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Design of complex engineering systems requires coupled analyses of the multiple disci-
plines affecting system performance. The coupling among disciplines typically contributes
significantly to the computational cost of analyzing the system, and can become partic-
ularly burdensome when coupled analyses are embedded within a design or optimization
loop. In many cases, disciplines may be weakly coupled, so that some of the coupling or
interaction terms can be neglected without significantly impacting the accuracy of the sys-
tem output. However, typical practice derives such approximations in an ad hoc manner
using expert opinion and domain experience. This paper proposes a new approach that
formulates an optimization problem to find a model that optimally balances accuracy of
the model outputs with the sparsity of the discipline couplings. An adaptive sequential
Monte Carlo sampling-based technique is used to efficiently search the combinatorial model
space of different discipline couplings. Finally, an algorithm for optimal model selection
is presented and applied to identify the important discipline couplings in a fire detection
satellite model and a turbine engine cycle analysis model.

Nomenclature

f Model output variables (QoI)
x Model input variables
y Model state variables
F Function for output variables
Ri Residual function of discipline i
πf Probability density of outputs
πx Probability density of inputs
m Number of input variables
n Number of state variables
p Number of output variables

Λ Vector of tuning parameters
λ Tuning parameter in discrete optimization
M Model space
P(M) Function to count removed couplings
Sk Input state variables to discipline k
d Number of discipline couplings
DKL Kullback-Leibler divergence
K Number of disciplines
M Discipline couplings in the decoupled model

M0 Discipline couplings in the reference model

y(µx) First-order mean of state variables
µx Mean of input variables
µf̃ Mean of linearized model output
Σf̃ Covariance of linearized model output

f̃ Linear approximation of model outputs

δ Threshold for minimum sample diversity
ρ(t) Tempering parameter at step t
ζt Particle diversity at step t
L Number of particles in SMC
Pt(M) Probability of model M at step t

w
(l)
t Weight of model l at step t

∆teclipse Satellite: Eclipse period
∆torbit Satellite: Orbit period
τtot Satellite: Total torque
θslew Satellite: Maximum slewing angle
Asa Satellite: Area of the solar array
Cd Satellite: Drag coefficient
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Fs Satellite: Average solar flux
H Satellite: Altitude
H Satellite: Deviation of moment axis
I Satellite: Moment of inertia
La Satellite: Aerodynamic torque moment arm
Lsp Satellite: Radiation torque moment arm
PACS Satellite: Power of attitude control system
Pother Satellite: Power other than PACS
Ptot Satellite: Total power
q Satellite: Reflectance factor

RD Satellite: Residual dipole of spacecraft
v Satellite: Satellite velocity

BPR Turbine: Bypass ratio
CPR Turbine: Compressor pressure ratio
Fn Turbine: Net thrust
FPR Turbine: Fan pressure ratio
OPR Turbine: Overall pressure ratio
T4 Turbine: Engine burner temperature
TSFC Turbine: Thrust-specific fuel consumption
W Turbine: Mass-flow rate

I. Introduction

Multidisciplinary analysis and optimization (MDAO) couples multiple computational models to rep-
resent complex interactions in the design of engineering systems. With the increasing number of dis-

ciplines and improved fidelity in multidisciplinary models, the coupling among disciplines can contribute
significantly to the computational cost of analyzing these systems. This coupling may include both one-
directional (feed-forward) coupling, and bi-directional (feedback) coupling that requires iterative numerical
methods to compute a model solution. The coupled MDAO problem may be formulated in a variety of
different ways,1 and various MDAO architectures have been developed to manage discipline coupling for
large-scale problems (see Ref. 2 for an overview). Monolithic architectures solve the system using a single
optimization problem, while distributed approaches partition the model into subproblems, each involving a
smaller number of variables.3–7 Typical practice derives these discipline couplings using expert opinion and
domain experience. Given the significant impact of couplings on the computational tractability of evaluating
a model, it is of interest to systematically identify which disciplines should be coupled in a model and where
couplings may be neglected. This paper addresses this open challenge to yield optimal approximations to
coupling in multidisciplinary systems.

The application of MDAO originated in structural optimization and aircraft wing design.8,9 It has since
been extended to many different engineering systems, such as the design of complete aircraft configura-
tions,10,11 internal combustion engines,12 wind turbines,13 and spacecraft.14 Multidisciplinary models of
such systems often demonstrate varying degrees of coupling. Couplings can be categorized as being “strong”
or “weak” based on the response of a discipline output to a change in a coupling variable.15 As a result,
for certain quantities of interest (QoI) in a model, neglecting weak interactions negligibly impacts the ac-
curacy of the system outputs. Simultaneously, decoupling the disciplines reduces the number of feedback
loops and presents a substantial computational savings when using the model for design optimization and/or
uncertainty propagation. Therefore, an important challenge in the field of MDAO has been to identify the
decoupled model that best trades the sparsity of the discipline couplings with the accuracy of the model
in representing the engineering system. One approach to do this uses weighted design structure matrices
to decompose the model and rearrange the disciplines to minimize feedback cycles. This method estimates
the strength of couplings based on the discipline connectivity16 or the sensitivity of model outputs to the
coupling at each iteration of a multidisciplinary optimization process.17 However, existing methods leave
open the question of identifying which discipline couplings are most important in a model for characterizing
system outputs over a range of input variables.

In this work we identify an optimal approximation to coupling in the context of multidisciplinary models
under uncertainty. Using these models for optimization or uncertainty quantification is challenging as a
result of the coupling between disciplines. Nevertheless, by taking into account the probabilistic information
in the states of the system, we quantify the effect of neglecting each discipline coupling by measuring the
information loss in the uncertainty of the model outputs. Combining this objective with a penalty term to
promote sparsity in the number of couplings, we formulate a combinatorial optimization problem to explore
the space of possible discipline couplings and find an optimal approximation to the multidisciplinary model.

