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ABSTRACT
This paper derives predictive reduced-order models for rocket engine combustion
dynamics via Operator Inference, a scientific machine learning approach that blends
data-driven learning with physics-based modeling. The non-intrusive nature of the
approach enables variable transformations that expose system structure. The specific
contribution of this paper is to advance the formulation robustness and algorithmic
scalability of the Operator Inference approach. Regularization is introduced to the
formulation to avoid over-fitting. The task of determining an optimal regularization
is posed as an optimization problem that balances training error and stability of long-
time integration dynamics. A scalable algorithm and open-source implementation
are presented, then demonstrated for a single-injector rocket combustion example.
This example exhibits rich dynamics that are difficult to capture with state-of-the-
art reduced models. With appropriate regularization and an informed selection of
learning variables, the reduced-order models exhibit high accuracy in re-predicting
the training regime and acceptable accuracy in predicting future dynamics, while
achieving close to a million times speedup in computational cost. When compared to
a state-of-the-art model reduction method, the Operator Inference models provide
the same or better accuracy at approximately one thousandth of the computational
cost.

KEYWORDS
Model reduction; operator inference; scientific machine learning; combustion;
data-driven reduced model.

1. Introduction

The emerging field of scientific machine learning brings together the perspectives
of physics-based modeling and data-driven learning. In the field of fluid dynamics,
physics-based modeling and simulation have played a critical role in advancing scien-
tific discovery and driving engineering innovation in domains as diverse as biomedical
engineering (Yin et al. 2010; Nordsletten et al. 2011), geothermal modeling (O’Sullivan
et al. 2001; Cui et al. 2011), and aerospace (Spalart and Venkatakrishnan 2016). These
advances are based on decades of mathematical and algorithmic developments in com-
putational fluid dynamics (CFD). Scientific machine learning builds upon these rig-
orous physics-based foundations while seeking to exploit the flexibility and expressive
modeling capabilities of machine learning (Baker et al. 2019). This paper presents a
scientific machine learning approach that blends data-driven learning with the theo-
retical foundations of physics-based model reduction. This creates the capability to
learn predictive reduced-order models (ROMs) that provide approximate predictions
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of complex physical phenomena while exhibiting several orders of magnitude compu-
tational speedup over CFD.

Projection-based model reduction considers the class of problems for which the
governing equations are known and for which we have a high-fidelity (e.g., CFD)
model (Antoulas 2005; Benner et al. 2015). The goal is to derive a ROM that has lower
complexity and yields accurate solutions with reduced computation time. Projection-
based approaches define a low-dimensional manifold on which the dominant dynamics
evolve. This manifold may be defined as a function of the operators of the high-
fidelity model, as in interpolatory methods that employ a Krylov subspace (Bai 2002;
Freund 2003), or it may be determined empirically from representative high-fidelity
simulation data, as in the proper orthogonal decomposition (POD) (Lumley 1967;
Sirovich 1987; Berkooz et al. 1993). The POD has been particularly successful in
fluid dynamics, dating back to the early applications in unsteady flows and turbulence
modeling (Sirovich 1987; Deane et al. 1991; Gatski and Glauser 1992), and in unsteady
fluid-structure interaction (Dowell and Hall 2001).

Model reduction methods have advanced to include error estimation (Veroy et al.
2003; Veroy and Patera 2005; Grepl and Patera 2005; Rozza et al. 2008) and to ad-
dress parametric and nonlinear problems (Barrault et al. 2004; Astrid et al. 2008;
Chaturantabut and Sorensen 2010; Carlberg et al. 2013), yet the intrusive nature of
the methods has limited their impact in practical applications. When legacy or com-
mercial codes are used, as is often the case for CFD applications, it can be difficult or
impossible to implement classical projection-based model reduction. Black-box surro-
gate modeling instead derives the ROM by fitting to simulation data; such methods
include response surfaces and Gaussian process models, long used in engineering, as
well as machine learning surrogate models. These methods are powerful and often
yield good results, but since the approximations are based on generic data-fit repre-
sentations, they are not equipped with the guarantees (e.g., stability guarantees, error
estimators) that accompany projection-based ROMs. Nonlinear system identification
techniques seek to illuminate the black box by discovering the underlying physics of a
system from data (Brunton et al. 2016). However, when the governing dynamics are
known and simulation data are available, reduced models may be directly tailored to
the specific dynamics without access to the details of the large-scale CFD code.

