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This paper investigates the construction of unsteady parametric non-intrusive reduced-order
models (ROMs) for large-scale, realistic rotating detonation rocket engine (RDRE) combustion
chambers, with the end goal of employing these reduced models to accelerate the design
optimization of RDREs. The large computational cost of the corresponding high-fidelity
simulations restricts the number of parametric instances that can realistically be simulated
to generate training data. Moreover, the resulting training data sets are often sparse and
comprise down-sampled time instants from the high-fidelity simulation. This paper’s goal is
therefore to assess the potential of constructing accurate and predictive data-driven parametric
ROMs for these challenging unsteady problems. To this end, we employ the operator inference
(OpInf) procedure, which learns structure-preserving ROMs for systems with polynomial
structure, without needing access to the high-fidelity simulator source code. To mitigate the
challenge associated with training parametric ROMs using data from only a low number
of parameter instances, we approximate the parametric dependence of the ROM operators
via a Taylor expansion. We consider RDRE simulations for two injector designs, for which
the corresponding high-fidelity simulations require more than 10, 000 cores and 5–10million
CPU-hours to simulate 1–2 ms of physical time. We consider parametric variations in the mass
flow-rate and equivalence ratio. Our results are promising and show that OpInf can be used
to construct accurate parametric ROMs from sparse training sets for parametric predictions
outside of the training set and for predictions beyond the temporal training horizon.

I. Introduction
Recent advances in computational science and high-performance computing enable the simulation of complex

real-world problems, such as three-dimensional reactive flows, with ever-increasing realism and accuracy; however, these
simulations remain computationally expensive even on large supercomputers. This prevents straightforward approaches
to many-query applications, such as uncertainty quantification and (design) optimization, which require ensembles
of such computationally expensive simulations. Therefore, reduced-order models (ROMs) — aimed at replacing
the computationally expensive high-fidelity model without deteriorating the overall accuracy — are instrumental for
accelerating or even enabling these tasks in realistic problems.
This work focuses on the construction of parametric non-intrusive ROMs for realistic rotating detonation rocket

engine (RDRE) combustion chambers using data obtained from a large-scale large-eddy simulation (LES) model.
While LES solvers have matured in recent times in providing high quality data to address performance, stability and
realizability concerns in the RDRE, ROMs can play an increasingly important role. The long-term goal of our research
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is to construct accurate and predictive parametric ROMs to accelerate the design optimization of RDREs. Constructing
parametric ROMs for RDRE combustion chambers is motivated by the fact that, on the one hand, design optimization of
individual RDRE components (injector, nozzle, etc.) in isolation is undesirable due to the strong coupling between them
and, on the other hand, parametric analyses of the entire system are computationally infeasible at the present time. The
rotating detonation engine concept involves fuel injection in an axially symmetric chamber (such as an annulus) wherein,
once ignited at suitable conditions, a system of spinning detonation waves is produced (see Bykovskii et al. [1] for a
detailed description). There are propulsive advantages to such an engine cycle in addition to its mechanical simplicity,
and this has made the RDRE an active area of research in recent years.
Parametric ROMs for RDRE combustion chambers can be beneficial for a number of reasons. Notable among

these are (i) an improved understanding of design feasibility, (ii) characterizing engine limit cycle behavior, and (iii)
geometric optimization of these devices. Parametric ROMs [2] have been extensively used in aerospace engineering in
previous research efforts. For example, Bui-Thanh et al. [3] used linearized parametric intrusive ROMs for probabilistic
analysis of unsteady aerodynamic applications. In [4], parametric ROMs of unsteady aerodynamics were used for
hypersonic vehicles. Furthermore, [5] proposed an adaptive sampling procedure for parametric reduced modeling of
aeroelastic systems based on Krylov-subspace projections and interpolation. A two-step online method for interpolating
projection-based linear parametric ROMs was proposed in [6]. Machine learning models were considered in [7] for
constructing parametric ROMs of inviscid transonic flows past an airfoil. To efficiently reduce large data sets, [8]
employed randomized algorithms for non-intrusive parametric reduced modeling. A Koopman operator-based approach
was used in [9] for parametric non-intrusive reduced models for design optimization and uncertainty quantification via
Monte Carlo sampling. In the frequency domain, [10] used parametric ROMs for the unsteady vortex-lattice method.
Nevertheless, the task of constructing accurate and predictive ROMs for RDRE combustion chambers is far from easy.
One challenge is the complexity of the physical phenomena that characterize the strongly unsteady and shock-dominated
reacting flow. This complexity goes beyond the physical problems considered in the parametric ROM examples cited
above. Another challenge is that the large computational cost of the high-fidelity simulation restricts the number of
parameter instances that can realistically be simulated to generate training data. Even more, the corresponding data sets
are often sparse — albeit large scale — and contain down-sampled time instants from the simulation code (because it is
infeasible to store snapshots at every timestep in a simulation of this nature).
To tackle these challenges, we employ the operator inference (OpInf) framework [11]. OpInf is a scientific machine

