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This paper presents a method based on the proper orthogonal decomposition for model
reduction of reacting 
ow applications. Simulation of reacting 
ows requires the numerical
integration of a system of nonlinear partial di�erential equations that couples conservation
laws, equations of state, and equations describing the chemical source terms. Solution of
this coupled system is particularly challenging due to the sti�ness of the embedded kinet-
ics and the high computational cost of integrating the nonlinear source term that arises
from the chemical models. Existing model reduction approaches are based on separation of
reaction timescales, and do not always result in su�cient levels of reduction. The proper
orthogonal decomposition approach is combined with the discrete empirical interpolation
method to achieve e�cient computation of the nonlinear term in the reduced model. Re-
sults are shown for parameterized steady and unsteady models describing a two-dimensional
premixed H2-Air 
ame governed by a nonlinear convection-di�usion-reaction equation.

I. Introduction

Technological improvements in aircraft engines and fuels aimed increased fuel e�ciency, reduced pollutant
emissions, and reduced greenhouse gas production require a detailed knowledge of the combustion process.
In this context, computational methods play a signi�cant role. They reduce design e�ort, testing time
and cost by minimizing the need to build hardware and run laboratory experiments. However, despite a
rapid increase in computational power and hardware capacity, numerical simulation of reacting 
ows with
detailed chemistry remains a challenging and computationally demanding task. Simulation of reacting 
ows
requires the numerical integration of a system of nonlinear partial di�erential equations (PDEs) coupling
conservation of mass, momentum and energy; equations of state; and equations describing the chemical
source terms. Solving these systems is particularly challenging due to the sti�ness of the embedded kinetics
and the high computational cost of integrating the nonlinear source term that arises from the chemical
models. This paper proposes a model reduction approach that addresses these challenges by providing a
systematic means to derive reacting 
ow models that are fast to solve but retain high-�delity predictive
capability.

Several methods have been developed over the years to reduce the cost of computing the chemical source
terms while maintaining accuracy. These methods have originally been developed for spatially homogeneous
reactive systems described by large systems of ordinary di�erential equations (ODEs). Mechanism reduction
approaches, based on the separation of fast and slow processes, aim to eliminate the species associated
with fast reactions that satisfy quasi-steady state assumptions.1{4 The ODEs for such species are replaced
by algebraic constraints resulting in a reduced model. The computational singular perturbation method
(CSP)3,5 is a general automatic procedure for reduction and analysis of large complex reaction ODE systems.
This method relies on the existence of a linearly independent set of basis vectors that decompose the equations
governing the chemistry into fast and slow modes. Starting from a trial set of basis vectors, usually the
eigenmodes of the Jacobian of the chemical source term, an iterative re�nement algorithm is applied to
compute an approximation to the ideal basis vectors that decouple the fast and slow subspaces. Once the
system is decoupled, the fast modes are approximated by algebraic constraints, leaving only the slow modes
in the di�erential system. Another method that enables automatic separation between slow and fast time
scales, based on a dynamical systems approach, is the intrinsic low dimensional manifold (ILDM) approach.6
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ILDM uses local eigenvector analysis of the Jacobian of the chemical reaction source term to identify the
fast time scales and hence the species that can be considered in local equilibrium. The method is usually
combined with a tabulation procedure that allows utilization of its results in CFD codes.

Although methods based on time-scale analysis have been applied successfully in combustion simula-
tions6{9 and atmospheric chemistry,10{12 their computational cost can be high when many chemical mech-
anisms are involved. In CSP and ILDM, for instance, slow and fast spaces are identi�ed by analysis of the
local Jacobian and its eigenvectors, which need to be updated frequently. Moreover, these methods do not
reduce the large dimensionality that arises for models of spatially-varying reactive 
ows. In such cases, the
reaction dynamics are governed by a set of coupled partial di�erential equations (PDEs). Discretization
of the PDEs in space leads to a state space of very high dimension where the states are spatially discrete
representations of the reactant concentrations over the computational domain (e.g. values of concentrations
at nodal grid points).