This paper presents a non-intrusive alternative to black-box surrogate modeling. We
use the Operator Inference method of Peherstorfer and Willcox (2016) to learn a ROM
from simulation data; the structure of the ROM is defined by known governing equa-
tions combined with the theory of projection-based model reduction. Our approach
may be termed ‘glass-box modeling’, which we define as the situation where the form
of the targeted dynamics is known (here via the partial differential equations that de-
fine the problem of interest), but we do not have internal access to the CFD code that
produces the simulation data. That is, we know what dynamics to expect, but we may
only calibrate our models using outputs of the full-order CFD model. This glass-box
setting is in contrast to black-box modeling approaches which do not exploit knowledge
of the governing equations. We build on our prior work in Swischuk et al. (2020) by for-
mally introducing regularization to the Operator Inference approach. Regularization is
critical to avoid overfitting for problems with complex dynamics, as is the case for the
combustion example considered here. A second contribution of this paper is a scalable
implementation of the approach, which is available via an open-source implementa-
tion. Section 2 presents the methodology and regularization approach and describes
the scalable implementation. Section 3 presents numerical results for a single-injector
combustion problem and Section 4 concludes the paper.
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2. Methodology

This section begins with an overview of the Operator Inference approach in Section 2.1.
Section 2.2 augments Operator Inference with a new regularization formulation, posed
as an optimization problem, and presents a complete algorithm for regularization
selection and model learning. In Section 2.3, we discuss a scalable implementation
of the algorithm, which can then be applied to CFD problems of high dimension.

2.1. Operator Inference

We target problems governed by systems of nonlinear partial differential equations.
Consider the governing equations of the system of interest written, after spatial dis-
cretization, in semi-discrete form

d

dt
q(t) = c + Aq(t) + H(q(t)⊗ q(t)) + Bu(t), q(t0) = q0, t ∈ [t0, tf ], (1)

where q(t) ∈ Rn is the state vector discretized over n spatial points at time t, u(t) ∈ Rm

denotes the m inputs at time t, typically related to boundary conditions or forcing
terms, t0 and tf are respectively the initial and final time, and q0 is the given initial
condition. We refer to Eq. (1) as the full-order model (FOM) and note that it has been
written to have a polynomial structure: c ∈ Rn are constant terms; Aq(t) are the terms
that are linear in the state q(t), with the discretized operator A ∈ Rn×n; H(q(t)⊗q(t))
are the terms that are quadratic in q(t), with H ∈ Rn×n2

; and Bu(t) are the terms that
are linear in the input u(t), with B ∈ Rn×m. This polynomial structure arises in three
ways: (1) it may be an attribute of the governing equations; (2) it may be exposed via
variable transformations; or (3) it may be derived by introducing auxiliary variables
through the process of lifting. As examples of each: (1) the incompressible Navier-
Stokes equations have a quadratic form; (2) the Euler equations can be transformed
to quadratic form by using pressure, velocity, and specific volume as state variables;
(3) a nonlinear tubular reactor model with Arrhenius reaction terms can be written
in quadratic form via the lifting transformation shown in Kramer and Willcox (2019)
that introduces six auxiliary variables. Higher-order terms may be included in the
formulation as well, but in this work we focus on a quadratic model due to the nature
of the driving application.

A projection-based reduced-order model (ROM) of Eq. (1) preserves the polynomial
structure (Benner et al. 2015). Approximating the high-dimensional state q in a low-
dimensional basis V ∈ Rn×r, with r � n, we write q(t) ≈ Vqr(t), where qr(t) ∈ Rr

is the reduced state. Using a Galerkin projection, this yields the intrusive ROM of
Eq. (1):

d

dt
qr(t) = cr + Arqr(t) + Hr(qr(t)⊗ qr(t)) + Bru(t), qr(t0) = V>q0, t ∈ [t0, tf ],

where cr = V>c ∈ Rr, Ar = V>AV ∈ Rr×r, Hr = V>H(V ⊗ V) ∈ Rr×r2 , and
Br = V>B ∈ Rr×m are the ROM operators corresponding to the FOM operators
c, A, H, and B, respectively. The ROM is intrusive because computing these ROM
operators requires access to the discretized FOM operators, which typically entails
intrusive queries and/or access to source code.