learning approach that learns from high-dimensional simulation data polynomial ROMs for systems whose governing
equations contain polynomial nonlinearities. For more general types of nonlinearities, lifting transformations can be
employed to expose (sometimes approximate) polynomial structure in the lifted governing equations [12]. To address
the challenge of constructing parametric ROMs from only a few parametric instances, we approximate the parametric
dependence of the reduced operators of the OpInf ROM via a Taylor expansion around a nominal parameter value;
a similar approach was used in [3] to accelerate many-query applications via linearized parametric intrusive ROMs.
We note that OpInf was employed in reactive flows in previous research efforts to construct data-driven non-intrusive
ROMs for predictions beyond the training horizon for the truncated CVRC injector element in both 2D [13, 14] and
3D [15]. Our previous work in [16] used an enhanced version of OpInf for predictions beyond the training temporal
horizon for the combustion chamber of the 45◦ sector of the RDRE scenario previously studied in [17]. In that work, the
OpInf ROM was shown to be accurate and predictive when trained using sparse data sets containing down-sampled time
instants from the high-fidelity simulation.
In this work, we go one step further and use OpInf for parametric reduced modeling of RDRE combustion

chambers. We consider two RDRE injector designs characterized by two different oxidizer-to-fuel area ratios and
impingement-cavity recess distances. The considered parametric variations are mass flow-rate and equivalence ratio.
These variations are characterized in our model using a scalar parameter that depends on a weighted combination of
normalized mass flow-rate and equivalence ratio. We emphasize the extreme scarcity of simulation training data: for the
first injector design, we have simulation data for three parameter instances, while for the second injector design, we have
data for two parameter instances.
The remainder of this paper is organized as follows. Section II introduces the problem setup and summarizes the

OpInf approach used to construct data-driven parametric unsteady ROMs. Section III summarizes the setup for the
parametric RDRE simulations considered in this work. Section IV presents the construction of parametric OpInf ROMs
from data for large-scale, realistic three-dimensional RDRE combustion chambers with 34 million degrees of freedom.
Section V concludes the paper.
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II. Parametric non-intrusive reduced-order modeling via discrete operator inference

A. Problem setup
Consider a parameter μμμ ∈ D in the domain D ⊂ R𝑑 of dimension 𝑑 ∈ N and consider the time interval [𝑡i, 𝑡f], with

𝑡i the initial time and 𝑡f the final time. Define the state vector q(𝑡; μμμ) = [𝑞1 (𝑡; μμμ), 𝑞2 (𝑡; μμμ), . . . , 𝑞𝑛 (𝑡; μμμ)]⊤ ∈ R𝑛 with
𝑛 ∈ N, where 𝑛 is typically large. After spatial discretization, the dynamics of the given problem are modeled as a
system of nonlinear ordinary differential equations (ODEs)

dq
d𝑡

(𝑡; μμμ) = f (q, 𝑡; μμμ), q(𝑡i; μμμ) = qinit (μμμ), (1)

where qinit (μμμ) is a specified initial condition and f : R𝑛 × [𝑡i, 𝑡f] × D → R𝑛 is a nonlinear function that defines the
time evolution of the system state. The above system of ODEs represent the underlying system of discretized partial
differential equations (PDEs) and the dimension 𝑛 scales with the (large) dimension of the spatial discretization.
Let μμμ1, μμμ2, . . . , μμμ𝑚 be 𝑚 ∈ N parameter instances and let q𝑘 (μμμ 𝑗 ) denote the state solution at time 𝑡𝑘 for parameter

instance μμμ 𝑗 where we use the notation q𝑘 (μμμ 𝑗 ) ≡ q(𝑡𝑘 ; μμμ 𝑗 ). We collect 𝑚𝑛𝑡 snapshots over [𝑡𝑖 , 𝑡 𝑓 ], where 𝑛𝑡
denotes the number of time instants for each parameter instance μμμ 𝑗 , by solving the high-fidelity model (1) for each
μμμ1, μμμ2, . . . , μμμ𝑚 and recording the solutions at the 𝑛𝑡 time instants. Given an instance μμμ 𝑗 , we define the trajectory
Q(μμμ 𝑗 ) =

[
q1 (μμμ 𝑗 ), q2 (μμμ 𝑗 ), . . . , q𝑛𝑡

(μμμ 𝑗 )
]⊤. The snapshot matrixQ collects the trajectories for all 𝑚 parameter instances:

Q =

[
Q(μμμ1) Q(μμμ2) · · · Q(μμμ𝑚)

]
∈ R𝑛×𝑚𝑛𝑡 .

Typically we have 𝑚𝑛𝑡 ≪ 𝑛. Given this snapshot matrix, we learn parametric data-driven ROMs using the discrete
OpInf approach.

B. Learning data-driven parametric reduced models via non-intrusive discrete operator inference
OpInf learns parametric reduced models with polynomial structure, where the structure is specified by the underlying

governing equations [11]. In the first step, we compute the thin singular value decomposition of the snapshot matrix Q:

Q = U𝚺V⊤,

to determine the representation of the snapshots in a low-dimensional subspace, where U ∈ R𝑛×𝑚𝑛𝑡 , 𝚺 ∈ R𝑚𝑛𝑡×𝑚𝑛𝑡 , and
V ∈ R𝑚𝑛𝑡×𝑚𝑛𝑡 . 𝚺 is a diagonal matrix containing the singular values ofQ in non-decreasing order𝜎1 ≥ 𝜎2 ≥ . . . ≥ 𝜎𝑚𝑛𝑡 ,
where 𝜎𝑗 denotes the 𝑗 th singular value. The reduced proper orthogonal decomposition (POD) basis U𝑟 ∈ R𝑛×𝑟
comprises the first 𝑟 ≪ 𝑛 columns of U, that is, the left singular vectors corresponding to the 𝑟 largest singular
values. Note that the POD basis U𝑟 is independent of the parameter μμμ ∈ D. We next compute the low-dimensional
representation of the snapshots in the reduced-order linear subspace spanned by U𝑟

Q̂ = U⊤
𝑟 Q ∈ R𝑟×𝑚𝑛𝑡 .