Projection-based model reduction is one approach to reduce the complexity of coupled set of PDEs.
Reduced-order models based on the proper orthogonal decomposition (POD)13,14 together with Galerkin
projection have been widely used in many applications ranging from 
uid mechanics15{17 to structural
mechanics18,19 to optimal control and optimization.20{23 This approach employs a Galerkin projection of
the large-scale system of equations onto the space spanned by a small set of orthonormal basis functions, the
POD modes. In many cases, POD-Galerkin models can achieve signi�cant reductions in model complexity,
since the dynamics of interest can often be represented by a small number of POD modes. A signi�cant
issue with POD-based reduced models, however, is the generation of a representative data set so that the
basis functions are able to capture the short and long term dynamics of the original system. To address
this problem, Ref. 24 investigated numerical strategies and performed a sensitivity analysis. More recently,
Ref. 25 proposed a combination of POD-Galerkin projection and an adaptation strategy to construct an
accurate reduced-order model for a laminar premixed methane-air 
ame with detailed chemical kinetics.

One challenge with applying the POD-Galerkin method to nonlinear systems is e�cient evaluation of the
reduced model, since the projected nonlinear term requires computations that scale with the dimension of the
original large-scale problem. One approach to address this is the trajectory piecewise-linear scheme, which
employs a weighted combination of linear models, obtained by linearizing the nonlinear system at selected
points along a state trajectory.26 Other approaches propose approximating the nonlinear term through
selective sampling of a subset of the original equations.27{30 The missing point estimation approach, based
on the theory of gappy POD,31 is used to approximate nonlinear terms in the reduced model with selective
spatial sampling,28 while the Empirical Interpolation Method (EIM) is used to approximate the nonlinear
terms by a linear combination of empirical basis functions for which the coe�cients are determined using
interpolation.29,30 Here we use the Discrete Empirical Interpolation Method (DEIM), a discrete version of
the EIM that �ts well within our POD-Galerkin framework.32

In this paper we propose a POD-based approach to obtain e�cient reduced-order models of chemically
reacting 
ows. Our method combines the classical Galerkin projection technique with the e�cient interpo-
lation procedure of the DEIM. Unlike classical model reduction techniques for reacting 
ow applications,
our approach addresses the reduction of a coupled system of PDEs, achieving substantial reduction in the
total number of degrees of freedom. In Section II we present the model reduction framework. In Section III
we discuss the governing equations of the model problem to which our approach is applied and the solution
methodology, and in Section IV we show results. Finally, Section V concludes the paper.

II. Model reduction technique

Projection-based methods are commonly used to construct reduced-order models (ROMs) of large-scale
systems. They derive a ROM by projecting the governing equations onto the subspace spanned by a set of
basis vectors.33 This section describes the projection-based model reduction framework, presents the POD
and then describes the empirical interpolation approach used to approximate the nonlinear term.

II.A. Projection framework

Consider the parameterized nonlinear system of ODEs:

_x = Ax + F(x;p) (1)
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with initial conditions
x0 = x(0); (2)

where x(p; t) 2 Rn is the state vector of dimension n, p 2 Rnp is a vector containing np input parameters,
x0 is the initial state, A 2 Rn�n is a constant matrix, F(�;p) : Rn ! Rn is a nonlinear function of state and
parameters, and t denotes time. Systems of ODEs of the form of Eqs.(1-2) arise often from the discretization
of PDEs. In such cases n can be very large and the components of the parameter vector p can describe, for
example, coe�cients of the PDE and changes in the domain geometry.

To derive the reduced-oder model of Eqs.(1-2), we approximate the original state x(p; t) as a linear
combination of k � n basis vectors vi 2 Rn; 1 � i � k,

x � �x + Vxr; (3)

where V = [v1; : : : ;vk] 2 Rn�k and xr(p; t) 2 Rk is the vector of the reduced states. Because the basis
functions are chosen to satisfy homogeneous boundary conditions, the particular solution �x 2 Rn is included
when Dirichlet boundary conditions are strongly enforced in the discretized system.

Using Eq.(3) and projecting Eqs.(1-2) onto the subspace spanned by the columns of a left projection
matrix W 2 Rn�k yields the reduced-order model

_xr = A0r + Arxr + WTF(�x + Vxr;p) (4)

with initial conditions
x0

r = WTx(0); (5)

where W is chosen so that WTV = I and I 2 Rk�k is the identity matrix, A0r = WTA�x 2 Rk and
Ar = WTAV 2 Rk�k. The k basis vectors can be obtained by many di�erent methods. In this work the
basis vectors are constructed using the POD method of snapshots.14 In this case, the reduced-order model
is obtained by Galerkin projection, i.e. W = V.