For a model with K disciplines, there are d = K2 − K possible discipline couplings and the number of
decoupled models grows exponentially as 2d. As a result, comparing all possible decoupled models by enu-
meration is computationally intractable for large-scale systems. Instead, it is necessary to pursue alternative
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approaches to search for the optimal discipline coupling. We leverage recent advances in adaptive sequential
Monte Carlo (SMC) algorithms18,19 to search efficiently over this model space.

The remainder of this paper is organized as follows. Sections II and III introduce the mathematical formula-
tion and methodology to search efficiently for an optimal approximation to the coupling of a multidisciplinary
model. Section IV presents results for two engineering systems: a fire detection satellite and a turbine engine
cycle analysis model. Finally Section V concludes the paper and presents future research directions.

II. Background and Problem Formulation

This section introduces the notation and background for multidisciplinary model analysis in Sections II.A
and II.B, and presents the problem formulation for model coupling approximations in Section II.C.

II.A. Multidisciplinary Models

Numerical multidisciplinary models consist of a set of equations that capture the relationships between input
and output variables, mediated by the internal state variables of each discipline. While input variables are
independent and defined externally by a user, output variables are quantities of interest (QoI) that depend
on the input variables and the state variables of the model.

In this paper, x = [x1, . . . , xm]T ∈ X ⊆ Rm is a vector of m input variables, y = [y1, . . . , yn]T ∈ Y ⊆ Rn is a
vector representing the n state variables, and f = [f1, . . . , fp]

T ∈ Rp is a vector of p output variables. Each
state variable in the model, yi, is defined implicitly by a governing residual equation

Ri(x,y) = 0, (1)

where in most generality the function Ri depends on all input and state variables, and consists of algebraic
equations, PDEs, and/or other operations. The function F : X × Y → Rp computes the output variables
explicitly as

f = F(x,y). (2)

Letting R = [R1, . . . ,Rn]T , a numerical model is represented by the coupled system of equations, R(x,y) =
0, where R : X → Y. In a multidisciplinary problem, the n residual equations (1) are partitioned into disjoint
groups representing each particular engineering discipline or subsystem of the model. These disciplines also
define a partitioning of the vector of state variables, y. This vector consists of state variables that are local to
each discipline, and coupling variables that affect the residual equations in different disciplines. A graphical
representation of these coupling variables in a model with two disciplines is given in Figure 1. We note that
in the displayed model, only one residual function and state variable is associated with each discipline.

Discipline 1
R1(x,y)

Discipline 2
R2(x,y)

Output
F(x,y)

QoI f

Inputs x

y1

y2

y1 y2

Figure 1. Graphical representation of a generic multidisciplinary model
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The dependence of the residual equations on coupling variables from other disciplines defines the overall
discipline coupling in the model. This coupling can include one-directional (feed-forward) coupling, or bi-
directional (feedback) coupling between any two disciplines. For instance, the dependence of both disciplines
on the same subset of state variables in Figure 1 results in feedback coupling in this model. Solving these
systems of feedback coupled residual equations requires using an iterative numerical method to determine
the states and corresponding output variables. Common iterative methods include fixed point iteration or
more sophisticated algorithms for solving nonlinear equations, such as Newton-based approaches.

II.B. Uncertainty in Multidisciplinary Models

In many multidisciplinary models, the input variables are not known exactly. As an example, when analyzing
a rocket during launch, it is common to consider wind gusts as a source of uncertainty in the multidisciplinary
model.20 In such cases, the input variables, x, are represented as random variables endowed with a probability
density function πx.

With uncertain inputs, the output variables of the model, f , are also random variables endowed with a
probability density function, πf . Forward uncertainty quantification (UQ) propagates the input uncertainty
through the coupled model to characterize the uncertainty in the output variables. For engineering applica-
tions, this typically includes determining the mean and variance of the output variables, although sometimes
other properties of the output distribution are also of interest.

For linear residual and output equations, the mean and variance in the output variables can be quantified
analytically in terms of the model equations and the mean and variance of the inputs. However, for general
nonlinear equations, forward UQ is more challenging and is commonly performed with various probabilistic
techniques such as simulation-based methods, local model expansions, functional approximations, etc.21

One traditional and robust algorithm for quantifying uncertainty is based on Monte Carlo simulation. This
sampling-based method draws N realizations of the input variables from πx. Each realization defines a
sample, where x(j) denotes the j-th sample of x for j = 1, . . . , N . For each sample, the algorithm solves the
coupled residual equations, R(x(j),y(j)) = 0 to determine the state y(j), and evaluates f = F(x(j),y(j)) to
determine the output variables f (j) for sample j. These samples are used to estimate the mean, variance, or
other statistics of the probability distribution for the output variables, πf .

However, it is well known that the variance in Monte Carlo estimators converges at a rate of 1√
N

with an

increasing number of samples, N .21 As a result, for expensive simulations under limited computational
resources, this motivates the use of alternative techniques that reduce the computational cost of solving the
multidisciplinary model. One approach for efficiently propagating uncertainty in multidisciplinary systems
is a decomposition-based method that combines Monte Carlo sampling of each discipline or domain with
importance sampling to analyze the uncertainty in feed-forward systems.22 For multidisciplinary systems
with feedback, recent methods include a likelihood-based approach to decouple feedback loops and reduce
the model to a feed-forward system,23 dimension reduction techniques to represent certain coupling variables
with spectral expansions that depend on a small number of uncertain parameters,24–26 and the use of adaptive
surrogate models for individual disciplines27 or to approximate the coupling variables and reduce the number
of model evaluations.28

In this work we focus on approximate coupling as a way to reduce the computational cost of finding a
solution to the multidisciplinary model. We note that this could also be combined with existing techniques
to accelerate forward uncertainty quantification and model coupled analyses.

