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This paper presents a new approach for optimization under uncertainty in the presence of probabilis-
tic, interval and mixed uncertainties, avoiding the need to specify probability distributions on uncer-
tain parameters when such information is not readily available. Existing approaches for optimization
under these types of uncertainty mostly rely on treating combinations of statistical moments as sep-
arate objectives, but this can give rise to stochastically dominated designs. Here, horsetail matching
is extended for use with these types of uncertainties to overcome some of the limitations of existing
approaches. The formulation delivers a single, differentiable metric as the objective function for op-
timization. It is demonstrated on algebraic test problems, the design of a wing using a low-fidelity
coupled aero-structural code, and the aerodynamic shape optimization of a wing using computational
fluid dynamics analysis.
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I. Introduction
Optimization techniques are becoming increasingly integrated within the design process of complex aerospace sys-
tems when a computational simulation of the system is available. Traditionally, an optimization minimizes a quantity
of interest of a system (e.g., efficiency, cost, weight) as a function of controllable design variables, subject to some
constraints. However, in practical problems, the computational simulation of the system will be subject to uncontrol-
lable uncertainties from a variety of sources [1,2]. Ignoring the effect of these uncertainties on the quantity of interest
in an optimization can give designs that lie in extreme regions of design space and see degraded performance when
realized [3, 4]. Therefore effective computational methods of handling uncertainties within the optimization process
are needed; this is addressed by the field of optimization under uncertainty (OUU) [1].

Performing optimization under uncertainty requires that the uncertainties be represented mathematically. A typical
approach is to treat uncertain parameters as random variables and to assign them probability distributions. However
often the appropriate probability distribution to assign to the uncertain parameters is unknown, and so instead interval
analysis can be used. Using intervals avoids imposing structure on the uncertainties that is unknown in reality and
that can lead to erroneous levels of uncertainty on the output [5]. In general problems, both probabilistic and interval
uncertainties can be present and so uncertainty quantification for mixed uncertainties has been developed [6–8].

This poses the question of how to use this mixed uncertainty information within an optimization. Existing ap-
proaches for design using optimization under mixed uncertainties are few: most examples to date use a weighted sum
combination of average statistical moments and intervals of statistical moments [9–12]. However, such a formulation
does not necessarily represent the goal of OUU (this is discussed further in Section II:B), and so in this work we
develop an approach to optimization under mixed probabilistic and interval uncertainties that overcomes some of the
limitations of the current state-of-the-art. Our approach builds on horsetail matching, a recent approach for optimiza-
tion under probabilistic uncertainties, by extending the formulation and developing a numerical implementation that
delivers a single, differentiable objective function for optimization under mixed uncertainties.

In Section II, the relevant background in mixed uncertainties and OUU is outlined. In Section III the concept of
horsetail matching for mixed uncertainties is presented, the advantages of the approach compared to existing methods
are discussed, and the numerical implementation is outlined. In Section IV, the effectiveness of the implementation is
demonstrated. In Section V horsetail matching is applied to the low-fidelity aero-structural optimization of a wing and
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is compared to alternative optimization approaches. In Section VI it is applied to the aerodynamic shape optimization
of a transonic wing analyzed using a 3D CFD RANS solver. Finally Section VII concludes the paper and proposes
future work.

II. Background
We denote the quantity of interest that is being optimized as q, and the vector of controllable design variables as x. The
vectors xL and xU are respectively the vectors of upper and lower bounds on x; along with the ng inequality constraints
g j(x) ≤ 0 they define the set X that is the design space: X := {x ∈ Rnx | xl

k < xk < xu
k ∀ k = 1, ..., nx and g j(x) ≤ 0 ∀ j =

1, ..., ng}. Input uncertainties in the problem are represented by a finite number of uncertain parameters which are
given by the vector u ∈ U, such that each entry in u is an uncertain parameter that can be assigned either a probability
distribution or an interval, and U is the set of values the uncertain parameters can take. The uncertain parameters in
u that are treated probabilistically are denoted by θ, and those that are treated with interval analysis by φ; the quantity
of interest q is thus a function of the design variables as well as these uncertain parameters: q = q(x, θ,φ) ∈ Q, where
Q is the set of all feasible values of q.

A. Mixed Uncertainty Quantification

Treating an uncertain parameter as probabilistic requires that one assigns a probability distribution, whereas treating
an uncertain parameter using interval analysis asserts that nothing more is known except that it lies between two val-
ues. One interpretation of this interval analysis is that the uncertain parameter is a random variable whose probability
distribution could be any distribution that is bounded by the interval. When a mix of probabilistic and interval un-
certainties are present in a problem, the result of a mixed uncertainty quantification analysis gives an ensemble of
cumulative distribution functions (CDFs) over the range of the interval uncertain parameters; the envelope gives the
interval at every probability level and the upper and lower bounds on the true CDF [6,7]. This uncertainty information
is illustrated in Figure 1 (where a small subset of infinite possible CDFs are plotted), and is referred to as a “horsetail
plot” (also known as a probability box, or p-box). Note that we use the term horsetail plot to refer to the two curves
that give the upper and lower bounds on the CDF, not the entire ensemble of possible CDFs.
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Figure 1: Example of a horsetail plot - the envelope of possible CDFs giving the two horsetail curves that represent
the upper and lower bounds on the true CDF.
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Other methods of propagating uncertainties beyond just probability and intervals are available, such as the Dempster-
Shafer theory of evidence [13], and possibility theory [14]. These methods also result in a horsetail plot, in that they
give upper and lower bounds on the true CDF of the quantity of interest. A horsetail plot is thus a rather general form
of the output of an uncertainty analysis. A probabilistic analysis yields a special case of a horsetail plot where the
upper and lower bounds on the CDF coincide. A purely interval based analysis yields another special case where the
bounds are step functions.

The following definition of a horsetail plot is used in this paper (where the functions Fu and Fl are referred to as
the horsetail curves):

Definition II.1. A horsetail plot consists of two non-decreasing functions Fu : Q → [0, 1] and Fl : Q → [0, 1] that
represent the upper and lower bounds on the CDF respectively, where Q is the set of all possible values of the quantity
of interest q.