We first summarize the time-continuous or semi-discrete OpInf. To determine the parametric reduced operators that
define the semi-discrete ROM, OpInf solves a linear least-squares problem. For example, for a ROM with quadratic form

dq̂
d𝑡

(𝑡; μμμ) = Âsd (μμμ)q̂(𝑡; μμμ) + Ĥsd (μμμ) (q̂(𝑡; μμμ) ⊗ q̂(𝑡; μμμ)) , q̂init (μμμ) = U⊤
𝑟 qinit (μμμ), (2)

we must determine the reduced operators Âsd (μμμ) ∈ R𝑟×𝑟 and Ĥsd (μμμ) ∈ R𝑟×𝑟2 , where the subscript sd denotes
semi-discrete operators. In this parametric setting, we must represent in some way the parametric dependence of the
operators Âsd and Ĥsd. We employ a Taylor series expansion to achieve this (see, for example, [3]). Let μμμ0 ∈ R𝑑 denote
the nominal parameter value around which the Taylor series expansions are performed. Denote the components of
μμμ = [μ1, μ2, . . . , μ𝑑] ∈ R𝑑 and let ννν = μμμ − μμμ0 ∈ R𝑑 . We have:

Âsd (μμμ) = Âsd |μμμ=μμμ0 +
dÂsd
dμ1

����
μμμ=μμμ0

ν1 +
dÂsd
dμ2

����
μμμ=μμμ0

ν2 + · · · + dÂsd
dμ𝑑

����
μμμ=μμμ0

ν𝑑 + H.O.T. (3)
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and

Ĥsd (μμμ) = Ĥsd |μμμ=μμμ0 +
dĤsd
dμ1

����
μμμ=μμμ0

ν1 +
dĤsd
dμ2

����
μμμ=μμμ0

ν2 + · · · + dĤsd
dμ𝑑

����
μμμ=μμμ0

ν𝑑 + H.O.T. (4)

where dÂsddμ𝑖
���
μμμ=μμμ0

and dĤsddμ𝑖
���
μμμ=μμμ0

denote component-wise derivatives for 𝑖 = 1, 2, . . . , 𝑑, and H.O.T. denote the respective
higher-order terms. Truncating the H.O.T. in (3) and (4) and plugging the corresponding linear approximations into (2),
we obtain the following quadratic-bilinear (QB) ROM:

dq̂
d𝑡

(𝑡; μμμ) =
(
Âsd,0 +

𝑑∑︁
𝑖=1

ν𝑖Âsd,𝑖

)
q̂(𝑡; μμμ) +

(
Ĥsd,0 +

𝑑∑︁
𝑖=1

ν𝑖Ĥsd,𝑖

)
(q̂(𝑡; μμμ) ⊗ q̂(𝑡; μμμ)) , (5)

where we denote

Âsd,0 = Âsd |μμμ=μμμ0 , Ĥsd,0 = Ĥsd |μμμ=μμμ0 and Âsd,𝑖 =
dÂsd
dμ𝑖

����
μμμ=μμμ0

, Ĥsd,𝑖 =
dĤsd
dμ𝑖

����
μμμ=μμμ0

for 𝑖 = 1, 2, . . . , 𝑑.

Note that these reduced operators do not depend on the parameters μμμ; the parametric dependence of the ROM comes in
through the ν𝑖 terms in (5). For more details on QB ROMs, see, e.g., [18–20].
Eq. (5) defines the form of the parametric ROM we seek to learn from snapshot data. OpInf is then used to find

the reduced operators Âsd,𝑖 ∈ R𝑟×𝑟 and Ĥsd,𝑖 ∈ R𝑟×𝑟
2 for 𝑖 = 0, 1, . . . , 𝑑. This formulation follows the original OpInf

formulation in [11] in targeting semi-discrete (time-continuous) ROMs. This requires the time derivatives of the
projected snapshots, 𝑑

𝑑t Q̂. When the time derivatives are not provided by the underlying simulation code, they need to
be estimated numerically via, e.g., finite differences, from the values of Q̂. This poses a challenge when the available
data set is down-sampled, which is typically the case in large-scale unsteady problems where it is prohibitive to store all
time instants from the underlying high-fidelity simulation, since it becomes difficult to accurately approximate 𝑑

𝑑t Q̂.
An inaccurate approximation introduces noise in the OpInf least-squares learning problem which in turn leads to an
inaccurate ROM. In this work, we therefore modify our implementation to learn the reduced operators of the fully
discrete QB ROM

q̂[𝑘 + 1] =
(
Âfd,0 +

𝑑∑︁
𝑖=1

ν𝑖Âfd,𝑖

)
q̂[𝑘] +

(
Ĥfd,0 +

𝑑∑︁
𝑖=1

ν𝑖Ĥfd,𝑖

)
(q̂[𝑘] ⊗ q̂[𝑘]) , (6)

where q̂[𝑘] now denotes the state of the fully discrete ROM at timestep 𝑘 , with q̂[1] = q̂init and 𝑘 = 1, 2, . . . , 𝑛𝑡 − 1.
Note that in (6) we have omitted the parametric dependence of the state q̂ for notational clarity.
The task now is to learn the operators of the fully discrete ROM, Âfd,𝑖 ∈ R𝑟×𝑟 and Ĥfd,𝑖 ∈ R𝑟×𝑟