II.C. Model Coupling Approximation

Our approach of approximate coupling is to minimize the number of coupling variables between disciplines.
In practice, many disciplines are often weakly coupled and the residual equations in each discipline are most
sensitive to only a subset of the coupling variables.15 Therefore, the coupling variables that have a minor
effect on the state variables computed by each discipline can be fixed to a nominal value, while incurring a
small effect on the discipline output. Furthermore, by removing the dependence of a discipline on certain
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coupling variables, we decouple the corresponding disciplines. Ultimately, this reduction in discipline coupling
minimizes the number of iterations required to find a converged solution to the system.

In a multidisciplinary model with K disciplines, we define Sk ⊆ {y1, . . . , yn} as the set of coupling vari-
ables that are arguments to the residual functions in the k-th discipline. The set of discipline couplings
in each model is then given by M = (S1, . . . ,SK), where the total number of discipline couplings is

d(M) =
∑K
k=1 |Sk|. For a multidisciplinary model with a set of defined discipline couplings, our goal in

this work is to find the coupling variables (i.e. yi ∈ Sk for all k) that have a small effect on the overall model
output. Each of these variables are then fixed to a nominal value, such as their mean value, and removed
from Sk, thereby decoupling the two disciplines.

The operation of replacing the dependence of residual equation, R2, on the coupling variable, y1, with the
fixed constant input, y1, is seen graphically in Figures 2 and 3. By decoupling discipline 1 from 2, the original
feedback coupled multidisciplinary model is converted into a feed-forward model. In this case, instead of
having to iteratively solve the coupled residual equations to find y, the state variables can be more cheaply
determined by solving the one-way coupled model.

For the remainder of this paper, we denote the set of discipline couplings in our reference multidisciplinary
model as M0, and use M to represent a model that results from decoupling two or more disciplines.

Discipline 1
R1(x,y)

Discipline 2
R2(x,y)

State y1 State y2

Inputs x

y1

y2

Figure 2. Feedback coupled two discipline model, M0

Discipline 1
R1(x,y)

Discipline 2
R2(x,y)

State y1 State y2

y1

Inputs x

y2

Figure 3. One-way coupled two discipline model, M

In the context of forward UQ, the error introduced by decoupling the model disciplines is defined as the
accuracy of the probability distribution for the output variables in model M . This accuracy is measured
by the Kullback-Leibler (KL) divergence between the probability distribution of the output variables in the
decoupled model, πfM , and the distribution of the outputs in the reference model, πfM0

. The KL divergence
is denoted by DKL(πfM0

||πfM ) and is non-zero when the distributions for the output variables of the two
models are not equal almost everywhere. As a result, the KL divergence provides an indication of the
information lost when using πfM to approximate the distribution of the output variables with the discipline
couplings, M . The reader is referred to Ref. 29 for more properties on the KL divergence.

Therefore, to reduce the computational cost of solving the multidisciplinary model, we search for the max-
imum number of disciplines that can be decoupled while minimizing the KL divergence. These competing
objectives are used to formulate a combinatorial optimization problem to find an optimal subset of discipline
couplings by exploring the space of possible decoupled models, which we denote by M. To represent the
two parts of the objective function, we use the KL divergence as a measure for the accuracy of the output
variable distributions in both models, and use the function P : M→ N to represent the sparsity of the model
couplings. In this work, P(M) = d(M0)− d(M), i.e., the function counts the number of removed discipline
couplings for each possible model, M . Finally, these parts are combined in the objective function by using
a tuning parameter, λ, that controls the relative importance given to accuracy vs. sparsity.

With this objective, the optimally decoupled model, which we denote by M∗(λ), is found by solving the
optimization problem

M∗(λ) = arg min
M∈M

DKL(πfM0
||πfM )− λP(M). (3)

We note that other metrics can also be used for the sparsity penalty, P(M), in the optimization problem. For
example, by using additional knowledge about the contribution of each discipline coupling to the total cost
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of running the model, we can assign a different weight to each coupling that favors removing computationally
expensive discipline couplings.

For a model with K disciplines and d discipline couplings, d can grow as d = K2 − K for a fully coupled
model. With each coupling being either active or inactive, the total size of the space of possible models,M,
grows exponentially with cardinality |M| = 2d. As a result, it is not feasible to compare models with many
disciplines by enumeration. Instead, the next section discusses an approach based on a particle method to
efficiently explore the high-dimensional model space and find the optimal model, M∗.

III. Approximate Coupling via Optimization

This section introduces the use of model linearizations for estimating the KL divergence in Section III.A,
and addresses the combinatorial optimization problem that was posed in equation 3 in Sections III.B and
III.C.

III.A. Model Linearization

The first term in the objective function (3) represents the accuracy of the output distributions for a possible
model M relative to the reference model, M0. One approach to evaluate this term is to generate samples
for the output variables and to use the samples to approximate the KL divergence with density estimation
techniques.30 However, for large-scale multidisciplinary models, it is not feasible to generate many samples
from multiple models via Monte Carlo simulations by repeatedly solving the coupled equations.

As a result, we propose to use a linear approximation for each model to efficiently estimate the KL divergence
of the probability distributions for the output variables. The linearization of a multidisciplinary model
is given by the first order Taylor series approximation of the model outputs given in equation 2. This
linearization is found by evaluating the partial derivatives of the function F with respect to input and state
variables, which are denoted by ∂xF and ∂yF , respectively. Both of these derivatives are evaluated at a
specific linearization point for the input and state variables.