B. Existing Approaches for Optimization Under Uncertainty

Handling uncertainties in optimization is not a challenge unique to engineering design, and has been considered exten-
sively in other contexts. Often, such as in the field of operations research, “robust optimization” refers to optimizing
under uncertain parameters that are contained in an uncertainty set, such that constraint satisfaction is guaranteed and
the worst case of q is optimized [15, 16]. Using this formulation, known as the “robust counterpart”, it is possible to
preserve structure of the original problem, such as convexity. Alternatively “stochastic programming” refers to opti-
mization under probabilistic uncertainties [17], where formulations that preserve structure of the problem have also
been developed, such as by formulating the OUU problem using coherent risk measures [18].

Engineering design considers a broad range of problems that often lack the mathematical structure exploited in
operations research (e.g., engineering design problems are typically non-convex, and in many cases the underlying
analysis codes may be black box). Therefore, the development of OUU methods for engineering design has tended
to focus on general-purpose optimization strategies that do not rely on specific problem structure [1]. Much of the
previous work into OUU in aerospace design applications has considered exclusively probabilistic uncertainties where
commonly the first two statistical moments of q (namely mean and variance) are considered in an optimization. These
moments can be optimized separately in a multi-objective formulation [19, 20], or can be combined into a single
objective using a weighted sum approach [21–24]. Various other methods for OUU have also been developed [1].
A notable alternative to statistical moment based methods is the “robust regularization” approach [1, 25], which is
a minimax strategy optimizing the worst case performance over the uncertainty space, and so is comparable to the
“robust counterpart” formulation of Ref. 16.

Most examples of design using optimization under mixed uncertainties to date use a weighted sum combination of
average statistical moments and intervals of statistical moments [9–12]. For example, a common choice is

fob j = w1µ̄ + w2σ̄ + w3δµ (1)

where fob j is the objective function to be minimized, µ̄ is the midpoint of the interval of the means of possible CDFs, σ̄
is the midpoint of the interval of standard deviations, δµ is the range of the interval of possible means, and w1,w2,w3
are weights specified by the designer. Another suggested approach for robust design under mixed uncertainties is to
minimize the interval of the 50% quantile [7].

Both in the probabilistic case and the mixed case, relying on statistical moments in the formulation of an optimiza-
tion under uncertainty can give rise to stochastically dominated designs. Stochastic dominance indicates that for any
given value of the quantity of interest q, a dominated design is less likely to obtain this value or better than another
design [26]; this is a concept the authors argue is often overlooked in the engineering OUU literature. Stochastic
dominance under probabilistic uncertainties is illustrated in Figure 2, and we use Definition II.2; it essentially means
that the CDFs for the designs do not cross at any point.

Definition II.2. A design xA stochastically dominates a design xB (or design xB is stochastically dominated by design
xA) under probabilistic uncertainties if

∀q ∈ Q, F(q)xA > F(q)xB

or equivalently
∀h ∈ [0, 1], F−1(h)xA < F−1(h)xB

where F(q)x : Q → [0, 1] and F−1(h)x : [0, 1]→ Q are respectively the CDF and inverse CDF for design x.
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The concept of stochastic dominance extends straightforwardly to mixed uncertainties, by defining it as when
each horsetail curve for a design stochastically dominates the corresponding curve for another design according to
Definition II.2. This is illustrated in Figure 2 and defined in Definition II.3:

Definition II.3. A design xA stochastically dominates a design xB (or design xB is stochastically dominated by design
xA) under mixed uncertainties if

∀q ∈ Q, Fu(q)xA > Fu(q)xB AND Fl(q)xA > Fl(q)xB

or equivalently:
∀h ∈ [0, 1], F−1

u (h)xA < F−1
u (h)xB AND F−1

l (h)xA < F−1
l (h)xB

where Fu and Fl : Q → [0, 1] are respectively the upper and lower bound of the CDF, and F−1
u and F−1

l : [0, 1] → Q
are respectively the corresponding inverses.

Stochastic dominance under mixed uncertainties means that for any value of q, the bounds on the probability that
a dominating design will achieve this performance or better are strictly higher than the dominated design.
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Figure 2: Stochastic dominance under probabilistic and mixed uncertainties. In both cases design xA is stochastically
dominated by design xB, according to definitions II.2 and II.3.

Our design under uncertainty philosophy is built on the goal of maximizing the likelihood of achieving as good
performance as possible. A stochastically dominated design is less likely to achieve a given value of q or better than
another design, and thus the dominated design is considered objectively worse than the dominating design under this
design philosophy. Treating combinations of statistical moments such as µ̄, σ̄, and δµ as separate objectives in an
optimization does not consider the possibility of obtaining stochastically dominated designs. Therefore, for some
design problems, many of the designs on a Pareto front trading off µ̄, σ̄, and δµ will be stochastically dominated
by other designs and computational effort has been wasted obtaining them. Similarly if a weighted sum of these
objectives is being optimized, some combinations of weightings will give rise to stochastically dominated designs.
Since it is difficult to know a priori where on the Pareto front a given set of weightings will end up, this is a limitation
of optimizing under mixed uncertainties using combinations of statistical moments. These arguments motivate the
development of an alternative approach for optimization under mixed uncertainties.

III. Horsetail Matching
This section defines the difference metric underlying horsetail matching for mixed uncertainties, discusses its flexi-
bility and describes its implementation. A python package that implements horsetail matching is freely available at
http://www-edc.eng.cam.ac.uk/aerotools/horsetailmatching.

A. The Difference Metric

The concept of horsetail matching is to minimize the difference between the horsetail plot of the current design and a
target, as illustrated in Figure 3. This extends the probabilistic case in [27] where the difference between a CDF and a
target was minimized.
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Figure 3: The horsetail matching concept: minimizing the difference between the horsetail plot of the quantity of
interest q for the current design and a target. Adapted from [27].

The measure of this difference is given by the following horsetail matching metric:

dhm(x) =
( ∫ 1

0

(
F−1

u (h) − tu(h)
)2 dh +

∫ 1

0

(
F−1

l (h) − tl(h)
)2 dh

)1/2
(2)

where F−1
u (h) is the inverse of the upper bound of the CDF, F−1

l (h) the inverse of the lower bound (which both exist
because by definition the bounds are non-decreasing), and tu(h) and tl(h) are respectively the targets for the upper and
lower bound horsetail curves. Note that these targets do not necessarily have to consist of the inverse of valid CDFs;
they can be any pair of functions of h. The metric dhm is the L2 norm of the difference between the horsetail curves
and their targets integrated over h. In our horsetail matching formulation, the overall OUU problem becomes finding
x∗, such that:

x∗ = argmin
x∈X

dhm(x; tu, tl) (3)

where the design given by x∗ corresponds to the optimal design under uncertainty — its behavior under uncertainty
is as close as possible to that specified in the target. Although this formulation might appear to be restrictive since
it requires the designer to specify a target, we show in the next section that it is fact flexible enough to recover more
traditional robust optimization formulations.