II.B. Proper orthogonal decomposition (POD)

The proper orthogonal decomposition (POD), also known as Karhunen-Lo�eve decomposition34 or principal
components analysis,35 is a procedure that, given a set of solutions (snapshots) at selected times and/or
selected parameter values, computes a set of orthonormal basis vectors. Speci�cally, given a set of l snapshots
fx̂jglj=1, where x̂j = xj � �x, POD computes the set of k < l basis vectors fvigki=1, where vi 2 Rn is the ith
basis vector. The set of k POD basis vectors solves the minimization problem

min
fvigk

i=1

lX
j=1

kx̂j �
kX
i=1

(x̂Tj vi)vik22; subject to vTi vj = �ij for 1 � i; j � k; (6)

where �ij is the Kronecker delta.
Finding the solution of Eq.(6) is equivalent to �nding the left singular vectors of the snapshot matrix

X = [x̂1; : : : ; x̂l] 2 Rn�l. In particular, if the singular value decomposition (SVD) of X is

X = V�UT ;

where matrices V = [v1; : : : ;vl] 2 Rn�l and U = [u1; : : : ;ul] 2 Rn�l are orthogonal, � = diag(�1; : : : ; �l) 2
Rl�l and �1 � �2;� � � � � �l > 0, the POD basis is the set fvigki=1. The POD basis gives the optimal
representation, in the least squares sense, of the set of snapshots. The error in representing the snapshots in
the basis of dimension k is given by

lX
j=1

kx̂j �
kX
i=1

(x̂Tj vi)vik22 =
lX

i=k+1

�2
i :

The quality of the resulting reduced-order model constructed using the POD basis depends a great deal
on the choice of the set of snapshots. Treatment of this issue goes beyond the scope of this paper; we refer
the interested reader to the works of Veroy et al.,36 Veroy and Patera,37 Grepl and Patera38 and Bui-Thanh
et al.39
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II.C. E�cient model reduction of nonlinear systems of equations

Although Eq.(4) represents k ODEs with k unknown states, where k � n, its solution is still expensive.
The evaluation of F(Vxr(p)) and its projection onto the reduced basis depends on the size of the original
problem n, as can be seen from the following:

_xr|{z}
k�1

= A0r|{z}
k�1

+ Arxr| {z }
k�1

+ WT|{z}
k�n

F(�x + Vxr;p):| {z }
n�1

If large systems are considered, the cost of solving the reduced system of nonlinear equations will be governed
by these computations.

The Discrete Empirical Interpolation Method (DEIM),32 a discrete variant of the Empirical Interpolation
Method (EIM) introduced by Barrault et al.,29 provides an e�ective technique to obtain reduced-order models
of nonlinear systems whose online evaluation cost is independent of the size of the original problem. The
DEIM consists of an inductive selection procedure that generates an approximation space and a set of
interpolation indices that enable the evaluation of the nonlinear function F at a subset of points m � n,
where n is the dimension of the original ODE system.

The starting point of the procedure is the generation of a set of l snapshots of the nonlinear function,
fFjglj=1, where Fj is the nonlinear function evaluated at the jth sample conditions of state and parameters.
From these l snapshots, a set of POD basis vectors for the nonlinear term is constructed. The nonlinear
function F is then approximated by a linear combination of m < l of these basis vectors,

F � ��; (7)

where � = [�1; : : : ;�m] 2 Rn�m are the POD basis vectors for the nonlinear term, and � 2 Rm are the
corresponding expansion coe�cients. This approximation cannot be constructed e�ciently, since calculation
of the expansion coe�cients by projection, � = �TF, still depends on n. In order to construct a reduced-
order representation that is independent of n, we approximate � using a subset m � n of the components
of F. The subset, Z 2 Rm, of components of F associated with the basis � is computed following Ref. 32:

z1 = maxfj�1jg
� = [�1]; P[ez1 ]; Z = [z]
for ‘ = 2; : : : ;m

Solve (PT�)� = PT�‘ for �

r = �‘ ���

z‘ = maxfjrjg
� [� �‘]; P [P ez‘

]; Z [Z z‘]T

end for

where maxfj � jg implies �nding the index of the maximum absolute value of �, fz1; : : : ; zmg are the inter-
polation indices, and ezi = [0; : : : ; 0; 1; 0; : : : ; 0]T 2 Rn is column zi of the identity matrix I 2 Rn�n for
i = 1; : : : ;m.