One natural linearization point is based on the mean of the state variables, y. However, finding the mean
requires characterizing the distribution for these variables a-priori. Instead, an approximation commonly
employed in the literature23 is to linearize the models around the state variables corresponding to the mean
values of the input variables. The mean value of x is denoted by µx = E[x] where E is the expectation
operator with respect to the probability distribution πx. The state variables corresponding to µx satisfy the
residual equations, R(µx,y(µx)) = 0, and these states are referred to as a first-order mean for y.31

Using the Taylor series expansion about the first-order mean, the linearized approximation of the output
variables is given by

f = F(x,y) ≈ F(µx,y(µx)) + ∂xF|µx,y(µx) (x− µx) + ∂yF|µx,y(µx) (y − y(µx)). (4)

Similarly, the linearized approximation of the coupled residual equations for the model is given by

R(x,y) ≈ R(µx,y(µx)) + ∂xR|µx,y(µx) (x− µx) + ∂yR|µx,y(µx) (y − y(µx)), (5)

where ∂xR and ∂yR denote the partial derivatives of the residuals with respect to the input and state
variables, respectively. Rearranging the approximation in equation 5 for the state variables, and noting that
R(µx,y(µx)) = 0, a linear approximation to the state variables with respect to x is given by

y = y(µx)− (∂yR|µx,y(µx))
−1 ∂xR|µx,y(µx) (x− µx). (6)

Here we note that the matrix of partial derivatives, (∂yR)−1∂xR in equation 6, contains the sensitivity of the
state variables to perturbations in the inputs. These sensitivities to the input variables are often computed
as part of an adjoint analysis for single or multiple discipline models.32,33 Furthermore, the sensitivities
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are typically found without assembling and inverting the full matrix of partial derivatives of the residual
equations with respect to the state variables. Instead, the values in the matrix are determined by solving a
linear system with an iterative numerical method.2

Substituting the linearization for the state variables in equation 4, a linear approximation to the sensitivity
of the output QoIs in the multidisciplinary model with respect to the input parameters, x, is given by

f ≈ f̃(x) = F(µx,y(µx)) +
[
∂xF|µx,y(µx) − ∂yF|µx,y(µx) (∂yR|µx,y(µx))

−1 ∂xR|µx,y(µx)

]
(x− µx)

= F(µx,y(µx)) +
dF
dx

∣∣∣∣
µx,y(µx)

(x− µx),
(7)

where f̃(x) represents the linear approximation to the output QoI and dF
dx denotes the matrix of total

derivatives of F with respect to the input variables. With this linear relationship in the inputs, x, the
mean and variance of the linearized outputs are propagated analytically from the mean and variance of
the input variables. In particular, if the input variables are normally distributed with covariance matrix,
Σx, the linearized output variables are also normally distributed with mean, µf̃ = E[f̃ ], and covariance,

Σf̃ = E[(f̃ − µf̃ )(f̃ − µf̃ )T ], where

µf̃ = F(µx,y(µx)), (8)

Σf̃ =

[
dF
dx

∣∣∣∣
µx,y(µx)

]
Σx

[
dF
dx

∣∣∣∣
µx,y(µx)

]T
. (9)

To compute the KL divergence for the output variables of each decoupled model, M ∈ M, relative to the
reference model, M0, we compute the mean and covariance of the linearized model outputs using 8 and 9.
The mean and covariance for the linearized output variables of model M0 are denoted by µf̃M0

and Σf̃M0
,

respectively. Similarly, the mean and covariance for the decoupled model M are denoted by µf̃M
and Σf̃M

,
respectively. Using the closed form expression for the KL divergence between two Gaussian distributions,
we estimate the KL divergence between the probability distributions for the outputs of models M0 and M
with the equation

DKL(πf̃M0
||πf̃M

) =
1

2

{
Tr(Σ−1

f̃M
Σf̃M0

) + (µf̃M
− µf̃M0

)TΣ−1

f̃M
(µf̃M

− µf̃M0
)− p+ ln

(
|Σf̃M

|
|Σf̃M0

|

)}
, (10)

where Tr(·) denotes the matrix trace operator, and ln(| · |) is the log-determinant of a matrix. We note
that the derivatives in expression 7 are typically available when computing system outputs or performing
design optimization. This leads to a small incremental cost for evaluating the KL divergence in equation
10. Furthermore, while higher-order expansions of the residual functions may provide improved accuracy
approximations in highly nonlinear regimes for the outputs,34 the probability distributions resulting from
these higher order expansions to the output variables cannot be compared using an analytic expression.
Instead, these approximations require generating samples from the distribution and using density estimation
techniques to estimate the KL divergence.

It is also important to note that each decoupled model, M ∈M, results in a different first-order mean for the
state variables. As a result, to compute the mean and covariance for the output variables, it is necessary to
solve the nonlinear residual equations once for each M at the mean input variables. The resulting first-order
mean of y is then used as the linearization point to evaluate the partial derivatives of the residual and output
functions in the model linearization. Finally, we also note that the effect of decoupling disciplines is also
seen with the additional sparsity in the ∂yR matrix when the corresponding residual equations no longer
depend on certain coupling variables from other disciplines.

However, finding the optimal solution to the combinatorial optimization problem posed in equation 3 still
requires a method to explore the potentially multi-modal model space without enumerating all models. As
a result, the following section will address this question using a particle method.
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III.B. Sequential Monte Carlo

To find the optimal decoupled model that best balances the accuracy and sparsity of the approximate model
coupling, we solve the combinatorial optimization problem in equation 3 that was proposed in Section II.C.
With the increase in the cardinality of the model space, M, the complexity of finding an optimal solution
to this problem increases exponentially. As a result, common algorithms for combinatorial optimization
problems find approximate solutions by using local neighborhood searches, depth-first branch and bound
searches, or randomized methods such as simulated annealing and genetic algorithms. For a comparison of
these methods, the reader is referred to Ref. 35.

To effectively explore the model space, there is growing numerical evidence that global particle methods
based on sequential Monte Carlo (SMC), which track a population of possible solutions, are robust and
can often outperform heuristics and local search methods for discrete optimization problems.36,37 This is
particularly evident in strongly multi-modal objective functions where local search methods can become
trapped in certain modes of the model space. As a result, in this paper we chose to use SMC to perform the
combinatorial optimization.