2 for 𝑖 = 0, 1, . . . , 𝑑,
where the subscript fd denotes fully discrete. We achieve this by splitting the projected data matrix Q̂ into two matrices:

Q̂0 =
[
Q̂0 (μμμ1) Q̂0 (μμμ2) · · · Q̂0 (μμμ𝑚)

]
∈ R𝑟×𝑚(𝑛𝑡−1) and R̂ =

[
R̂(μμμ1) R̂(μμμ2) · · · R̂(μμμ𝑚)

]
∈ R𝑟×𝑚(𝑛𝑡−1) ,

with Q̂0 (μμμ 𝑗 ) =
[
q̂1 (μμμ 𝑗 ), q̂2 (μμμ 𝑗 ), . . . , q̂𝑛𝑡−1 (μμμ 𝑗 )

]⊤ ∈ R𝑟×𝑛𝑡−1 and R̂(μμμ 𝑗 ) =
[
q̂2 (μμμ 𝑗 ), q̂3 (μμμ 𝑗 ), . . . , q̂𝑛𝑡

(μμμ 𝑗 )
]⊤ ∈ R𝑟×𝑛𝑡−1.

Let
Q̂𝑖 =

[
Q̂0 (μμμ1)ν𝑖1 Q̂0 (μμμ2)ν𝑖2 · · · Q̂0 (μμμ𝑚)ν𝑖𝑚

]
∈ R𝑟×𝑚(𝑛𝑡−1) ,

where ν𝑖 𝑗 denotes the 𝑖th component of ννν 𝑗 = μμμ 𝑗 − μμμ0 for 𝑖 = 1, 2, . . . , 𝑑 and 𝑗 = 1, 2, . . . , 𝑚, and let

P̂0 = Q̂0 ⊗ Q̂0 and P̂𝑖 =

[(
Q̂0 (μμμ1) ⊗ Q̂0 (μμμ1)

)
ν𝑖1

(
Q̂0 (μμμ2) ⊗ Q̂0 (μμμ2)

)
ν𝑖2 · · ·

(
Q̂0 (μμμ𝑚) ⊗ Q̂0 (μμμ𝑚)

)
ν𝑖𝑚

]
,

where P̂𝑖 ∈ R𝑟
2×𝑚(𝑛𝑡−1) for 𝑖 = 0, 1, . . . , 𝑑. The following linear least-squares problem must be solved

argmin
Ôfd∈R𝑟×𝑑 (𝑟+𝑟2 )



D̂Ô⊤
fd − R̂⊤

2

𝐹
+ 𝜆1



Âfd

2𝐹 + 𝜆2


Ĥfd

2𝐹 , (7)

where

Ôfd =
[
Âfd Ĥfd

]
∈ R𝑟×𝑑 (𝑟+𝑟2) (unknown operators)

D̂ =

[
Q̂⊤ P̂⊤

]
∈ R𝑚(𝑛𝑡−1)×𝑑 (𝑟+𝑟2) (known data),
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where we denote

Âfd =
[
Âfd,0 Âfd,1 · · · Âfd,𝑑

]
Ĥfd =

[
Ĥfd,0 Ĥfd,1 · · · Ĥfd,𝑑

]
Q̂⊤ =

[
Q̂⊤
0 Q̂⊤

1 · · · Q̂⊤
𝑑

]
P̂⊤ =

[
P̂⊤
0 P̂⊤

1 · · · P̂⊤
𝑑

]
.

This least squares problem uses Tikhonov regularization to avoid overfitting and to account for model misspecification,
where 𝜆1, 𝜆2 ∈ R are scalar regularization hyperparameters [14]. Note that for a linear system, the discrete OpInf
formulation is equivalent to (parametric) dynamic mode decomposition (DMD) [21, 22].

III. Parametric large-scale rotating detonation rocket engine simulations

A. Problem setup for high-fidelity large-eddy simulation
The full-order RDRE data used in our numerical experiments comes from a set of implicit LES done using the

AHFM (ALREST High-Fidelity Modeling) code for previous versions of the Air Force Research Lab (AFRL) RDRE.
Literature on the AFRL RDRE [17, 23] shows more details of the code, typical computational setup, and detailed analysis
of previous results. The physics of the problem are modeled using the reactive, viscous Navier-Stokes equations coupled
with a skeletal chemistry-mechanism (FFCMy-12) based on the FFCM model [24] or a modified Westbrook-Dryer
mechanism [25]. This version of the AFRL RDRE uses gaseous methane and oxygen which are injected through
72 doublet-impinger pairs. The computational mesh-size is around 136 million cells for the complete RDRE. These
simulations are computationally very expensive, where a typical simulation running on 16, 060 cores on a supercomputer
requires a total of six million CPU-hours for 2 ms of simulated physical time.
This work focuses on constructing parametric ROMs for the solutions within the full 360-degree RDRE combustion

chamber. The ROM domain is slightly smaller in each dimension than the computational fluid dynamics (CFD) domain.
Depicted in Figure 1, the ROM domain spans from 0.05 to 76.15 mm in the 𝑥 direction, spans from −37.5 to 37.5 mm
in both 𝑦 and 𝑧 directions, and has a fixed channel height of 4.44 mm throughout. The original simulation data has been
interpolated onto a grid domain comprising

𝑛𝑥 = 4, 204, 200

spatial degrees of freedom, with clustering of grid points at mid channel and closer toward the injector plane.