Special Cases

Under exclusively probabilistic uncertainties, the metric reduces to:

dhm(x) =
(

2
∫ 1

0

(
F−1

cd f (h) − tcd f (h)
)2 dh

)1/2
(4)

where F−1
cd f (h) is the inverse of the CDF and tcd f (h) is its target; this case was explored in detail in [27]. Under

exclusively interval uncertainties, the metric reduces to:

dhm(x) =
((

qmin − tu
)2

+
(

qmax − tl
)2

)1/2
(5)

where qmin and qmax are the minimum and maximum values of q over all possible values of the uncertain parameters,
and tu and tl are their respective target values.

B. Flexibility of the Metric

The flexibility of the horsetail matching formulation is a result of the metric in Eq. 2 integrating the L2 norm over h,
since it allows arbitrary functions of h to be used as targets and does not require any overlap of the target with the
set of feasible values of q, Q. Other possible metrics that integrate the difference between the CDFs as functions of q
(e.g., the Cramer-Von Mises test [28]) would restrict the targets to being inverses of feasible CDFs.

With horsetail matching it is straightforward to provide a target that captures the robust design philosophy of
maximizing the likelihood of achieving as good performance as possible. This is achieved by setting both tu(h) and
tl(h) to be the same constant value of q = qideal beyond what is attainable. This is the target illustrated in Figure 3, and
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is referred to as the “standard target” for horsetail matching. More concretely, a standard target is one that is equal
to a constant qideal such that qideal ≤ inf(Q) (where inf(Q) is the infimum of Q: the greatest value that is smaller than
any value in Q); if Q is known then qideal = inf(Q) should be used. In many engineering design scenarios this is trivial
to identify: zero weight, 100% efficiency, zero cost, zero drag, etc.. Under a standard target, the minimizer of dhm

from Eq. 2 will not be stochastically dominated by any other feasible design according to definition II.3, a property we
argue is an improvement upon relying on combinations of statistical moments such as in Eq. 1. Also, since the metric
is the L2 norm, it penalizes sections of a CDF further from the target more than it rewards sections closer to the target,
giving the metric an intrinsic preference for robustness when a standard target is used.

Additionally, by modifying the shape of a standard target, a target can be set to emphasize the worst values on
the horsetail plot and give a risk averse optimization [17] (illustrated in Figure 4), or emphasize the best values and
give a risk seeking optimization (illustrated in Figure 5). The risk averse target can be taken to the extreme such that
tl(h) → −∞ and only the worst case value is optimized, reducing the formulation back to the “robust regularization”
approach [1, 25].
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Figure 4: Risk-averse targets (dotted) along with typical horsetail plots (solid) under probabilistic (left), mixed (center),
and interval (right) uncertainties. Adapted from [27].
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Figure 5: Risk-seeking targets (dotted) along with typical horsetail plots (solid) under probabilistic (left), mixed
(center), and interval (right) uncertainties. Adapted from [27].

Alternatively, upper and lower bounds on feasible distributions can be set as the target, or single feasible values, if
a designer cares more about the behavior of q around specific values.

C. Numerical Implementation

In order to evaluate dhm in Eq. 2, we need to evaluate integrals that can be expressed in the following:

D =

∫ 1

0

(
F−1(h) − t(h)

)2 dh =

∫ ∞

−∞

(
q − t(F(q))

)2 F′(q) dq , (6)
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where F(q) is either the upper or lower bound on the CDF (one of the two horsetail curves), F′(q) is its derivative
with respect to q, F−1(h) is its inverse, and t(h) is its target. In [27], a method of evaluating this integral when F(q) is
a single CDF is proposed by making use of kernels to give a differentiable metric, building on the density matching
approach in [29]. Here it is extended to mixed uncertainties — when F(q) is a bound on the CDF — by making use of
differentiable approximations to the minimum and maximum functions.

Recall that we are interested in a quantity of interest, q, that is a function of probabilistic uncertain parameters, θ,
and interval uncertain parameters, φ. Prior to a horsetail matching optimization, N fixed points qi are specified by the
user for the numerical integration which should cover the range of values of q of interest. Additionally, Mθ samples θ j

are drawn from the distribution of θ, and Mφ samples φm are drawn from the hyper-rectangle defined by the intervals of
φ. The fixed integration points {qi : i = 1, ...,N}, the samples {θ j : j = 1, ...,Mθ}, and the samples {φm : m = 1, ...,Mφ}

are used for every design point x throughout the optimization.
A numerical approximation, D̂, to D is computed via three key steps. First, an expression for the CDF of q due to

the probabilistic uncertain parameters and its gradient with respect to the design variables are obtained at each value of
φm (a single CDF of the ensemble illustrated in Figure 1), resulting in Mφ CDFs. Second, an expression for the bounds
on the CDFs (the horsetail curves) and the gradients of these bounds are found at the N fixed integration points given
by qi. Finally the difference between these N values of the horsetail curve, hi, and the values of the corresponding
target at each hi, ti, are integrated using the trapezium rule to obtain D̂. This overall process is outlined in Figure 6
(for the value D̂ itself - an equivalent process is used for each component of the gradient), and the algorithms used to
achieve these three steps are detailed in Algorithms 1, 2, and 3 below.

D

ϕ1 ϕMϕ

t i

(q i - t i)

Algorithm 2 - Evaluating a horestail
curve, h, at integration point qi. 

Algorithm 3 - Trapezium rule 
integration using values of qi and hi

h i

q i

q

hh

q i

h i

q

q1

Algorithm 1 - Finding a single CDF,
 f, with ϕ fixed, using kernels.

f

q

qN

θ1 θMθ
...

f1, ..., fMϕ

f1 h1

hN

...

... ...

fMϕ

...Kernels centered
on q(x, θj, ϕm)    

Figure 6: Outline of the numerical implementation of obtaining a numerical approximation, D̂, to D in Equation 6 at
design x, which consists of three key steps that are achieved by Algorithms 1, 2 and 3.