Although SMC is described in more detail below and summarized in Algorithm 1, the main steps are:

1. Generate a set of weighted particles representing possible decoupled models

2. Update the weights based on the value of the objective function

3. Propose new particles to explore the space while converging to the optimal solution

4. Repeat steps 2-3

To find the optimal solution using SMC, we first define a sequence of probability distributions on the model
space, which we denote by Pt : M → [0, 1] for each index t ∈ N. These distributions progress from a
distribution that is easy to sample from, such as the uniform weighting over the set of all possible decoupled
models (i.e., P0(M) = U(M)), to the final distribution of interest that concentrates most mass over the
models that minimize the objective function. To smoothly move towards the final target distribution, the
goal of an efficient particle method is to learn the correlations and properties of the model space in order to
find the global minimizers without enumerating all models.

Particle methods approximate the distribution at each step by a finite set of L ∈ N weighted particles that

each represent a particular model. We denote particle l and step t of the algorithm by M
(l)
t for l = 1, . . . , L.

Each of these particles is also associated with a weight that we denote by w
(l)
t . The collection of particles

and weights at each step is given by (Mt,wt) = {M (l)
t , w

(l)
t }Ll=1. While the weights are set to 1/L when

initializing the system at t = 0, at each iteration of the algorithm the weights are updated based on the
subsequent distributions using the ratio

u
(l)
t+1 := w

(l)
t

Pt+1(M
(l)
t )

Pt(M
(l)
t )

, (11)

followed by the normalization step, w
(l)
t+1 = u

(l)
t+1/

∑
l u

(l)
t+1 for l = 1, . . . , L. Here we note that it is sufficient

to evaluate the models at the unnormalized versions of Pt and Pt+1 given that the weight only requires the
ratios of these probability mass functions. As described in a recent study by Shafer et al.,37 one common
and successful technique to construct these distributions over the model space is to use a tempered family.
This family of distributions assigns to each decoupled model, M ∈M, the probability mass

Pt(M) ∝ exp(−ρ(t)h(M)), (12)

where h : M → R+ is the value of the objective function for each model in the combinatorial optimiza-
tion problem, and ρ : N → R+ is a monotonically increasing tempering parameter that depends on step
t. For the combinatorial optimization problem posed in equation 3, the objective function is given by
h(M) = DKL(πf̃M0

||πf̃M
)− λP(M). Therefore, as t and ρ(t) increase at each iteration, the tempered family

concentrates more mass on the set of models that minimize the value for the objective function by assign-
ing higher weights to these models. However, by just repeatedly re-weighing the initial set of particles
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using equation 11, the weights will become uneven and eventually lead to particle degeneracy with a poor
importance sampling approximation to each distribution.

As a result, the main ingredient that differentiates sequential Monte Carlo samplers from classical importance
sampling is the series of alternating re-weighting and update steps that re-sample and move the particles in
order to explore the space outside of the current set of models. By measuring a series of metrics including the
effective sample size and the particle diversity, that are denoted by ESS(wt) and ζ(Mt,wt), respectively,
SMC re-samples the particles from its current empirical distribution and moves them by using an adapted
proposal distribution that samples new particles in the model space. This combination of steps ensures there
is a smooth transition between all distributions, Pt, and they converge to the target based on an appropriate
choice for the tempering parameter, ρ(t).

Following the study in Ref. 37, we use systematic re-sampling to generate more samples corresponding to the
particles with larger weights. Furthermore, we construct an independent proposal for the move steps that is
adapted by using maximum likelihood estimation with the set of samples and weights at each iteration. As
demonstrated in Ref. 18, this adaptive proposal results in faster exploration of the model space by drawing
particles with a higher rate of acceptance.

The re-sample and move steps are repeated until the sample diversity drops below a threshold given by
δ > 0, indicating that most of the mass in Pt(M) is concentrated on a few decoupled models. At the end, the
algorithm returns the maximizer of the final distribution within this small set of particles as the optimally
decoupled model. For the purposes of completeness, a summary of the algorithm to find the optimal model
coupling is presented in Algorithm 1. Nevertheless, the reader is referred to Ref. 37 for more specific details
on each function in the SMC algorithm for solving combinatorial optimization problems.

Algorithm 1: SMC for Optimal Model Coupling

Input: Model Objective Function: h(M), Minimum Particle Diversity: δ, Number of Particles: L

1 Initialize counter: t = 0;

2 Sample models: M
(l)
t

iid∼ U(M) for l = 1, . . . , L;

3 Initialize weights: w
(l)
t = 1/L for l = 1, . . . , L;

4 Compute particle diversity: ζt = ζ(Mt,wt);

5 while ζt > δ do

6 Update counter: t← t+ 1;

7 Fit proposal: qt ← Fit Proposal(Mt,wt);

8 Re-sample: Mt ← Re sample(Mt,wt);

9 Move models: Mt ← Move(qt,Mt,wt);

10 Update ρ(t) to maintain a minimum ESS(wt);

11 Update weights: wt ← Importance Weights(h(M),Mt,wt);

12 Compute particle diversity: ζt = ζ(Mt,wt);

13 end

14 Return M∗ = arg minM∈Mt
f(M), f(M∗)

In practice, the number of particles at each iteration of the SMC algorithm, L, and the minimum particle
diversity, δ, are chosen relative to the cardinality of the model space. While the number of particles should
be small enough to ensure that the model selection is computationally feasible, it should also be large enough
to approximately represent the distributions, Pt. Furthermore, in all of our numerical examples we choose a
minimum particle diversity of δ = 0.1L to terminate the algorithm and indicate that most probability mass
is concentrated on a small number of unique particles.

III.C. Model Selection Procedure

Combining the sequential Monte Carlo algorithm presented above with the model linearizations for estimating
the KL divergence, an optimally decoupled model, M∗(λ), is determined for each value of λ in the objective
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function. However, in an engineering setting, it is of interest to select the model coupling approximation
based on accuracy requirements and the availability of computational resources.