Once the indices are found, the approximation of � can be computed as

� � (PT�)�1PTF

and substituting this approximation in Eq.(7) we obtain

F � �(PT�)�1PTF: (8)

As a result, the nonlinear term WTF(Vxr;p) in Eq.(4) approximated by DEIM becomes

Nr(xr;p) = WT�(PT�)�1PTF(�x + Vxr;p); (9)

and assuming that F can be evaluated componentwise at its input vector, Eq. (9) becomes

Nr(xr;p) = WT�(PT�)�1| {z }
k�m

F(PT (�x + Vxr);p):| {z }
m�1

(10)
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All of the matrices and calculations in Eq.(10) are independent of n, and hence the reduced model is
inexpensive to solve. The terms WT�(PT�)�1 2 Rk�m and PT (�x + Vxr) 2 Rm can be precomputed in
an o�ine stage. Therefore the online computation of the reduced-order model requires only the solution of
a system of k nonlinear equations with just m evaluations of F(�;p).

III. Problem formulation and model reduction

We consider a simpli�ed model of a premixed 
ame at constant and uniform pressure. We also consider a
constant and divergence-free velocity �eld in addition to constant, equal and uniform molecular di�usivities
for all species and temperature. Under these assumptions, the system of PDEs governing the evolution of the

ame in a domain 
 2 R2 with boundaries � is given by the following nonlinear convection-di�usion-reaction
equation,

@x
@t

= ��x� Urx + s(x;p) in 
; (11)

with initial and boundary conditions

xD = xj�D

xN = xj�N

x(0) = x0;

where x(p; t) = [Y1; Y2; : : : ; Yns
; T ]T 2 Rn is the thermo-chemical composition vector, Yi is the mass fraction

of species i, ns is the total number of species, T is the temperature, � is the molecular di�usivity, U is the
velocity �eld, s(x;p) = [s1; : : : ; sns; sT ]T is the nonlinear reaction source term and p is a vector containing
input parameters. The total number of degrees of freedom is n, and the subscripts D and N denote Dirich-
let and Neumann boundaries respectively. Although quantitative information regarding the 
ame cannot
be extracted from this simpli�ed model problem, it provides a fairly complicated propagation mechanism
(convection-di�usion-reaction) that encapsulates the challenges associated with complicated reacting 
ow
problems and thus serves to assess the capabilities of a reduced-order model.

We consider in this work both steady and unsteady problems. The chemistry is modeled by a simple
one-step reaction described as

�FYF + �OYO ! �PYP ; (12)

where YF ; YO and YP are the mass fractions of the fuel (F ), the oxidizer (O) and the product (P ) respectively
and �F ; �O and �P correspond to their respective stoichiometric coe�cients. The nonlinear reaction source
term in Eq.(11) is of Arrhenius type and modeled as in Cuenot and Poinsot40 as:

si(x;p) = ��i
�
Wi

�

��
�YF

WF

��F
�
�YO

WO

��O

A exp
�
� E
RT

�
; i = F;O; P

sT (x;p) = sP (x;p)Q
(13)

where A is the pre-exponential factor, Wi is the molecular weight of species i, � is the density of the mixture,
R is the universal gas constant, T is the temperature, E is the activation energy, Q is the heat of reaction
and the parameters p = (A;E) can vary within the parameter domain D � R2.

The nonlinear system of PDEs (11) is spatially discretized using the �nite di�erence method (FD). After
discretization, for the unsteady case we obtain the following nonlinear system of discrete ordinary di�erential
equations

_x = Kx + S(x;p) (14)

while for the steady case we obtain the following nonlinear system of discrete algebraic equations

Kx + S(x;p) = 0 (15)

where K 2 Rn�n is a constant matrix corresponding to the FD approximation of the linear spatial di�erential
operators and S(x;p) 2 Rn is the discretized nonlinear source term. The system of nonlinear algebraic
equations (15) is solved using Newton’s method. For the system of ODEs (14), a second order backward
di�erentiation formula combined with the Newton’s method is employed to obtain the solution at each time
step.
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The model reduction methodology developed in Section II is applied to Eqs.(14) and (15) leading, re-
spectively, to the reduced-order models

_xr = K0r + Krxr + RrS(P0r + Prxr;p) (16)

and
K0r + Krxr + RrS(P0r + Prxr;p) = 0; (17)

where
K0r = VTK�x 2 Rk;
Kr = VTKV 2 Rk�k;
P0r = PT �x 2 Rm;
Pr = PTV 2 Rm�k;
Rr = VT�(PT�)�1 2 Rk�m:

The matrix V = [v1; : : : ;vk] 2 Rn�k contains k POD basis vectors constructed from a set of l > k
solution snapshots, fx̂j = xj � �xglj=1, vector �x is the arithmetic mean of the set of snapshots, matrix
� = [�1; : : : ;�m] 2 Rn�m contains m POD basis vectors obtained from a set of l > m snapshots of the
nonlinear function, fSjglj=1, where Sj = S(xj ;p), and matrix P 2 Rn�m is obtained by applying the DEIM
to �. In the present work the set of l solution snapshots corresponds to solutions at l di�erent parameter
values for the steady case. For the unsteady case, the set of l solution snapshots is constructed including q
solutions, each corresponding to a di�erent time instant, for h di�erent parameter values.

Matrices Kr, Pr and Rr and vectors K0r and P0r are all parameter (and time) independent. Although
their computation depends on n and therefore is expensive, they are precomputed once in an o�ine stage.
The solution of the reduced-order model, the online stage, is then only dependent on k and m, which are
usually small (typically 5-100), making it inexpensive.

IV. Numerical results

In this section we present results obtained after applying our model reduction technique to a two-
dimensional premixed H2-Air 
ame modeled by the system of PDEs (11). The one-step reaction mechanism
is given by

2H2 + O2 ! 2H2O;

where H2 is the fuel, O2 is the oxidizer, H2O is the product and the nonlinear reaction source term is of the
form of Eqs.(13).

For all numerical simulations, the divergence-free velocity �eld, U , acts in the positive x direction and
is set to 50 cm/sec. The di�usivities, �, are set to 2.0 cm2/sec. and the density of the mixture, �, is set
to 1.39�10�3 gr/cm3. The molecular weights, Wi, where i = H2;O2;H2O, are 2.016, 31.9 and 18 gr/mol
respectively, the heat of reaction Q = 9800 K and the universal gas constant R = 8.314472 J/(mol K). The
system parameter p = (A; E) can take di�erent values within the parameter domain D � [5:5� 1011; 4:5�
103]� [5:5� 1013; 1:5� 104] � R2. The set-up for the simulation is schematically shown in Figure 1. On the
in
ow boundary �2, YH2 = 0.0282, YO2 = 0.2259, and YH2O = 0 are imposed. On �1 and �3, homogeneous
Dirichlet boundary conditions are enforced for the species mass fractions. A temperature of 950 K on �2 and
300 K on �1 and �3 is prescribed. On �4, �5 and �6, homogeneous Neumann conditions for the temperature
and mass fractions are imposed. The number of spatial grid points used in the FD discretization is 73 in
the x-axis and 37 in the y-axis. The total number of degrees of freedom, n, is 10804. The time step for the
unsteady simulations is set to 0.1 milliseconds. As initial condition, x(0), the domain is considered empty,
at a temperature of 300 K and the velocity �eld is set to zero.

IV.A. Steady case

A set of l = 100 solution snapshots are obtained by solving the nonlinear system of algebraic equations (15)
for 100 di�erent parameter samples pj , where 1 � j � 100 and the jth parameter sample corresponds to the
jth node of a 10 x 10 uniform grid in the parameter domain D. Figures 2 and 3 show solution snapshots of
temperature and H2O mass fraction for two di�erent parameter samples p.
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Figure 1. Schematic set-up for the hydrogen-air 
ame.

Figure 2. Snapshot for parameter sample p10 = (A10; E10) = (5:5� 1011; 4:5� 103)

To test the proposed model reduction technique, the set of 100 snapshots is used to construct POD-DEIM
reduced-order models of various sizes, k and m. For each reduced-order model, accuracy is evaluated by
measuring the average relative error norm of solutions over a set of test parameters. The test parameters
consist of the nodes of a 16 x 16 uniform grid in the parameter domain D containing di�erent parameter
samples from the used to construct the reduced-order models. The same set of test parameters is used to
assess performance in terms of online computational time.

Figure 4 presents a comparison of the full and reduced solutions for a parameter sample not used to
construct the reduced-order model. The reduced model in this case was constructed using 40 POD basis
vectors and 40 interpolation points.