In Algorithm 1, a single CDF at a fixed value of the interval uncertainty φ is evaluated. Here, K and Φ are kernel
functions. We use a Gaussian kernel such that Φ is the error function for a Gaussian and K is its derivative (note that
K itself would be used as the kernel function itself in a Kernel density estimation of the PDF [30]):

K(r) =
dΦ(r)

dr
=

1
√

2πb2
exp

(
−

r2

2b2

)
Φ(r) =

1
2

(
1 + erf

( r
√

2b2

))
(7)

where r ∈ Q is just the argument of the kernel functions, and b is the bandwidth parameter of the kernel functions,
which is fixed throughout the optimization.

In Algorithm 2, values of the horsetail curve at the integration points {qi : i = 1, ...,N} are evaluated. Here, S α

gives a differentiable approximation to the maximum or minimum of the Mφ values fm. It is a function that uses
exponentials to heavily weight the most extreme values of fm in a normalized sum of all the values. The sign of the
fixed parameter α controls which extremum it approximates and the magnitude of α controls the approximation. As
α→ ∞, S α → max({ fm : m = 1, . . . ,Mφ}) and as α→ −∞, S α → min({ fm : m = 1, . . . ,Mφ}).

7 of 21

American Institute of Aeronautics and Astronautics



Algorithm 1 Evaluating a single CDF, f , and its gradient at q with φ fixed

1: for j = 1, . . . ,Mθ do
2: q j ← quantity of interest q(x, θ j,φ) from simulation or surrogate model.
3: for k = 1, . . . , nx do
4:

∂q j

∂xk
← gradient of quantity of interest q(x, θ j,φ) from simulation or surrogate model.

5: f ← 1
Mθ

∑Mθ

j=1 Φ(q − q j)
6: for k = 1, . . . , nx do
7:

∂ f
∂xk
← 1

Mθ

∑Mθ

j=1 K(q − q j) (−1) ∂q j

∂xk

8: return f , [ ∂ f
∂x1
, ∂ f
∂xk
, . . . , ∂ f

∂xnx
]

Algorithm 2 Evaluating a horsetail curve, h, and its gradient at q

1: for m = 1, . . . ,Mφ do
2: fm ← value of CDF at q with φ = φm from Algorithm 1.
3: for k = 1, . . . , nx do
4:

∂ fm
∂xk
← gradient of CDF at q with φ = φm from Algorithm 1.

5: h← S α =
( ∑Mφ

m=1 fmeα fm
)
/
( ∑Mφ

m=1 eα fm
)

6: for k = 1, . . . , nx do

7: ∂h
∂xk
←

∑Mφ

m=1
∂S α

∂ fm
∂ fm
∂xk

=
∑Mφ

m=1

( eα fm∑Mφ

n=1 eα fn

[
1 + α

(
fm − S α

)] ∂ fm
∂xk

)
8: return h, [ ∂h

∂x1
, ∂h
∂xk
, . . . , ∂h

∂xnx
]

In Algorithm 3, quadrature is employed to find an approximation, D̂, of the integral D, as a weighted sum of
(F−1(h) − t(h))2 at N values of h:

D ' D̂ =

N∑
i=1

(
F−1(hi) − t(hi)

)2wi (8)

where hi are the quadrature points and wi are the quadrature weights. This is a trapezium rule integration of the integral
in Equation 6. It can be considered either as an integration of the first form in Equation 6 where the quadrature points
hi depend on the function F(q), or as an integration of the second form in Equation 6 where the quadrature points qi

are fixed. Note that zeros(N) initializes an array of size N with zeros, and zeros(N,N) an N × N matrix.
The overall process outlined in Figure 6 consisting of these three algorithms is applied to the upper bound on the

CDFs giving D̂u '
∫ 1

0

(
F−1

u (h) − tu(h)
)2 dh and its gradient, as well as the lower bound giving D̂l '

∫ 1
0

(
F−1

l (h) −
tl(h)

)2 dh and its gradient. Then finally the numerical approximation to the horsetail matching metric and its gradient
are evaluated by d̂hm = (D̂u + D̂l)

1/2 and ∂d̂hm
∂xk

= 0.5 ( ∂D̂u
∂xk

+ ∂D̂l
∂xk

) (D̂u + D̂l)−
1/2.

Under purely probabilistic uncertainties, since h(q) is the CDF of q(xd, θ) and so D̂1 = D̂2, Algorithm 2 is skipped
and the numerical integration in Algorithm 3 is applied directly to the CDF found using Algorithm 1; this is the method
used for probabilistic horsetail matching [27]. Under purely interval uncertainties, the horsetail curves become step
functions and so kernels are not used to propagate the CDFs and a numerical integration is not performed; instead S α

in Algorithm 2 is used directly to obtain qmax (using a large positive value of α) and qmin (using a large negative value
of α) and their gradients from Mφ sampled values of q j = q(xd,φ j).

Being able to obtain the metric in a differentiable form means that solving a horsetail matching optimization
problem using a gradient-based algorithm only requires the ability to obtain values of q and ∂q

∂xk
at given values of x, θ

and φ. If the values of q and ∂q
∂xk

are readily available, horsetail matching can be implemented as a wrapper treating the

available code as a black box. Additionally, in many design problems, ∂q
∂xk

can be obtained efficiently (e.g., via adjoints
in CFD codes [31]), and so being able to propagate this information through to the gradient of dhm is important for
keeping the computational cost of the OUU problem low.

The use of Kernels requires the selection of a fixed bandwidth, b, prior to a horsetail matching optimization. This
can be done, for example, by using Scott’s rule [30] at the initial design, but it is worth noting that a poor choice of
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Algorithm 3 Evaluating D̂ and its gradient

1: q← zeros(N)
2: t ← zeros(N)
3: W ← zeros(N,N)
4: for i = 1, . . . ,N do
5: qi ← fixed integration point qi

6: hi ← horsetail curve at qi from Algorithm 2
7: ti ← t(hi) value of t at hi from the specified target
8: i1 ← min(i + 1, N)
9: i2 ← max(i − 1, 1)

10: Wi,i ← 0.5( hi1 − hi2 )

11: D̂← (q − t)T W(q − t)
12: for k = 1, . . . , nx do
13: ∂t

∂xk
← zeros(N)

14: ∂W
∂xk
← zeros(N,N)

15: for i = 1, . . . ,N do
16: ∂hi

∂xk
← gradient of the horsetail curve at qi from Algorithm 2

17: t′ ← derivative of t with respect to the argument, ∂t(h)
∂h , at hi from the specified target

18:
( ∂t
∂xk

)
i ← t′ ∂hi

∂xk

19: i1 ← min(i + 1, N)
20: i2 ← max(i − 1, 1)
21: ( ∂W

∂xk
)i,i ← 0.5(

∂hi1
∂xk
−

∂hi2
∂xk

)

22: ∂D̂
∂xk
← 2(q − t)T W(− ∂t

∂xk
) + (q − t)T ∂W

∂xk
(q − t)

23: return D̂, [ ∂D̂
∂x1
, ∂D̂
∂xk
, . . . , ∂D̂

∂xnx
]

bandwidth can lead to a highly non-smooth gradient (if b is too small) or can give smooth but erroneous values of dhm

and its gradient (if b is too large).