The non-intrusive Operator Inference (OpInf) approach proposed by Peherstorfer
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and Willcox (2016) parallels the intrusive projection-based ROM setting, but learns
ROMs from simulation data without direct access to the FOM operators. Recognizing
that the intrusive ROM has the same polynomial form as Eq. (1), OpInf uses a data-
driven regression approach to derive a ROM of Eq. (1) as

d

dt
q̂(t) = ĉ + Âq̂(t) + Ĥ(q̂(t)⊗ q̂(t)) + B̂u(t), q̂(t0) = V>q0, t ∈ [t0, tf ], (2)

where ĉ ∈ Rr, Â ∈ Rr×r, Ĥ ∈ Rr×(r+1

2 ), and B̂ ∈ Rr×m are determined by solving a
data-driven regression problem, and q̂(t) ∈ Rr is the state of the OpInf ROM.1

OpInf solves a regression problem to find reduced operators that yield the ROM that
best matches projected snapshot data in a minimum-residual sense. Mathematically,
OpInf solves the least-squares problem

min
ĉ,Â,Ĥ,B̂

k−1∑
j=0

∥∥∥ĉ + Âq̂j + Ĥ(q̂j ⊗ q̂j) + B̂uj − ˙̂qj

∥∥∥2

2
, (3)

where {q̂j}k−1
j=0 is the dataset used to drive the learning with q̂j denoting a reduced-

state snapshot at timestep j, { ˙̂qj}k−1
j=0 are the associated time derivatives, and {uj}k−1

j=0

is the collection of inputs corresponding to the data with uj ≡ u(tj). To generate the
dataset, we employ the following steps: (1) Collect a set of k high-fidelity state snap-
shots {zj}k−1

j=0 ⊂ Rñ by solving the original high-fidelity model at times {tj}k−1
j=0 with

inputs {uj}k−1
j=0 . (2) Apply a variable transformation qj = T (zj) to obtain snapshots

of the transformed variables. Here T : Rñ → Rn is the map representing a reversible
transformation (e.g., from density to specific volume) or a lifting transformation (Qian
et al. 2020). (3) Compute the proper orthogonal decomposition (POD) basis V of the
transformed snapshots.2 (4) Project the transformed snapshots onto the POD sub-

space as q̂j = V>qj . (5) Estimate projected time derivative information { ˙̂q}k−1
j=0 . The

training period [t0, tk−1] for which we have data is a subset of the full time domain of
interest [t0, tf ]; results from the ROM over [tk, tf ] will be entirely predictive.

Eq. (3) can also be written in matrix form as

min
O

∥∥∥DO> −R>
∥∥∥2

F
, (4)

where

O =
[

ĉ Â Ĥ B̂
]
∈ Rr×d(r,m), (unknown operators)

D =
[

1k Q̂> (Q̂⊗ Q̂)> U>
]
∈ Rk×d(r,m), (known data)

Q̂ =
[

q̂0 q̂1 · · · q̂k−1

]
∈ Rr×k, (snapshots)

R =
[

˙̂q0
˙̂q1 · · · ˙̂qk−1

]
∈ Rr×k, (time derivatives)

U =
[

u0 u1 · · · uk−1

]
∈ Rm×k, (inputs)

1From here on we use q̂⊗ q̂ to indicate a compact Kronecker product with only the
(r+1

2

)
= 1

2
r(r+ 1) unique

quadratic terms (q̂21 , q̂1q̂2, q̂1q̂3, . . .); for matrices, the product is applied column-wise.
2Or any other low-dimensional basis as desired.

4



and where d(r,m) = 1+ r+
(
r+1

2

)
+m and 1k ∈ Rk is the length-k column vector with

all entries set to unity. The OpInf least-squares problem Eq. (3) is therefore linear in

the coefficients of the unknown ROM operators ĉ, Â, Ĥ, and B̂.
The OpInf approach permits us to compute the ROM operators ĉ, Â, Ĥ, and B̂

without explicit access to the original high-dimensional operators c, A, H, and B.
This point is key since we apply variable transformations only to the snapshot data,
not to the operators or the underlying model. Thus, even in a setting where deriving
a classical intrusive ROM might be possible, the OpInf approach enables us to work
with variables other than those used for the original high-fidelity discretization. In
Section 3 we will see the importance of this for a reacting flow application. We also
note that under some conditions, OpInf recovers the intrusive POD ROM (Peherstorfer
and Willcox 2016; Peherstorfer 2020).

2.2. Regularization

The problem in Eq. (4) is generally overdetermined (i.e., k > d(r,m)), but is also noisy
due to errors in the numerically estimated time derivatives R, model mis-specification
(e.g., if the system is not truly quadratic), and truncated POD modes that leave some
system dynamics unresolved. The ROMs resulting from Eq. (4) can thus suffer from
overfitting the operators to the data and therefore exhibit poor predictive performance
over the time domain of interest [t0, tf ].