B. Parameter description
We have available two data sets corresponding to two injector designs. Both designs have 72 discrete injector-pairs.

These two designs are characterized by different oxidizer-to-fuel area ratios and impingement-cavity recess distances.
The parametric variations are concerned with the flow conditions (mass flow-rate, ¤𝑚 [kg/s], and equivalence ratio, Φ) of
the particular case. As discussed by Bykovskii et al. [1] and Bennewitz et al. [26], the mass flow-rate and equivalence
ratio control RDRE dynamical behavior including the number of waves, presence of counter-propagating waves, and so
forth. Figure 1 shows iso-surfaces of the interpolated pressure-field for the first injector design at nominal conditions,
for which there are five co-rotating detonation waves. These variations are characterized in our model using a scalar
parameter μ ∈ R that depends on a weighted combination of normalized mass flow-rate and equivalence ratio:

μ =
¤𝑚
¤𝑚0

+ Φ

Φ0
, (8)

where the normalization is done with respect to their respective maximum values ¤𝑚0 and Φ0 across all cases. Therefore,
the parametric dimension is 𝑑 = 1. Given the complexity of these problems, a scenario with a single parameter
represents a good starting point which can offer valuable insights regarding the potential of the discrete OpInf procedure
summarized in Section II.B to construct accurate and predictive parametric ROMs for large-scale RDRE combustion
chambers. In our future research, we will consider parametric settings in which variations in ¤𝑚 andΦ will be considered
separately. Moreover, we also aim to consider variations in parameters characterizing the geometry.
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(a) Axial span (b) Annular cross-section at inlet plane

(c) Isometric view

Fig. 1 Pressure iso-surfaces in the combustion chamber for first injector design at nominal conditions.

IV. Numerical results and discussion
We perform two numerical experiments in which we construct parametric ROMs via OpInf for RDRE combustion

chambers. Section IV.A investigates the prediction capability of parametric OpInf ROMs at instances outside of the
training set. Section IV.B assess the prediction capability of parametric OpInf ROMs beyond the training horizon.

A. First injector design: parametric predictions outside of the training set
For the first injector design, we have LES data for three parameter instances: μ1 = 1.41, μ2 = 1.73, and μ3 = 1.55.

Table 1 shows the corresponding flow condition (second column), mass-flow rate (third column), equivalence ratio
(fourth column), number of dominant waves (seventh column), and number of secondary waves (last column). Since
μ1 = 1.41 corresponds to nominal flow, it is used as the nominal value in the Taylor series expansions (3) and (4). For
each parameter instance, we have 𝑛𝑡 = 100 down-sampled snapshots from the high-fidelity simulation, which correspond
to roughly 0.25 ms of physical time. The corresponding time domain and number of wave periods are shown in the
fifth and sixth columns in Table 1. The average time step between the down-sampled snapshots is Δ𝑡 = 2.5 × 10−3
ms. All dominant waves are co-rotating. The first (corresponding to nominal flow) and third (corresponding to high
mass-flow-rate flow) parameter instances have five corresponding co-rotating dominant waves and no secondary waves.
In contrast, the second instance, i.e., the high equivalence-ratio case, is characterized by six dominant co-rotating waves
and eight secondary counter-rotating waves. These heterogeneous and complex dynamics, as well as the sparsity of the
available data sets make the construction of accurate and predictive data-driven ROMs very challenging.
Following the work in [13–16], we build the ROMs using the specific volume flow variables (specific volume,

pressure and the three velocity components), species mass fractions and temperature. We transform the data snapshots
to represent the following 𝑛𝑠 = 8 state variables:

𝑞 = [1/𝜌 𝑝 𝑣𝑥 𝑣𝑦 𝑣𝑧 𝑤CH4 𝑤O2 𝑇]⊤, (9)
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μ
Flow

Condition ¤𝑚 (𝑘𝑔/𝑠) Φ
Time
Interval Periods Dominant

Waves
Secondary
Waves

μ1 = 1.41 nominal 0.267 1.16 [3.7525 ms, 4.0000 ms] 1.97 5 0
μ2 = 1.73 high Φ 0.266 1.71 [1.8425 ms, 2.0900 ms] 1.64 6 8
μ3 = 1.55 high ¤𝑚 0.333 1.09 [3.7525 ms, 4.0000 ms] 1.97 5 0

Table 1 First injector design: summary of the three parameter instances used in the numerical experiments.