Surrogate Modeling for Computational Efficiency

A high number of samples (both of φ and θ) are required to accurately propagate this metric and the gradient within
an optimization, which may be infeasible to do via direct sampling if an expensive simulation is used to find q and
∂q
∂xk

. Therefore surrogate models can first be fitted to q as well as to ∂q
∂xk
, k = 1, . . . , nx as a function of θ and φ for

each design xd. Surrogate models have been shown to be useful for propagating uncertainties in various applications
of design under uncertainty [19, 32–34]; in particular propagating mixed uncertainties by sampling surrogate models
has been demonstrated to be effective [7, 10]. These surrogate models can then be sampled as many times as required
at small computational cost (assuming the computational expense of the simulation vastly outweighs evaluating the
surrogate model). This also means that it is no more expensive to propagate dhm under mixed uncertainties than
probabilistic or interval uncertainties since fitting a surrogate model for q as a function of the uncertain parameters is
the same cost regardless of how it is sampled afterwards.

IV. Experiments on an Algebraic Test Problem
In order to assess the effectiveness of the numerical implementation of the approach, here horsetail matching under
mixed uncertainties is tested on an algebraic test problem. The test problem in Eq. 9 is used (an algebraic problem
allows many optimizations to be run at low computational cost), where q is a function of two design variables x1 and
x2 that are each bounded by [−5, 5], one probabilistic uncertain parameter, θ, which is uniformly distributed over the
range [−1, 1], and one interval uncertain parameter, φ, which is contained in the interval [−1, 1].

9 of 21

American Institute of Aeronautics and Astronautics



y = x1/2
z = x2/2 + 12

q = 0.25((y2 + z2)/40 + 5yθφ − zφ2) + 0.2(zφ3) + 10

(9)

Figure 7 shows horsetail plots for this test problem at the design point x = (4, 2). The method in Section III:C is
used to propagate the CDF from Mθ = 100 samples of θ for each value of φ (plotted in grey) and then find the envelope
of the Mφ = 30 CDFs at N = 1000 integration points qi evenly spaced between q = −5 and q = 30. To determine an
appropriate value of α to use in S α, Algorithm 2 is performed using different values of α.
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Figure 7: Propagated horsetail plots of the test problem using α = 100 and α = 10.

It can be seen that the method for α = 100 obtains the envelope of the CDFs to visible accuracy, whereas α = 10
gives a poor approximation to the envelope. Therefore α = 100 is used for the horsetail matching optimizations in
this section. Furthermore, for this test problem, the mixed case for α = 0 is equivalent to the purely probabilistic case
where φ is uniformly distributed, since the samples of φ are drawn uniformly from the interval [−1, 1]. These two
cases are compared in Figure 8.

Optimization Tests

A gradient-based optimizer (SLSQP, implemented using the NLopt toolbox [35]) is run on the test problem from 50
random starting points in design space, where the standard target at q = 0 is used. The propagated gradient is found
from the sensitivity of q to design variables, ∂q

∂xk
, which is obtained from the analytic derivative of Eq. 9 at the sample

points. Convergence histories are plotted in Figure 9. The difference between the horsetail matching (HM) metric and
the best value obtained from all 50 optimizations is plotted, where a difference of 10−3 is considered converged. It
can be observed that the optimizer solves the horsetail matching problem from all 50 starting points, indicating the
effectiveness of the numerical implementation outlined in Section III:C.

V. Application to Aero-Structural Design Problem
In this section, horsetail matching is applied to a physical aero-structural design test problem subject to mixed un-
certainties. The design problem involves determining the geometry of a wing in order to minimize the fuel burn for
a given mission subject to lift and failure constraints. It uses a low fidelity coupled aero-structural analysis codea

that utilizes a vortex lattice method aerodynamics model expanded from a modern lifting line theory, and a linear 6-
DOF-per-element spatial beam structural model. The code is built on the OpenMDAO architecture [36] to efficiently
analyze the coupled simulation and its gradient. An illustration of a wing analyzed using this code is given in Figure
10 (note that it is just a single wing that is analyzed).

For the design problem considered here, the wing mesh is built from a total of 11 evenly spaced spanwise points
and 4 chordwise points. The wing design is parametrized by controlling the span, taper ratio, sweep, and angle attack

ahttps://github.com/hwangjt/OpenAeroStruct
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Figure 8: Propagated horsetail plot of the test problem using α = 0 and propagated probabilistic CDF
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Figure 9: Horsetail matching optimization convergence histories under mixed uncertainties using the propagated gra-
dient on the algebraic test problem.

Figure 10: Illustration of the OpenAeroStruct flying wing modela.

of the wing, along with the thickness and twist at three spanwise control points for half of the span (the wing is
symmetric), giving a total of nx = 10 design variables. The overall design space, X, for this problem is given in Table
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1.

Notation Design Variable Lower Bound (xL
k ) Upper Bound (xU

k ) Units
x1 Span 40 70 m
x2 Taper Ratio 0 0.9 -
x3 Sweep 10 40 deg
x4 Nominal Angle of Attack 0 20 deg
x5 Twist at Loc. 1 −5 20 deg
x6 Twist at Loc. 2 −5 20 deg
x7 Twist at Loc. 3 −5 20 deg
x8 Thickness at Loc. 1 0.1 0.3 m
x9 Thickness at Loc. 2 0.1 0.3 m
x10 Thickness at Loc. 3 0.1 0.3 m

Table 1: Design space for the flying wing design problem.