Table 1 and Figure 5 summarize the results obtained with the reduced models. They show the average
relative errors in the solutions over the test grid and a comparison of the average online CPU time of the

Figure 3. Snapshot for parameter sample p88 = (A88; E88) = (4:895� 1013; 6:8333� 103)
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Figure 4. Comparison of full model and reduced model solutions for p178 = (A178; E178) = (4:048� 1013; 14:3� 103)). The
reduced model was constructed using k = 40 and m = 40.
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POD-DEIM reduced-order models versus the full FD simulation at one of the corners of the test grid. They
also show results for a POD reduced-order model. Table 1 shows that for the values of k and m considered,
using the POD-DEIM reduced-order model leads to CPU time savings of a factor of approximately 10,000
with respect to the full FD simulation and a factor of approximately 3,000 with respect to the POD model
for a similar level of accuracy. Furthermore, even when the reduced-order model is at its higher dimension,
the number of degrees of freedom is reduced by a factor of 250. Figure 5 plots the convergence of the

POD POD-DEIM
k Avg. Rel. Error Online Time k m Avg. Rel. Error Online Time
1 2.2824e-02 2.9066e-01 1 40 2.2737e-02 1.1823e-04
5 2.3320e-04 2.4486e-01 5 40 2.3561e-04 8.4325e-05
10 1.0315e-05 2.9650e-01 10 40 1.1095e-05 9.0394e-05
15 1.5866e-06 3.5426e-01 15 40 1.6820e-06 1.1038e-04
20 1.9966e-07 2.5036e-01 20 40 5.4281e-07 5.4908e-04
25 1.3298e-07 2.9769e-01 25 40 4.3209e-07 9.2256e-05
30 2.4571e-08 2.2995e-01 30 40 5.0987e-07 9.2579e-05
40 8.5607e-09 2.8202e-01 40 40 4.9660e-07 9.2175e-05

Table 1. Average relative errors (L2 norm) of solutions computed using the reduced-order models (POD and POD-
DEIM) over the parameter test grid and online CPU time for the ROMs as a function of k for m = 40. CPU times
are normalized with respect to the time required by the full FD model to compute the solution at p256 = (A256; E253) =

(5:5� 1013; 4:5� 103).

reduced-order models as the number of POD basis and interpolation points is increased. The �gure shows
that the number of interpolation points used to approximate the nonlinear term drives the reduced-order
model error|increasing the number of state basis functions without a corresponding increase in the number
of interpolation points does not result in improved accuracy.

Figure 5. Average relative errors (L2 norm) of solutions computed using the reduced-order models (POD and POD-
DEIM) over the parameter test grid as a function of k and m.

IV.B. Unsteady case

In this case, the set of l solution snapshots is obtained by numerical integration of the nonlinear system
of ODEs (14). The snapshots correspond to solutions obtained at each time step. Two di�erent cases are
considered here. In the �rst one, the model reduction technique is used to construct a ROM for a �xed
parameter sample p = (A; E). In the second case, the technique is employed to construct a ROM that can
be used for unsteady simulations and di�erent parameter samples. Starting from the initial condition, x0,
the numerical simulations in the �rst case are carried out until the system reaches its steady solution while
in the second case they are performed for 300 time steps.
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Figure 6. Temperature, H2 and H2O mass fraction distribution for three di�erent times during the simulation for
p = (A; E) = (5:5� 1012; 8:0� 103).

IV.B.1. Fixed parameter

A numerical simulation is performed for a �xed parameter sample p = (5:5 � 1012; 8:0 � 103). A total of
l = 600 solution snapshots are obtained, corresponding to 600 time steps. Figure 6 shows temperature and H2

and H2O mass fraction distributions on the domain for three di�erent instants of time during the simulation.
POD-DEIM reduced-order models of di�erent sizes are constructed using the 600 solution snapshots. A
simulation is performed for each ROM and accuracy is assessed by computing the average relative error
norm of solutions at each time step. Performance in terms of CPU time required to reach the steady solution
is also evaluated.

A summary of the results obtained for the di�erent reduced-order models is shown in Table 2. It can be
seen that, as in the steady case, the convergence of the reduced-order models is excellent and errors decrease
quickly as the number of POD basis vectors and interpolation points are increased. The results also show
that using the POD-DEIM reduced-order models, the CPU time required to reach the steady solution is
reduced by an average factor of 1000 with respect to the full-order FD simulation.

Figure 7 shows a comparison of the full and reduced steady solutions and the corresponding absolute
error distribution over the computational domain 
 for temperature and H2O mass fraction.

