full-order static condensation solve for the forward solve, and a straight-
forward quadrature for the computation of stress aggregates.

1st-order elements 2nd-order elements

nagg Run time (s) mpp
frac maxσr maxσvm maxσr maxσvm

10 13936 10.6% 1063 769 1215 944
15 3287 13.5% 1020 962 1195 1023
20 2743 11.8% 1001 899 1148 910
25 4699 11.1% 1026 1027 1153 1155

Table 4: Optimization results using a ROM constructed with first-order elements as the underlying
model. We show the optimization run time and postprocessed mass fraction from an optimization run
using first-order elements, and maximum stresses at the optimum and in the postprocessed design as
computed using both first- and second-order elements. These stresses are computed using the corre-
sponding full-order models.
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nagg p Ncons Njac Run time (s) mopt
frac mpp

frac maxσr (MPa) maxσvm (MPa)

σ̂max = 800 MPa

1 10 2399 1251 4572 15.2% 12.9% 1159 910
5 10 827 517 1866 16.2% 14.9% 996 775
10 10 803 458 2047 16.2% 14.8% 984 698
15 10 702 384 1887 16.3% 15.4% 1029 704
20 10 806 484 2393 15.5% 13.6% 994 885
25 10 979 564 3009 16.0% 14.1% 970 906

σ̂max = 880 MPa

1 10 5114 1985 9040 11.2% 8.7% 1215 938
5 10 716 394 1612 14.1% 14.1% 1148 889
10 10 903 524 2345 13.0% 11.5% 1217 888
15 10 649 328 1793 13.6% 13.5% 1229 884
20 10 877 457 2574 13.7% 13.3% 1215 886
25 10 1429 675 4255 13.3% 12.2% 1238 886

Table 5: Comparison of optimization results when decreasing the value of the stress limit for optimiza-
tion. Consult Table 1 for definitions of the notation used here.

constructed with second-order elements, while the optimizer spent additional model evaluations on line search in
these cases. These results justify the use of the second-order model for our primary results.

4.2.4 Effect of decreasing the maximum stress

To verify that the heuristic of imposing a reduced stress limit σ̂max (Sec. 3.3.3) achieves the desired effect, we
solve the optimization problems with p = 10 using σ̂max = 800 MPa. The corresponding optimizations with
σ̂max = 880 MPa yielded postprocessed designs that did not satisfy the stress constraint. Results are reported in
Table 5 in the same format as those in Table 1.

Setting σ̂max < σmax achieves a reduction in the maximum relaxed stress at the optimum in every case,
as well as accelerating convergence in most cases. The effect after postprocessing is somewhat unpredictable.
In the case with 25 aggregation regions, the maximum postprocessed stress using a lower upper bound for
optimization is actually higher than that with the higher upper bound. In all other cases, the postprocessed
stress was decreased. We expect that with enough reduction of σ̂max, optimization results will eventually lead
to conservative postprocessed designs. Determining how much reduction is required, however, may require an
iterative procedure and a choice that is too conservative will trade optimality for conservativeness. Instead, it
may be preferable to choose a higher value for the aggregation multiplier p, and/or a larger number of aggregation
regions. The choice of these parameters of the optimization is problem-dependent.

4.3 Mass minimization of a cantilever beam

Our second numerical example demonstrates how the component-wise approach solves a different structural
optimization problem while using the same set of components. This illustrates a key advantage: the offline phase
of constructing a component library need only be performed once, then the resulting dataset used to solve multiple
design problems. We minimize the mass of a cantilever beam, fixed at one end and with a vertical load applied to
the opposite tip. The problem setup is illustrated in Fig. 8; material properties are the same as for the L-bracket.
The cantilever beam has a length of 1 m and height of approximately 25.8 cm (due to the lattice structure); a 30
kN load is applied to the rightmost two ports on the upper surface of the beam as an evenly distributed pressure
force.