We consider two probabilistic uncertain parameters, θ1 and θ2, and one interval uncertain parameter, φ. The
probabilistic uncertain parameters represent uncertainty in the operating conditions of the flying wing: the Mach
number is uniformly distributed from 0.65 to 0.75, and the actual angle of attack is distributed uniformly over a 4
degree range centered on the nominal angle of attack which is denoted by γnom and given by design variable x4. The
interval uncertain parameter represents uncertainty in the material properties: the failure stress is in the interval [15, 25]
MPa. The different representations for the uncertain parameters are chosen to illustrate how our formulation handles
mixed uncertainties, these representations are detailed in Table 2.

Notation Uncertain Parameter Type Range Units
θ1 Mach Number Uniform Distribution [0.65, 0.75] m
θ2 Actual Angle of Attack Uniform Distribution [γnom − 2, γnom + 2] deg
φ Failure Stress Interval [15, 25] MPa

Table 2: Uncertain parameters for the flying wing design problem.

The objective is to minimize the fuel burn for a given mission subject to the lift constraint given by equation 10 and
the failure constraint given by equation 11 being satisfied. The lift constraint ensures the lift generated by the wing is
sufficient to balance the weight:

g1 :=
W0 + Wstructural + W f uel − L

W0
≤ 0, (10)

where W0 is the baseline weight of the wing, Wstructural is the structural weight of the wing, W f uel is the weight of fuel
burnt over the range, and L is the lift. The failure constraint is a Kreisselmeier-Steinhauser (KS) combination of the
von Mises stresses in each element to obtain a single non-linear constraint function [37]:

fmax = max
(σvm,i

σ f ail

)
,

g2 := fmax +
1
ρ

log
∑

i

ρ(
σvm,i

σ f ail
− 1 − fmax) ≤ 0,

(11)

where ρ is the KS tolerance parameter (set to 10), σvm,i is the von Mises stress for each element, and σ f ail is the failure
stress of the material (set to 20 GPa).

These constraints are taken into account in the optimizations using squared penalty functions so that, denoting the
fuel burn as m f uel (in units of kg × 106), the total quantity of interest for this design problem becomes:

q(x, θ1, θ2, φ) = m f uel + 3
(
max(g1, 0)

)2
+ 3

(
max(g2, 0)

)2 (12)

The remaining parameters used to set up the OpenAeroStruct analysis are given in Table 3.
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OpenAeroStruct Notation Parameter Value Units
Alt Altitude 30000 feet
E Elastic Modulus 200 × 109 Pa
G Shear Modulus 30 × 109 Pa

mrho Material Density 3 × 103 kg/m3

W0 Base Weight 1.00 × 105 kg
CL0 Base Lift Coefficient 0.25 -
CD0 Base Drag Coefficient 0.015 -
SFC Specific Fuel Consumption 17 × 106 1/s
chord Chord at Wing Root 12 m

R Range 10 × 106 m

Table 3: Parameters used in the OpenAeroStruct analysis of the flying wing.

Optimization Results

We compare designs resulting from different types of optimizations on the design problem to compare horsetail match-
ing to alternative approaches. For all these optimizations, the gradient-based SLSQP algorithm is used, implemented
with NLopt [35], and is run for 20 iterations (representing a fixed computational budget) after which the best design is
taken as the optimum. First we run a deterministic optimization with the uncertain parameters at their nominal values,
and then we run horsetail matching using a standard target, a risk averse target, and a single feasible value target. The
optimizations are all run from an initial design given by each design variable xk taking the value at the midpoint of its
bounds.

The differences between the designs are small enough that plotting the wing mesh in each case is not illustrative,
instead we give the horsetail plots for each design in Figure 11, and the values of the design variables for the optimum
design in each case are given in Table 4.

The deterministic optimization minimizes the nominal value of the quantity of interest (with θ1 = θ2 = φ = 0):

minimize
x

q(x, θ1 = 0, θ2 = 0, φ = 0) (13)

s.t. xL
k < xk < xU

k k = 1, . . . , 10

The horsetail matching optimizations minimize the horsetail matching metric dhm from Equation 2, where the value
and the gradient are evaluated using the approach outline in Section III:C, given the specified target functions tu(h) and
tl(h):

minimize
x

dhm(q(x, θ1, θ2, φ); tu, tl) (14)

s.t. xL
k < xk < xU

k k = 1, . . . , 10.

For this design problem, a three dimensional, third order polynomial surrogate is fitted to the quantity of interest,
q, and each component of its gradient, ∂q

∂xk
, as a function of the uncertain parameters, θ1, θ2 and φ, at each design point.

This corresponds to 43 = 64 calls of the OpenAeroStruct analysis code at each iteration, giving a total computational
budget of 64 × 20 = 1280 calls for each horsetail matching optimization. We again use α = 100.

The targets for the horsetail matching optimizations are assigned as follows: a standard target is used by setting
tl(h) = tu(h) = 0 (as we know q can never reach zero). The risk averse target is obtained by skewing the top of the
target for the lower bound of the CDF (the right-most horsetail curve) to a value of -10 from the base standard target
at q = 0, the target at a specific value of q = 1.3 is used to minimize variation around this value.

We can see on Figure 11 that since the deterministic optimization did not take into account the uncertainties, the
bounds on the CDF both have tails at large values of the quantity of interest (which represents fuel burn plus penalties
for constraint violation), indicating a high likelihood that this design will give degraded performance in reality. In
contrast, the horsetail plot for the horsetail matching optimum design under the standard target gives bounds on the
CDFs whose tails do not reach as large values of q, indicating improved robustness under mixed uncertainties, whilst
only taking a small penalty to the best possible value.

We can also see that the risk averse design is similar to the standard horsetail matching optimum design, but it has
a slightly better worse-case performance (the highest value of q reached by the lower bound on the CDF). Finally, the
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(c) HM risk averse target
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Figure 11: Horsetail plots for the optimum designs

optimum under a single value target gives a horsetail plot that is close to the target value, and we can see from Table 1
that this design is noticeably different to the other designs.

These cases clearly demonstrate the flexibility of the horsetail matching formulation, as designs with horsetail
plots with different properties, representing optimization under different design scenarios, were obtained simply by
changing the target used in the optimization.