IV.B.2. Variable parameters

Solution snapshots are obtained from two full-order FD simulations, corresponding to parameter samples
p1 = (A1; E1) = (2:3375�1012; 5:6255�103) and p2 = (A2; E2) = (6:5�1012; 9:0�103) respectively. From
each simulation, a set of 300 snapshots (one solution at each time step) are computed. The 600 snapshots are
then combined in a single set and used to construct the POD-DEIM reduced-order models. The prediction
capability of the reduced-order models is assessed by performing simulations for two arbitrarily selected
parameter samples included in the parameter domain � � p1 � p2 � D � R2 and computing the average
relative error norm of the corresponding solutions at each time step. The selected parameter samples for the
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POD-DEIM
k m Avg. Rel. Error Online Time
1 40 2.0227e-01 4.9809e-04
5 40 6.7460e-03 7.9391e-04
10 40 4.4624e-04 8.1592e-04
15 40 1.8409e-05 8.3906e-04
20 40 1.6539e-06 9.6566e-04
25 40 1.5281e-07 8.6716e-04
30 40 7.9887e-08 9.1469e-04
40 40 7.4382e-08 9.6462e-04

Table 2. Average relative errors (L2 norm) of the solutions and online CPU time for the reduced-order models as a
function of k for m = 40. CPU times are normalized with respect to the time required by the full FD model to compute
the steady solution.

Figure 7. Comparison of full model and reduced model steady solutions for p = (A; E) = (5:5 � 1012; 8:0 � 103). The
reduced model was constructed using k = 40 and m = 40.

two test cases are pt1 = (3:7250� 1012; 6:750� 103) and pt2 = (5:1125� 1012; 7:875� 103).
Figure 8 shows a comparison of the full and reduced solutions for temperature and mass fraction of H2O.

The solutions are obtained after 300 time steps of the simulation using the parameter sample pt1. The
�gure also shows the corresponding absolute error distribution over the computational domain 
 for both
quantities. In the same manner, Figure 9 presents the results obtained for the parameter sample pt2.

Table 3 shows the results obtained by simulating the reduced-order models for the test parameter sam-
ples. It can be seen that the POD-DEIM model is able to accurately predict the simulation for both test
parameters, achieving signi�cant reduction in computational time (a factor of approximately 400) and di-
mensionality (a factor of 125 for the model of higher dimension).

V. Conclusions

This paper presented a model reduction methodology for reacting 
ow applications based on Galerkin
projection, proper orthogonal decomposition and the discrete empirical interpolation method (DEIM). The
method provides an o�ine-online solution strategy that enables a very cheap computation of the derived
reduced-order model.

The proposed technique was applied to a one-step simpli�ed two-dimensional combustion problem gov-
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Figure 8. Comparison of full model and reduced model solutions, at time t = 0:03, for parameter sample pt1 = (A; E) =

(3:7250� 1012; 6:750� 103). The reduced model is constructed using k = 70 and m = 70.

Test case for pt1 Test case for pt2
k m Avg. Rel. Error Online Time k m Avg. Rel. Error Online Time
20 70 1.1304e-02 1.1795e-03 20 60 3.6389e-03 1.2609e-03
30 70 8.9716e-03 1.2550e-03 30 60 5.7951e-03 1.2013e-03
40 70 8.8667e-03 1.3372e-03 40 60 4.9373e-03 1.4860e-03
50 70 8.6059e-03 1.5396e-03 50 60 2.6750e-03 2.3427e-03
60 70 6.1550e-03 2.0105e-03 60 60 1.8835e-03 1.8976e-03
70 70 5.9581e-03 2.2383e-03 70 60 1.4533e-03 2.1587e-03
80 70 5.0581e-03 2.3970e-03 80 60 4.8569e-03 2.6712e-03

Table 3. Average relative errors (L2 norm) in the predicted solutions for both test parameters and online CPU time
for the reduced-order models as a function of k for a �xed value of m. CPU times are normalized with respect to the
full FD model simulation.

erned by a nonlinear convection-difussion-reaction PDE. Unlike traditional reduction techniques used for
combustion problems, the method addressed reduction of spatially-distributed problems described by PDEs.
Numerical results showed that the approach produces accurate models that are substantially smaller than
the original systems, achieving orders of magnitude of reduction in computational time.
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Figure 9. Comparison of full model and reduced model solutions, at time t = 0:03, for parameter sample pt2 = (A; E) =

(5:1125� 1012; 7:875� 103). The reduced model is constructed using k = 60 and m = 60.
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