where 𝜌 is density, 𝑝 is pressure, 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 are the three velocity components, 𝑤CH4 and 𝑤O2 are the species mass
fractions of fuel (CH4) and oxidizer (O2), and 𝑇 is temperature. This representation makes most terms in the underlying
model (cf. Section III.A) linear or quadratic in the above state variables. The total number of spatial degrees of freedom
for each parameter instance is thus 𝑛 = 𝑛𝑠 × 𝑛𝑥 = 8 × 4, 204, 200 = 33, 633, 600. Note that the eight state variables
have significantly different scales. For example, the pressure scale is of order 105 to 106 Pa, whereas the species mass
fractions are in [0, 1]. We therefore center and scale the snapshot data variable-by-variable prior to performing OpInf:
each state variable is first centered around the mean field (over the training data) in that variable, and then scaled by the
maximum absolute value of that variable so that the values for each state variable do not exceed [−1, 1].
We use high-fidelity simulation data corresponding to μ1 and μ2 to train a parametric QB OpInf ROM (6) and we

use the data corresponding to μ3 for predictions outside of the training set. We therefore have 200 training snapshots in
total, i.e., the snapshot matrix Q ∈ R33,633,600×200.
Figure 2 plots the normalized singular values (normalized with respect to the first singular value) on the left and the

POD retained energy corresponding to the centered and scaled training data set on the right. Note the slow decay of the
singular values, which is due to the complex and transport-dominated nature of the dynamics of these problems. For
example, to retain 95% of the total energy, 𝑟 = 173 modes are needed. The small size of the training set (200 snapshots)
limits the maximum reduced dimension of a parametric QB OpInf reduced model (6) to 𝑟 = 12, because this sets the
maximum number of operator coefficients that can be inferred via the OpInf regression problem (7). This reduced
dimension retains 43.99% of the total energy.
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Fig. 2 First injector design with 200 training snapshots: normalized singular values (left) and POD retained
energy (right).

In our numerical experiments, we consider parametric QB OpInf reduced models (6) with reduced dimension
𝑟 = 12. Moreover, since the available training data is small in size, we additionally consider a linear parametric ROM by
neglecting the quadratic and quadratic-bilinear terms in (6), which amounts to a DMD ROM [21, 22]. Such an approach
is motivated by Koopman operator theory (see, e.g., [27, 28]). The maximum reduced dimension for the DMD ROM
is 𝑟 = 98, which we also employ in our experiments. This retains 77.30% of the total energy. In the following, we
ascertain the prediction capabilities of both parametric DMD and QB OpInf ROMs for pressure, temperature, and fuel
and oxidizer mass fractions. More specifically, the ROM solutions are used to extract the respective one-dimensional
radial profiles at three representative locations close to the mid-channel, which will be compared with the corresponding
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profiles from the high-fidelity simulation. Axially, the first location is close to the injectors, the second location
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Fig. 3 First injector design: ROM approximate solutions of one-dimensional circumferential pressure profiles
for μ1 = 1.41. The columns plot the results at three locations close to the mid-channel. The rows plot the results
at three time instants within the first period.
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Fig. 4 First injector design: ROM approximate solutions of one-dimensional circumferential pressure profiles
for μ2 = 1.73. The columns plot the results at three locations close to the mid-channel. The rows plot the results
at three time instants within the first period.

is further way from the injectors but still within the detonation region, and the third location is downstream of the
detonation zone.
We begin with the ROM approximate solutions for the two parameter instances used for training, μ1 = 1.41 and

μ2 = 1.73. Figures 3 and 4 plot the respective one-dimensional pressure profiles. In both figures, the pressure profiles at
the first location are plotted in the first column, the profiles at the second location in the second column, and the pressure
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Fig. 5 First injector design: ROM approximate solutions of one-dimensional circumferential temperature
profiles for μ1 = 1.41. The columns plot the results at three locations close to the mid-channel. The rows plot the
results at three time instants within the first period.
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Fig. 6 First injector design: ROM approximate solutions of one-dimensional circumferential temperature
profiles for μ2 = 1.73. The columns plot the results at three locations close to the mid-channel. The rows plot the
results at three time instants within the first period.

profiles corresponding to the third location are visualized in the third column. The rows in Figure 3 plot the results at
three time instants within the first wave period for μ1: 𝑡 = 3.7525 ms in the first row (first time instant), 𝑡 = 3.8148 ms
(25th time instant) in the second row, and 𝑡 = 3.8823 ms (52nd time instant) in the third row. Both ROMs accurately
approximate the frequency of the pressure waves at all three locations. However, the DMD ROM approximates the
amplitudes more accurately than the QB OpInf ROM. The rows in Figure 4 plot the results at three time instants within
the first wave period for μ2: 𝑡 = 1.8425 ms in the first row (first time instant), 𝑡 = 1.9200 ms (31st time instant) in the
second row, and 𝑡 = 1.9975 ms (62nd time instant) in the third row. Recall that the dynamics corresponding to this
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Fig. 7 First injector design: ROM approximate solutions of one-dimensional circumferential fuel (left column)
and oxidizer (right column) mass fraction profiles close to the injectors, at mid-channel, for μ1 = 1.41. The rows
plot the results at three time instants within the first period.
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Fig. 8 First injector design: ROM approximate solutions of one-dimensional circumferential fuel (left column)
and oxidizer (right column) mass fraction profiles close to the injectors, at mid-channel, for μ2 = 1.73. The rows
plot the results at three time instants within the first period.