Comparsion to the Weighted Sum Approach

Finally we compare horsetail matching to the method commonly suggested in the literature for optimization under
mixed uncertainties: using a weighted sum of midpoints and ranges of intervals of statistical moments of the possible
CDFs that the horsetail plot bounds [9–12]. The interval of means of possible CDFs is given by [µmin, µmax], and the
interval of standard deviations is given by [σmin, σmax] The following weighted sum of three objectives is optimized:

fob j = w1µ̄ + w2σ̄ + w3δµ (15)

where µ̄ is the average of µmin and µmax, σ̄ is the average of σmin and σmax, and δµ is the difference between µmin and
µmax. To propagate these three objectives, the method outlined in Ref. 10 is used, where polynomial chaos expansions
of q as a function of the uncertain parameters are used to find expressions for µ and σ as functions of the interval
uncertain parameters φ, which are then optimized over φ to obtain µmin, µmax, σmin, and σmax for use in Eq. 15. Since
this method uses a surrogate model at each design point, each optimization iteration has the same computational cost
as the horsetail matching implementation; third order polynomials in each dimension are used in both cases.

The weights are selected using the method suggested in Refs. 12 and 10: by looking at the relative magnitudes
of the three objectives at the deterministic optimum design and selecting weights so that they all have the same
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contribution to fob j for this design. For this design problem, at the deterministic optimum the three objectives are
µ̄ = 1.00, σ̄ = 0.392, and δµ = 0.0745, so the weights are selected as w1 = 1.00, w2 = 2.55, and w3 = 13.43. Thus the
following problem is optimized:

minimize
x

µ̄ + 2.56 σ̄ + 13.43 δµ (16)

s.t. xL
k < xk < xU

k k = 1, . . . , 10

The results of this weighted sum optimization are given in Figure 12, where the horsetail plot (Weighted Sum) is
compared to the plot for the horsetail matching optimum using the standard target (labeled Standard HM).
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Figure 12: Horsetail plot for the final design of a weighted sum optimization, along with the horsetail plot from the
horsetail matching optimum design under the standard target. (Note the scale is different to Figure 11).

It can be observed from Figure 12 that the optimum design using these weights is close to being stochastically
dominated by the horsetail matching optimum design under the standard target: the lower bound on the CDF lies
entirely to the right of the lower bound for the standard HM optimum and the upper bound is only better for h < 0.1.
This highlights the limitations that were discussed in Section I of using a weighted sum of combinations of statistical
moments as the objective to be minimized in an optimization as in Equation 16.

Table 4 gives the design variables for the optimum designs from the deterministic optimization, the horsetail
matching optimizations under the standard target (tl(h) = tu(h) = 0), the risk-averse target, and the target at a specific
feasible value (tl(h) = tu(h) = 1.3) as well as the weighted sum optimization.

Deterministic Standard Risk Averse Specific Value Weighted Sum
Span 55 53.63 54.14 53.5 52.6

Taper Ratio 0.1 0.118 0.119 0.305 0.118
Sweep 10 10 10 10.9 10.0

Nominal Angle of Attack 9.5 10.2 10.19 10.4 10.2
Twist at Loc. 1 9.20 9.14 8.84 10.0 9.13
Twist at Loc. 2 2.0 2.47 2.72 3.56 2.47
Twist at Loc. 3 -1.0 0.14 -0.21 0.76 0.15

Thickness at Loc. 1 0.1 0.1 0.1 0.13 0.1
Thickness at Loc. 2 0.1 0.1 0.1 0.13 0.1
Thickness at Loc. 3 0.1 0.1 0.1 0.12 0.1

Table 4: Design parameters for the optimum designs from the different optimization cases

VI. Application To Transonic 3D Wing Design
To demonstrate how the proposed approach and implementation makes use of adjoint sensitivity information in a
practical CFD-based design problem, in this section horsetail matching is applied to the shape optimization of a 3D
wing in transonic flow conditions, subject to uncertainties in Mach number and angle of attack.
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A. Problem Setup

The quantity of interest for the wing is taken as lift-to-drag ratio, measuring performance at cruise, and it is subject to a
uniformly distributed Mach number between 0.80 and 0.86 and an interval uncertain parameter on the angle of attack
between 2.5◦ to 3.5◦. We note a lift-constrained drag optimization would be more representative of realistic wing
design than a lift-to-drag ratio optimization, but since the purpose of this section is to investigate the effectiveness of
horsetail matching in manipulating the behavior of a wing under uncertainty using adjoint sensitivity information, this
does not impact the conclusions of this section. We use lift-to-drag ratio as the objective so that this study can be
performed at reasonable computational cost.

The lift-to-drag ratio is computed using the openly available SU2 CFD package to solve the compressible RANS
equations; this solver has been validated on a number of test cases including the ONERAM6 wing used as the baseline
design for this study [38,39]. The design space is parameterized using a free form deformation (FFD) box that encloses
the wing and consists of six chord-wise (x-direction), six span-wise (y-direction) and two vertical (z-direction) control
points. The control points can move in the vertical direction (except the control points in the two y=constant planes
closest to the symmetry boundary condition, which are fixed) giving a total of 48 design variables; these points are
used to deform a baseline mesh on the ONERAM6 wing (which is provided with SU2 and is made up of a total of
545,438 elements and 96,252 points) using the mesh deformation capability within SU2. Additionally, the sensitivity
of lift-to-drag ratio to the design variables is evaluated by solving the adjoint equations for the flow, once for lift and
once for drag, using the adjoint solver capabilities within SU2.

A view of this mesh on the wing and symmetric boundary condition plane at y=0 is shown on Figure 13, along
with the outline of the FFD box in white.

Figure 13: FFD box and mesh

A top-down plan view of the baseline wing Cp contours in nominal flow conditions (M = 0.83, AoA = 3.0◦) are
given in Figure 14.

To propagate the uncertainties for a given design, a third order, two dimensional polynomial response surface is
fitted to a tensor grid of evenly spaced points over the uncertainty domain, to give a surrogate model for both the
quantity of interest itself and its sensitivity to each of the design variables. This requires 16 forward and 32 adjoint
CFD solves per design iteration. These surrogate models are then sampled 2000 times each at 25 values of the interval
uncertain parameter, totaling 100,000 samples, to propagate the horsetail plot and its gradient as described in Section
III:C. This is done on the baseline ONERAM6 design and the resulting horsetail plot is given in Figure 15.

We can observe that at nominal conditions, the baseline ONERAM6 wing demonstrates a typical planform lambda
shock pattern, and the horsetail plot gives a significant drop off in performance from the nominal value of L/D = 14.1
on both the upper and lower CDF bounds, whilst the best possible case over the uncertain parameters is only ' 14.7.
Therefore we expect significant improvement of the lift-to-drag ratio under uncertainty to be possible using horsetail
matching.
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Figure 14: Upper surface pressure contours for the baseline ONERAM6 wing in nominal flow conditions; lift-to-drag
ratio = 14.1.