To do so, we repeat the combinatorial optimization problem for different values of λ that are specified in the
vector denoted by Λ. This provides a set of candidate models that balance accuracy and sparsity differently
in the optimally decoupled model. While a heavier weight is placed on finding sparse models for larger
values of λ, a heavier weight is placed on finding accurate models for smaller values of λ. As a result, by
increasing λ, the optimal model trades-off accuracy in the distributions of the output variables relative to
M0 with having a smaller number of discipline couplings. By finding the optimal model for each value of λ
using Algorithm 1, a user can select one of these models for their application by comparing the accuracy of
each model to the computational cost of its sample evaluations. A summary of the complete algorithm for
optimal model selection is presented in Algorithm 2.

Algorithm 2: Optimal Model Selection

Input: Reference multidisciplinary model: M0, Input variable uncertainty: πx, Vector of objective

function parameters: Λ, Model sparsity function: P(M)

1 Linearize output variables of M0 at mean of πx: f̃ ;

2 Compute output uncertainty of f̃ : πf̃M0
;

3 for λ ∈ Λ do

4 Setup objective function: h(M) = DKL(πf̃M0
||πf̃M

)− λP(M);

5 Determine M∗(λ) using Algorithm 1;

6 end

7 Select optimal model by comparing the accuracy and sparsity of M∗(λ) for each λ ∈ Λ;

IV. Numerical Results

In this section, we present results for applying the proposed model selection algorithm to two aerospace
engineering examples. These are a three-discipline model of a satellite used to detect forest fires in Section
IV.A that was presented in an uncertainty quantification context by Sankararaman et al.,23 and a model for
turbine engine cycle analysis in Section IV.B that was developed by Hearn et al.38

IV.A. Fire Detection Satellite Model

To analyze the performance of a fire detection satellite under uncertain operating conditions, we consider
a simplified model that comprises three disciplines: orbit analysis, attitude control, and power analysis.
As seen in Figure 4, the model features both feed-forward and feedback coupling variables to exchange
information between the disciplines.
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Figure 4. Fire detection satellite model from Ref. 23
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Figure 5. Joint distributions of the reference model
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To represent the uncertain conditions, the model includes nine Gaussian random variables that are described
by their mean and standard deviation parameters in Table 1. After propagating this input uncertainty
through the disciplines, the seven state variables connecting the disciplines are also uncertain and are dis-
tributed with potentially non-Gaussian probability distributions. These state variables are: the orbit period
(∆torbit), eclipse period (∆teclipse), satellite velocity (v), maximum slewing angle (θslew), the power of the
attitude control system (PACS), and the moments of inertia (Imax, and Imin). In addition, the orbit period
is an input to two disciplines (orbit analysis and attitude control) resulting in a total of d = 8 coupling
variables for this satellite model as seen in Figure 4. These coupling variables are used to compute the
three output QoIs: total torque (τtot), total power (Ptot), and the area of the solar array (Asa). The joint
probability distribution of these output variables, πf , is displayed in Figure 5.

Table 1. Random variable parameters in the satellite model from Ref. 23

Random Variable Symbol Mean Standard Deviation

Altitude H 18.0× 106 m 1.0× 106 m

Power other than attitude control Pother 1.0× 103 W 50.0 W

Average solar flux Fs 1.4× 103 W/m
2

20.0 W/m
2

Deviation of moment axis θ 15.0◦ 1.0◦

moment arm for radiation torque Lsp 2.0 m 0.4 m

Reflectance factor q 0.5 1.0

Residual dipole of spacecraft RD 5.0 Am2 1.0 Am2

Moment arm for aerodynamic torque La 2.0 m 0.4 m

Drag coefficient Cd 1.0 0.3

By defining the model displayed in Figure 4 as the reference model, M0, our algorithm for optimal model
selection considers decoupled models, M , that have a smaller number of discipline couplings by fixing a
subset of the coupling variables of each discipline to their first-order mean value. In order to empirically
validate the use of model linearizations to estimate the KL divergence of the decoupled models, we compare
the Gaussian distribution for the linearized outputs of the reference model to the uncertainty in the output
variables of the nonlinear coupled system based on 104 Monte Carlo samples. As seen in Figure 6, the joint
empirical distribution for the output variables, πf , is closely approximated by the multivariate Gaussian
distribution resulting from the linearized equations in expression 7.
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Figure 6. Comparison of Gaussian approximation and Monte Carlo samples
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Using these linearizations for the output variables, the SMC algorithm explores the model space using L =
100 particles to determine the optimal decoupled model, M∗(λ), that solves the combinatorial optimization
problem posed in equation 3. For each value of λ, the algorithm identifies a subset of discipline couplings
that best trade-off the accuracy of the output distributions, that is estimated by the DKL(πf̃M0

||πf̃M∗ ), and

the added sparsity in the discipline couplings, that is measured by P(M∗).

With increasing values for λ, the objective in the optimization problem adds a greater penalty to models
with less sparsity in the discipline couplings. This results in a set of increasingly sparser models that
remove additional couplings at the expense of accuracy in the output distribution. These decoupled models
for 4 different values of λ in Λ = [10−4, 10−3, 10−1, 100] are presented in Figures 7-14 with the decoupled
connections indicated by dashed lines. The joint distribution for the output variables, πfM∗ , of the optimal
model corresponding to each value of λ is also plotted in the figures below.