The underlying finite element mesh for the beam’s ground structure contains 3,750,278 second-order triangular
elements for a total of more than 15 million degrees of freedom (not accounting for those duplicated on internal
ports). The full-order static condensation system has 428,736 degrees of freedom, and the ROM constructed with
99.9% of total energy for port spaces contains 81,664.
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Figure 8: Setup for the cantilever beam optimization.

4.3.1 Optimization result

We solve the optimization problem (17) using 10 aggregation regions and an aggregation multiplier of p = 15
and the ROM using a 99.9% total energy criterion. The convergence tolerance for Ipopt is set to 10−6. For this
optimization, no reduction of the upper stress bound σ̂max was necessary to obtain a conservative design. The
optimization algorithm converges in 1,944 iterations with 2,576 constraint evaluations. At the local optimum,
the mass fraction relative to the ground structure is 19.2%, with a maximum relaxed stress of σr = 849 MPa.
After postprocessing, the design has a mass fraction of 15.1% and maximum stress of 784 MPa. The result is
postprocessed using dropping tolerance ρmin = 0.25.

Fig. 9 shows the optimized density field and the result of postprocessing. As in the previous optimization re-
sults, many components have intermediate densities, but the chosen dropping tolerance clearly separates material
and void regions. The postprocessed design resembles well-known results for compliance minimization problems
and also has characteristics of functionally-graded structures – note the use of small repeating cells on the upper
and lower boundaries, and a structure with a much larger void fraction in the interior.

4.3.2 Comparison to an optimization using different random aggregation regions

To justify the random assignment of aggregation regions, we compare optimization results for different choices of
aggregation regions to the result shown previously. The postprocessed designs are compared to the previous one
in Figure 10. The third result is postprocessed using a dropping tolerance of ρmin = 0.2 (vs. ρmin = 0.25 for the
first two designs) because of component densities at the optimum that fall between these values but correspond
to structurally important components.

Changing aggregation regions does make a significant difference in optimization results. Whereas the original
optimization required 1,944 iterations to converge to tolerance, the optimizations with redistributed regions
required only 793 and 1,428 respectively. We believe this is more indicative of the difficulty and sensitivity of
the optimization problem than it is of a deficiency in the random strategy for region assignment. The local
optima with new aggregation regions have mass fractions of 20.3% and 19%, vs. 19.2% in the original; after
postprocessing, the mass fractions are 17.4% and 14.9% vs. the original 15.1%. Maximum relaxed stresses at
the local optima are 849 MPa and 887 MPa, vs. the 860 MPa of the original design, and after postprocessing
the new designs have maximum stresses of 806 MPa and 1080 MPa. Clearly the assignment of aggregation
regions influences the quality of optimization results. We note, however, that the third design’s violation of the
maximum stress constraint is due to postprocessing, not the assignment of aggregation regions; postprocessing
creates a stress concentration that does not exist at the local optimum. Otherwise, random region assignments
do result in fairly consistent designs.

4.3.3 Comparison to a design using a simpler ground structure

Our final example illustrates the impact of the choice of reference components and ground structure on the final
design. We optimize a cantilever beam with the same dimensions as in the previous sections, but with a ground
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Figure 9: Results of the cantilever beam optimization. Top: optimized component-wise density field.
Bottom: the postprocessed structure.

structure created using only the four-port connector and vertical and horizontal struts from Fig. 3. Loading
and boundary conditions are the same as in the previous sections, and optimization settings are the same as in
Sec. 4.3.1. The result is postprocessed with the same dropping tolerance of ρmin = 0.25. This ground structure
and the optimized design are pictured in Fig. 11.