parameter instance are the most complex, being characterized by six dominant co-rotating waves and eight secondary
counter-propagating waves (cf. Table 1). Therefore, here we observe a larger discrepancy between the approximate
solutions of the two ROMs: even though the QB OpInf ROM approximates the frequency of the pressure waves fairly
well, it is less accurate than the DMD ROM. The DMD ROM, in contrast, accurately approximates both the frequency
and amplitude of the pressure profiles.
Figures 5 and 6 plot the corresponding one-dimensional temperature profiles. Similarly to what was observed for

pressure, the DMD ROM yields more accurate approximate solutions, especially for the second parameter instance
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μ2, where we can see that the 𝑟 = 12 POD basis vectors — which capture only low-frequencies — are insufficient for
constructing an accurate parametric QB OpInf ROM.
Figures 7 and 8 plot the one-dimensional profiles for fuel (left column) and oxidizer (right column) mass fractions at

the location axially close to the injectors. Since chemical species mass fractions must have values between zero and one,
we additionally plot dashed lines at these values on the 𝑦-axes to visually verify whether the ROMs issue solutions
below or above these thresholds. Besides a few solutions outside of [0, 1] observed for the two mass fractions at the first
time instant in both figures, the two ROMs yield accurate approximate solutions for both fuel and oxidizer.
We now present the ROM predictions for the third parameter instance outside of the training set, μ3 = 1.55. The

results are visualized analogously to those for the two parameter instances used for training. Figure 9 plots the pressure
predictions. The two ROMs accurately predict the frequency of the pressure profiles. The amplitudes, however, are
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Fig. 9 First injector design: ROM predictions of one-dimensional circumferential pressure profiles for μ3 = 1.55
(outside of the training set). The columns plot the results at three locations close to the mid-channel. The rows
plot the results at three time instants within the first period.

matched less accurately: neither ROM captures the peaks in the pressure profiles. Therefore, in contrast to what was
observed for the training parameters, the two ROMs perform very similarly here. To better understand why, let us take a
closer look at the pressure profile at the first time instant, i.e., the first row in Figure 9. The initial condition of the
parametric ROMs stems from projecting the corresponding high-fidelity data onto the linear subspace spanned by the
POD basis, obtained using the other two instances employed for training. The parametric ROMs then evolve this initial
condition according to (6) or its linear (DMD) version, respectively. The reconstructions in the first row in Figure 9 thus
indicate how well the reduced basis can represent the data corresponding to the third parameter. We see that the basis
is not rich enough to accurately approximate the higher frequency components (corresponding to the smaller POD
singular values). Nevertheless, given that the POD basis was constructed using data from only two parameter instances
with heterogeneous dynamics, the ROMs perform quite well. We observe similar results for temperature in Figure 10.
The fuel and oxidizer mass fractions are predicted accurately by both ROMs, as it can be seen in Figure 11.

B. Second injector design: predictions beyond the training horizon
For the second injector design, we have LES data for two parameter instances: μ1 = 1.41 and μ2 = 1.60. The

corresponding flow condition (second column), mass-flow rate (third column), equivalence ratio (fourth column),
number of dominant wave (seventh column), and number of secondary wave (last column) are respectively shown in
Table 2. As for the first injector design, μ1 = 1.41 is used as the nominal value in the Taylor series approximations (3)
and (4). We have 100 down-sampled snapshots for each parameter instance, which correspond to roughly 0.25 ms of
physical time; the average time step between snapshots is Δ𝑡 = 2.5 × 10−3 ms. The corresponding time domain and
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Fig. 10 First injector design: ROM predictions of one-dimensional circumferential temperature profiles for
μ3 = 1.55 (outside of the training set). The columns plot the results at three locations close to the mid-channel.
The rows plot the results at three time instants within the first period.
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Fig. 11 First injector design: ROM predictions of one-dimensional circumferential fuel (left column) and
oxidizer (right column) mass fraction profiles close to the injectors, at mid-channel, for μ3 = 1.55 (outside of the
training set). The rows plot the results at three time instants within the first period.

number of wave periods are shown in the fifth and sixth columns in Table 2. Both parameter instances are characterized
by two dominant co-rotating waves and no secondary waves. Since we have simulation data for only two instances, we
will train ROMs using the first 𝑛𝑡 = 60 snapshots from each parameter instance, which account for roughly one wave
period, and use the ROMs for predictions for the remaining 40 time instants beyond the training horizon. Therefore, the
snapshot matrix Q ∈ R33,633,600×120.
Figure 12 plots the normalized singular values on the left and the POD retained energy corresponding to the centered

and scaled training data set on the right. The singular values decay slowly; to retain 95% of the total energy 𝑟 = 92
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μ
Flow

Condition ¤𝑚 (𝑘𝑔/𝑠) Φ
Time
Interval Periods Dominant

Waves
Secondary
Waves

μ1 = 1.41 nominal 0.267 1.16 [4.9500 ms, 5.1975 ms] 1.97 2 0
μ2 = 1.60 high ¤𝑚 0.349 1.10 [3.1250 ms, 3.3750 ms] 1.79 2 0

Table 2 Second injector design: summary of the two parameter instances used in the numerical experiments.

POD modes are needed. The small size of the training set (120 snapshots) limits the maximum reduced dimension of a
parametric QB OpInf reduced model (6) to 𝑟 = 8, which retains 53.23% of the total energy. As was done for the first
injector design, we consider a DMD ROM here, too. The maximum reduced dimension for DMD is 𝑟 = 58, which we
also employ in our experiments. This retains 82.63% of the total energy.
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Fig. 12 Second injector design with 120 training snapshots: normalized singular values (left) and POD retained
energy (right).