For the fire detection satellite model, the algorithm identifies that the feedback coupling variable between
the Attitude Control and Power disciplines for the moment of inertia (Imax, and Imin) could be fixed to
their mean value while having a small effect on the accuracy of joint output distribution, as seen in Figures
7 and 8. With increasing values for λ, the slewing angle, the satellite velocity, and the orbit period are also
found to weakly contribute to the total torque and the overall power requirement for the attitude control
subsystem, as seen in Figures 9 and 10. The subsequent sparser model for λ = 10−1 fixes these discipline
coupling variables along with the state inputs to the power discipline for the orbit and eclipse period. Finally,
we note that for λ = 100, the optimal model has fully decoupled disciplines and the joint distribution for its
output variables is given in Figure 14.
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Figure 7. Optimal model coupling for λ = 1.0× 10−4
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Figure 8. Joint distributions for λ = 1.0× 10−4
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Figure 9. Optimal model coupling for λ = 1.0× 10−3
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Figure 10. Joint distributions for λ = 1.0× 10−3
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Figure 11. Optimal model coupling for λ = 1.0× 10−1
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Figure 12. Joint distributions for λ = 1.0× 10−1

Orbit
Analysis

Power
Analysis

Attitude
Control

H Pother

Fs, θ, Lsp, q,
RD, La, Cd

Ptot, Asa

τtot

∆torbit,

∆teclipse

∆torbit,

θslew

ν PACS Imax,

Imin

Figure 13. Optimal model coupling for λ = 1.0× 100
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Figure 14. Joint distributions for λ = 1.0× 100

Furthermore, in Table 2 we present the values for the KL divergence between the Gaussian distribution for
the linearized outputs of the reference model, M0, and the optimally decoupled models, M∗, that we denote
as linearized KL divergence. The number of active coupling variables, representing the increasing sparsity
of each decoupled model with larger values of λ, is also presented in the table below.

Table 2. Linearized KL divergence for optimally decoupled models of the fire detection satellite

λ = 1× 10−4 λ = 1× 10−3 λ = 1× 10−1 λ = 1× 100

Linearized KL Divergence 7.30× 10−16 7.43× 10−4 4.20× 10−3 1.33× 10−1

Active Coupling Variables 4/8 3/8 1/8 0/8

From the table and figures above, we observe that the optimal models identified by the model selection
algorithm corresponding to λ ∈ [10−4, 10−1] result in very similar distributions for the model outputs as
the reference model based on the linearized KL divergence. Furthermore, while the final optimal model for
λ = 100 approximately captures the marginal uncertainty in the outputs, this fully decoupled model does
not represent, as accurately, the correlations between the output variables, as seen in the joint marginal
distribution of Ptot and τtot in Figure 14. Nevertheless, given that all decoupled models feature only feed-
forward connections, these approximate coupling models can be used to cheaply propagate the uncertainty in
the multidisciplinary model without having to iteratively solve for the outputs that correspond to each set of
input variables. This results in a substantial computational savings for performing forward UQ. In particular,
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if low accuracy is sufficient in the output uncertainty, the disciplines can be analyzed independently using
the model corresponding to λ = 100.

Finally, we analyze the pointwise errors of the three model outputs in each decoupled model, M∗, relative
to the reference model, M0. The pointwise error is given by the difference in the values of the output
variables in the decoupled and reference models for the same input sample. The errors for 104 input samples
are displayed in Figures 15-18. With an increase in λ, the sparser models result in progressively greater
pointwise errors, which are seen in the greater spread of the output values between both models. Although
the set of discipline couplings corresponding to λ = 10−1, and 100 have relatively accurate joint distributions
for the model output uncertainty, their larger pointwise errors makes them less adequate for computations
that require accurate pointwise approximations, such as multidisciplinary optimization. Nevertheless, the
models associated with λ = 10−4, and 10−3 (Figures 7 and 9) have accurate distributions for the output
variables and low pointwise errors relative to the reference model, M0.
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Figure 15. Comparison of QoI with optimally decoupled model for λ = 1.0× 10−4

0 0.01 0.02 0.03 0.04

τtot - Reference Model

0

0.01

0.02

0.03

0.04

τ
t
o
t
-
D
ec
o
u
p
le
d
M
o
d
el

900 1000 1100 1200 1300 1400

Ptot - Reference Model

900

1000

1100

1200

1300

1400

P
t
o
t
-
D
ec
o
u
p
le
d
M
o
d
el

10 11 12 13 14

Asa - Reference Model

10

11

12

13

14

A
s
a
-
D
ec
o
u
p
le
d
M
o
d
el

Figure 16. Comparison of QoI with optimally decoupled model for λ = 1.0× 10−3
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Figure 17. Comparison of QoI with optimally decoupled model for λ = 1.0× 10−1
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Figure 18. Comparison of QoI with optimally decoupled model for λ = 1.0× 100

IV.B. Turbine Engine Model

A model for turbine engine cycle analysis was first presented in Ref. 38. The reference model for the system,
M0, is displayed in Figure 19 and consists of 13 disciplines for the 12 engine components and a performance
function, which are connected by 22 coupling variables. These disciplines model the engine with a core
air-stream passing through a fan, compressor, burner and turbine as well as a second stream of air that
bypasses the engine core. For each set of inputs that include the fan pressure ratio (FPR), compressor pres-
sure ratio (CPR), bypass ratio (BPR), and mass-flow rate (W ), the system’s disciplines iteratively solve for
4 output quantities of interest: thrust-specific fuel consumption (TSFC), net thrust (Fn), overall pressure
ratio (OPR), and engine burner temperature (T4).
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Figure 19. Turbine engine cycle model from Ref. 38

To analyze various operating conditions, the model inputs are represented with Gaussian distributed random
variables whose parameters are listed in Table 3.

Table 3. Random variable parameters in the turbine engine cycle model

Random Variable Symbol Mean Standard Deviation

Fan pressure ratio FPR 1.5 0.01

Compressor pressure ratio CPR 15.0 0.10

Bypass ratio BPR 2.0 0.10

Mass-flow rate W 1000.0
√

10.0

By propagating 103 Monte Carlo samples of these inputs through the nonlinear system, the non-Gaussian
distribution of the output variables is empirically characterized for the selected QoI in Figure 20. In the
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optimal model selection algorithm, we use the linearizations of these output variables with respect to the
inputs and compare the resulting multivariate Gaussian approximations to πf with different subsets of the
discipline couplings.
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Figure 20. Joint distributions of the reference model

Applying the model selection procedure described above with L = 1000 particles, the SMC algorithm iden-
tifies decoupled models for four different values of λ in Λ = [10−1, 100, 101, 103]. These models are presented
in Figures 21-24 with the decoupled connections indicated by dashed lines. Similarly to the satellite model,
we observe that with an increase in λ, the optimal solutions to the combinatorial optimization problem have
greater sparsity in the number of discipline couplings. This results in a set of nested models that sequen-
tially remove weak connections to increase the sparsity of couplings in exchange for accuracy in the output
distributions. For this turbine engine case study with λ = 10−1, and λ = 100, this results in neglecting
the effect of the feedback from the low-pressure turbine on the fan and the variability of inlet ram drag on
system performance.