−17 −16 −15 −14 −13 −12 −11

q - Lift to Drag Ratio

0.0

0.2

0.4

0.6

0.8

1.0

h
-C

D
F

Figure 15: Horsetail plot of lift-to-drag ratio for the baseline ONERAM6 wing. Grey lines indicate the evaluated
possible CDFs of which the horsetail plot gives the envelope.

B. Optimization Results

The optimizations in this section are performed using the SLSQP implementation in the NLopt toolbox [35] (as in
Section IV). We run two horsetail matching optimizations, both using α = 100, firstly under a standard target with
qideal = 20:

minimize
x

dhm
(
q(x,M ∼ U(0.80, 0.86), AoA ∈ [2.5◦, 3.5◦]; tu(h) = −20, tl(h) = −20

)
(17)

s.t. − 0.05 < xk < 0.05 k = 1, . . . , 48.
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Secondly under a risk averse target for both bounds on the CDF (where the value of tl(1) and tu(1) is set to -60), in
order to emphasize improving the robustness over the best possible lift-to-drag ratios:

minimize
x

dhm
(
q(x,M ∼ U(0.80, 0.86), AoA ∈ [2.5◦, 3.5◦]; tu(h) = −20 − 40(h)5), tl(h) = −20 − 40(h)5) (18)

s.t. − 0.05 < xk < 0.05 k = 1, . . . , 48.

The convergence of the SLSQP algorithm for these optimizations, shown as iteration against relative difference
between the objective and the best objective, is given in Figure 16. In order to fairly compare the designs resulting from
each optimization, we analyze them at a given operating point, taken as that of the baseline wing with the uncertain
parameters at their nominal values, which is M = 0.83 and CL = 0.260; the angle of attack is adjusted to give this lift
coefficient. The force coefficients of the designs at this operating point are given in Table 5. The horsetail plot of −1×
lift-to-drag ratio due to the uncertainties for the designs are given in Figure 18.
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Figure 16: Relative convergence of the two wing optimizations.

The pressure contours of the design resulting from the optimization under a standard target at the given operating
point is given in Figure 17. By examining the flow solutions (as well as the deformed FFD points), we can see that
this optimization has improved the design by lowering the FFD points at the leading edge of the wing and raising them
towards the trailing edge, effectively decreasing the angle of incidence of the wing towards the tip while increasing
the camber and decreasing the twist at the tip. From the forces at the given operating point in Table 5, we can see that
for the same CL the drag has reduced relative to the baseline. This is due to a reduction in pressure drag (the friction
drag increases), and we can see that the strong shock at the tip of the baseline design has been eliminated, removing
the lambda shock structure.

ONERAM6 Standard Risk Averse
M 0.83 0.83 0.83
CL 0.260 0.260 0.260

AoA 3.0◦ 3.16◦ 3.03◦

CD, total 0.0184 0.0170 0.0170
CD, f riction 0.0046 (25%) 0.00475 (27%) 0.00474 (27%)
CD, pressure 0.0138 (75%) 0.0123 (73%) 0.0123 (73%)

L/D 14.1 15.3 15.3

Table 5: Force coefficients at the given operating point (M = 0.83,CL = 0.260) for the baseline wing and the two
optimized designs

The design resulting from the optimization under a risk averse target is a similar shape to and follows similar
pressure contours at nominal conditions to the standard target case, so we just give the force coefficients in Table 5
and the horsetail plot of this design in Figure 18.
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Figure 17: Upper surface pressure contours for the horsetail matching optimum under a standard target t(h) = −20 at
(M = 0.83,CL = 0.260).
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Figure 18: Comparison of horsetail plots of −1× lift-to-drag ratio of the designs found from the two optimizations

From observing the horsetail plot for the design from the optimization using a standard target in Figure 18, we
can see that its behavior under uncertainty is significantly more favorable than the baseline design. The horsetail
plot consists of bounds on the CDF that give better lift-to-drag ratios for all values of h, indicating that this design
stochastically dominates the baseline design under mixed uncertainties according to definition II.3.

Additionally, we can see that even though the design obtained using a risk averse target gives very similar perfor-
mance at nominal conditions to the standard case, it gives different behavior under uncertainty. The risk averse design
has traded off the best possible performance over the horsetail plot for additional robustness: the tails of the horsetail
plot for the risk averse design give better performance than the standard design, and the bounds on the CDF are closer
together.

The similarity of the performance of the designs in Table 5 highlights the fact that only considering in the design
nominal conditions does not necessarily produce desirable behavior under uncertainty. Additionally Figure 18 clearly
demonstrates the influence of the target on the optimization and the ability of horsetail matching to effectively ma-
nipulate the behavior under mixed uncertainties of the wing, and how by making use of sensitivity information from
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adjoint CFD solves it is able to do so efficiently.

VII. Conclusion
Horsetail matching is extended to optimization under probabilistic, interval, and mixed uncertainties, and a numerical
implementation that delivers a single, differentiable metric for optimization is developed. The approach is applied to
the design of a wing analyzed using a low-fidelity, coupled aero-structural analysis code; on this physical problem the
flexibility of horsetail matching is demonstrated by using different targets to optimize for different design scenarios at
low computational cost. It is also compared to the weighted sum of combinations of statistical moments approach, and
on this problem it gives preferable designs at similar computational cost. The approach is also applied to the shape
optimization of a 3D wing under uncertainties in Mach number and angle of attack, where by making use of sensitivity
information from adjoint CFD solves it is shown to efficiently improve the behavior under uncertainty of the wing.
For this problem a risk averse target produced a more robust wing design than a standard target.

Planned future work into horsetail matching primarily involves investigating and improving the formulation when
a large number of uncertain parameters are involved in the problem, since the effectiveness of using surrogate models
to propagate the uncertainty deteriorates rapidly as the dimensionality of the uncertainty space increases; this is con-
sidered a limitation of the implementation proposed in this paper. A formal analysis of the approximation error of the
proposed numerical implementation is also an important issue to address. Additionally, at increased computational
cost, demonstrating horsetail matching in a lift-constrained drag minimization wing design setting would be a useful
avenue of future work.
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