Because the ground structure for this example contains fewer components than the more complex ground
structure used previously (5001 components compared to 6601), there are fewer degrees of freedom in the model
as well as fewer optimization parameters, and optimization is completed faster. For the simpler ground structure
optimization took about 5,500 seconds in total, compared to 12,500 for the original ground structure. The
performance of the final design suffers, however. The postprocessed design respects the stress constraint, with a
maximum stress of 856 MPa, but its mass is 18% greater than the postprocessed design using the full component
library. The four-port design also has a compliance 61% greater than when using a richer ground structure.

These results illustrate the importance of the choice of reference components and ground structure. The
component-wise methodology trades flexibility in the design space for computational performance, but limiting
the design space too much will significantly limit the performance that can be achieved. Additionally, while
not illustrated here, some choices of ground structure could not even permit a feasible solution; for example,
if the ground structure contains sharp, concave corners that cannot be eliminated, stress singularities might be
unavoidable. Reference components must be chosen to avoid such deficiencies in the reachable design space.

5 Conclusions

We have presented a novel application of component-wise ROMs to stress constrained TO. The methodology
succeeds in finding solutions with a large mass reduction relative to the ground structure while respecting stress
constraints. While the presence of many local optima as well as the approximation of the maximum stress mean
that it is impossible to guarantee a conservative solution, adjusting the aggregation multiplier and upper bound
on stress proved effective for stress control. The reduced order model provides an error in the maximum stress
of less than 10% in most cases and a relative error of about 3% in the L2 norm, while providing a 150x speedup
relative to a full order static condensation model. If greater accuracy is required, a ROM using 99.99% of total
energy still provides a 60x speedup while reducing the error in the maximum stress by approximately an order
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Figure 10: Comparison of the resulting postprocessed designs from three different random assignments
of aggregation regions. Top: the design from Section 4.3.1, with a mass fraction of 15.1% and maximum
stress of 784 MPa. Middle: the first design with redistributed aggregation regions, with mass fraction
of 17.4% and a maximum stress of 806 MPa. Bottom: A third design with different aggregation regions,
with mass fraction of 14.9% but a maximum stress of 1080 MPa.
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Figure 11: Top: ground structure for the cantilever beam using only four-port connectors. Bottom: the
optimized structure after postprocessing.

of magnitude. Due to the acceleration provided by the component-wise ROM, we are able to solve the TO
problem efficiently on a ground structure containing millions of second-order finite elements. Component ROMs
provide a high accuracy surrogate model that may be reused to study a multitude of both homogeneous and
heterogeneous lattice-like structures. As an additional benefit, we avoid sharp corners in the design altogether by
a judicious choice of reference components, obviating difficulties associated with handling of stress singularities.
When manufactured, however, the smooth boundary geometry may not be realized; to account for these cases,
future work is needed to quantify the effect of manufacturing uncertainties.

There are several other potential areas for future work. First, local stress constraint handling using augmented
Lagrangian techniques could directly handle stress constraints and reduce the number of adjoint solves required
to one per iteration, potentially providing superior performance. Second, the cost of model evaluations could be
reduced using an adaptive refinement strategy, made simple by the component-wise discretization; it is easy to
substitute a few components with higher ROM accuracy only where needed. Third, the performance of our method
could be increased by using hyperreduction techniques to reduce the cost of computing aggregated constraints.
Finally, the current formulation does not address buckling constraints, which will be necessary for practical use.
There are multiple approaches that could be taken to solve the buckling problem. First, a buckling constraint
could be imposed directly by solving the associated eigenvalue problem; The component-wise theory for solving
symmetric eigenproblems has been developed in [35]. Extensive work on implementation and tuning would be
necessary to address the difficulties of buckling-constrained TO documented in [13, 12] and others, however.
It might instead be preferred to address buckling by heuristic methods. Since the choice of yield criterion is
not limited to the von Mises criterion, we can instead choose a criterion that distinguishes between tension and
compression, such as the Drucker-Prager criterion. Intuitively, reducing the allowable stress in compression should
result in designs more resistant to buckling. Further work is necessary to investigate the merits of these different
approaches to the buckling problem.
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