Flight
Cond.

Inlet Fan Splitter Comp Burner
Turbine

HP
Turbine

LP
Duct &
Nozzle

Shaft
HP

Shaft
LP

Bypass
Line

Perf
TSFC,

Fn, OPR

T4
W FPR

BPR CPR

Figure 21. Optimal model coupling for λ = 1.0× 10−1
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Figure 22. Optimal model coupling for λ = 1.0× 100
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Figure 23. Optimal model coupling for λ = 1.0× 101
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Figure 24. Optimal model coupling for λ = 1.0× 103

With a further increase in λ and a greater penalty on low sparsity models, the effect of the bypass line and
the feedback from the high-pressure turbine are also neglected in the optimal models presented above. The
accuracy of the system outputs corresponding to the decoupled model for each value of λ is displayed in the
joint distributions of the output QoI in Figures 25-28. We observe that while the distribution for the output
TSFC variable is closely captured with the decoupled models for λ = 10−1, and 100, the correlations of this
variable are not as accurately represented when ignoring connections from the bypass line and feedback from
the high-pressure turbine. This effect on the correlation is expected given the tight balance between the
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bypass flow and the core flow through the high pressure turbine, that together produce most of the engine’s
thrust.
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Figure 25. Joint distributions for λ = 1.0× 10−1
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Figure 26. Joint distributions for λ = 1.0× 100
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Figure 27. Joint distributions for λ = 1.0× 101
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Figure 28. Joint distributions for λ = 1.0× 103

Furthermore, while the first three models accurately capture the net thrust, Fn, the uncertainty in this
variable is poorly represented with the last model when ignoring the contribution of the nozzle. Finally,
all four models accurately represent the uncertainty in the overall pressure ratio, OPR, and engine burner
temperature, T4. As a result, depending on the application and available computational resources, users
may select the appropriate set of discipline couplings for the turbine engine to model the system uncertainty
in the output variables.

To quantitatively compare the decoupled models, we also present the linearized KL divergence between the
approximating Gaussian distributions for the reference and optimally decoupled models of the turbine engine
in Table 4. These results are presented along with the number of active coupling variables in each model
(i.e., solid lines in the model diagrams above) that demonstrates the increasing sparsity in the decoupled
models for larger values of λ.

Table 4. Linearized KL divergence for optimally decoupled models of the turbine engine

λ = 1× 10−1 λ = 1× 100 λ = 1× 101 λ = 1× 103

Linearized KL Divergence 6.95× 10−10 1.15× 100 1.25× 101 3.73× 103

Active Coupling Variables 19/22 16/22 14/22 7/22
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To further compare the models, the pointwise errors of the three outputs from the performance discipline
(TSFC, Fn, and OPR) for the decoupled models corresponding to λ = 10−1, 100, and 101 are plotted
in Figures 29-31. These figures demonstrate the increasing errors in the outputs of the decoupled models
relative to the reference model at the same inputs for 103 samples with the reduction in the number of
discipline couplings. With the exception of the TSFC output variable in the final model (Figure 31), the
trends for the output variables are closely captured by the decoupled models associated with λ = 10−1, and
100. Nevertheless, users with different requirements may still trade-off sparsity and accuracy for performing
computations, such as multidisciplinary optimization, with these two decoupled models. While the optimal
model for λ = 100 eliminates one feedback cycle from the low pressure turbine leading to lower computational
costs than the model for λ = 10−1, there is a trade-off with accuracy, as seen with the larger spread in the
pointwise errors of the TSFC variable.

Furthermore, this result highlights the importance of the bypass line to accurately estimate TSFC when
computing the turbine’s performance. We note that this coupling is included in the models corresponding
to λ = 10−1, and 100.
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Figure 29. Comparison of QoI with optimally decoupled model for λ = 1.0× 10−1
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Figure 30. Comparison of QoI with optimally decoupled model for λ = 1.0× 100
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Figure 31. Comparison of QoI with optimally decoupled model for λ = 1.0× 101
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Finally, in addition to producing a sequence of sparsely coupled models with a reduced number of discipline
couplings relative to M0, the model selection algorithm efficiently found all of the optimally decoupled models
by visiting less than 5.7% of the model space. This is contrasted with the otherwise intractable process of
enumerating all possible models to find the optimum of the combinatorial problem posed in equation 3.

IV.C. Numerical Implementation

A publicly available matlab implementation of the algorithm to find the optimal approximate coupling for
a multidisciplinary model can be found at www.github.com/baptistar/coupling. The application of the
algorithm to the fire detection satellite model presented in this work is publicly available for reference.

V. Conclusion

Identifying important discipline couplings in the context of multidisciplinary models under uncertainty has
been studied from the perspective of optimal model selection. Using a combination of model linearizations
and sequential Monte Carlo, the combinatorial model space was efficiently explored for two engineering
problems: a fire detection satellite model and a turbine engine cycle analysis model. This resulted in a
set of optimal models with a reduced number of discipline couplings relative to the reference model, while
remaining accurate in distribution for the specified output quantities of interest.

Future research will address corrections to the Gaussian approximations used in the algorithm by using a
small number of samples from the reference model to improve the estimates for the KL divergence. Further-
more, the selection of other informative functions for P(M) to model the complexity of each model will be
considered by taking into account the computational cost of keeping each discipline coupling. Finally, the
continued application of the algorithm to reveal the natural structure of other complex engineering systems
under different input uncertainties will also be explored.
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