In the following, we ascertain the prediction capabilities beyond the training horizon of both DMD with reduced
dimension 𝑟 = 58 and the QB OpInf ROM with reduced dimension 𝑟 = 8. Figures 13 and 14 depict the one-dimensional
pressure profiles at the same three locations as for the first injector design. At each location, we depict profiles at four
time instants (one per each row). The first row corresponds to the last time instant in the training domain (𝑡 = 5.1000 ms
for μ1 and 𝑡 = 3.2750 ms for μ2). The other three instants are in the prediction regime: the second row plots the first
time instant in the prediction regime (𝑡 = 5.1025 ms for μ1 and 𝑡 = 3.2775 ms for μ2), the third row plots the profiles for
the 80th time instant (20th in the prediction regime, corresponding to 𝑡 = 5.1500 ms for μ1 and 𝑡 = 3.3250 ms for μ2),
and the last row plots the results for the last time instant, i.e., 𝑡 = 5.1975 ms for μ1 and 𝑡 = 3.3750 ms for μ2. For an
easier visualization, the results for the last time instant in the training domain are plotted using dashed lines. On the one
hand, the results for μ1 show that the DMD ROM predicts both the frequency and amplitude of the pressure waves more
accurately that the QB OpInf ROM. Nevertheless, mismatches in the amplitudes can be observed, for example, for the
second time instant in the prediction regime (third row). On the other hand, both ROMs predict both the frequency and
amplitudes more accurately for μ2.
Figures 15 and 16 plot the corresponding one-dimensional temperature profiles. Similarly to what was observed for

pressure, here too both ROMs accurately match the trends of the temperature profiles, with DMD being more accurate
in predicting the rapid temperature oscillations. Overall, given the rich structure of these profiles, the ROMs perform
quite well.
Finally, Figures 17 and 18 depict the fuel and oxidizer mass fraction profiles at the location close to the injectors at

the same four time instants as for pressure and temperature. The QB OpInf ROM matches the trends of the profiles but
the eight POD modes used for training are not sufficient to capture the oscillating amplitudes as well. In contrast, DMD
yields more accurate predictions for both μ1 and μ2.
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Fig. 13 Second injector design: ROM predictions of one-dimensional circumferential pressure profiles for
μ1 = 1.41. The columns plot the results at three locations close to the mid-channel. The rows plot the results
at four time instants: the last time instant in the training horizon (plotted using dashed lines) and three time
instants in the prediction horizon.
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Fig. 14 Second injector design: ROM predictions of one-dimensional circumferential pressure profiles for
μ2 = 1.60. The columns plot the results at three locations close to the mid-channel. The rows plot the results
at four time instants: the last time instant in the training horizon (plotted using dashed lines) and three time
instants in the prediction horizon.
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Fig. 15 Second injector design: ROM predictions of one-dimensional circumferential temperature profiles for
μ1 = 1.41. The columns plot the results at three locations close to the mid-channel. The rows plot the results
at four time instants: the last time instant in the training horizon (plotted using dashed lines) and three time
instants in the prediction horizon.
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Fig. 16 Second injector design: ROM predictions of one-dimensional circumferential temperature profiles for
μ2 = 1.60. The columns plot the results at three locations close to the mid-channel. The rows plot the results
at four time instants: the last time instant in the training horizon (plotted using dashed lines) and three time
instants in the prediction horizon.
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Fig. 17 Second injector design: ROM predictions of one-dimensional circumferential fuel (left column) and
oxidizer (right column) mass fraction profiles close to the injectors, at mid-channel, for μ1 = 1.41. The rows plot
the results at four time instants: the last time instant in the training horizon (plotted using dashed lines) and
three time instants in the prediction horizon.
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Fig. 18 Second injector design: ROM predictions of one-dimensional circumferential fuel (left column) and
oxidizer (right column) mass fraction profiles close to the injectors, at mid-channel, for μ2 = 1.60. The rows plot
the results at four time instants: the last time instant in the training horizon (plotted using dashed lines) and
three time instants in the prediction horizon.
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V. Conclusion
This paper took the first steps towards constructing parametric non-intrusive reduced models from data for large-scale

rotating detonation rocket engine combustion chambers, with the end goal of using these reduced models to accelerate
the design optimization of these devices. To addresses the challenges associated with sparse training data sets containing
down-sampled time instants from the high-fidelity simulation codes, available for only a handful of parameter instances,
we used a discrete operator inference procedure in which the parametric dependence of the reduced operators were
approximated via a Taylor expansion. Our results for two injector designs show that our reduced models are accurate for
both parametric predictions and predictions beyond the training horizon. Overall, given the complexity of the scenarios
under consideration, our parametric reduced models performed well, which shows that operator inference represents a
practically viable approach for constructing from data accurate and predictive parametric reduced models for large-scale,
realistic detonation rocket engine combustion chambers. Should reduced models provide means to decrease the cost of a
computationally complex system such as the rotating detonation engine by optimally utilizing high fidelity simulation
data, this success can have strong implications in a number of allied fields in aerospace propulsion. The requirements
we place on the level of accuracy and the resolution of multiscale features in parametric reduced models still remains to
be determined, following an actual implementation of these methods in a design setting.
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