To avoid overfitting, we introduce a Tikhonov regularization (Tikhonov and Arsenin
1977) to Eq. (4), which then becomes

min
O

∥∥∥DO> −R>
∥∥∥2

F
+
∥∥∥ΓO>

∥∥∥2

F
, (5)

where Γ ∈ Rd(r,m)×d(r,m) is a full-rank regularizer. The minimizer of Eq. (5) satisfies
the modified normal equations(

D>D + Γ>Γ
)

O> = D>R>, (6)

which admit a unique solution since D>D + Γ>Γ is symmetric positive definite.
An L2 regularizer Γ = λI, λ > 0 and I the identity matrix, penalizes each entry

of the inferred ROM operators ĉ, Â, Ĥ, and B̂, thereby driving the ROM toward
the globally stable system d

dt q̂(t) = 0. Since the entries of the quadratic operator Ĥ
have a different scaling than entries of the other operators, we construct a diagonal
regularizer Λ(λ1, λ2), with λ1, λ2 > 0, such that the operator entries are penalized by

λ1, except for the entries of Ĥ, which are penalized by λ2. That is, with Γ = Λ(λ1, λ2),
Eq. (5) can be expressed as

min
ĉ,Â,Ĥ,B̂

[∥∥∥D [ ĉ Â Ĥ B̂
]> −R>

∥∥∥2

F
+ λ1

(
‖ĉ‖22 + ‖Â‖2F + ‖B̂‖2F

)
+ λ2‖Ĥ‖2F

]
.

The scalar hyperparameters λ1 and λ2, which balance the minimization between
the data fit and the regularization, must be chosen with care. The ideal regularizer
produces a ROM that minimizes some error metric over the full time domain [t0, tf ];
however, since data are only available for the smaller training domain [t0, tk−1], we
choose λ1 and λ2 so that the resulting ROM minimizes error over [t0, tk−1] while
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maintaining a bound on the integrated POD coefficients over [t0, tf ]. That is, we

require the state q̂(t) =
[
q̂1(t) q̂2(t) · · · q̂r(t)

]>
produced by integrating Eq. (2)

to satisfy |q̂i(t)| ≤ B, i = 1, . . . , r and t ∈ [t0, tf ], for some B > 0. This in turn ensures
a bound on the magnitude of the entries of the high-dimensional state q(t) = Vq̂(t):

|qi(t)| =

∣∣∣∣∣∣
r∑

j=1

Vij q̂j(t)

∣∣∣∣∣∣ ≤
r∑

j=1

|Vij | |q̂j(t)| ≤ B
r∑

j=1

|Vij | , i = 1, 2, . . . , n, (7)

where Vij is the ith element of the jth POD basis vector. Note that the bound B may
be chosen with the intent of imposing a particular bound on the |qi| since the sums∑r

j=1 |Vij | can be precomputed. For example, our regularization strategy provides a
computationally efficient way to impose the temperature limiters proposed by Huang
et al. (2019).

Algorithm 1 details our regularized OpInf procedure, in which we choose B as
a multiple of the maximum absolute entry of the projected training data Q̂. This
particular strategy for selecting λ1 and λ2 could be replaced with a cross-validation
or resampling grid search technique, but our experiments in this vein did not produce
robust results. The training error ‖Q̂ − Q̃:,:k‖ in step 13 may compare Q̂ and Q̃:,:k

directly in the reduced space (e.g., with a matrix norm or an Lp([t0, tk−1]) norm), or
it may be replaced with a more targeted comparison of some quantity of interest.

Algorithm 1 Operator Inference with regularization selection

1: procedure RegOpInf(snapshots Z ∈ Rñ×k, inputs U ∈ Rm×k, final time tf > t0,
reversible map T : Rñ → Rn, reduced dimension r ∈ N, bound margin τ ≥ 1 )

2: Q← T (Z) . Map native variables to learning variables (columnwise).
3: V← pod(Q, r) . Compute a rank-r POD basis from transformed snapshots.

4: Q̂← V>Q . Project snapshots to the r-dimensional POD subspace.
5: R← d

dtQ̂ . Estimate time derivatives of the projected snapshots.

6: B ← τ maxi,j |Q̂ij | . Select a bound to require for integrated POD modes.
7: procedure TrainError(λ1, λ2)

8: ĉ, Â, Ĥ, B̂← solve Eq. (5) with regularizer Γ = Λ(λ1, λ2)

9: Q̃← integrate Eq. (2) with ĉ, Â, Ĥ, B̂ from q̂0 = Q̂:,0 over [t0, tf ]

10: if maxi,j |Q̃ij | > B then
11: return ∞ . Disqualify ROMs that violate the bound.
12: else
13: return ‖Q̂− Q̃:,:k‖ . Compute ROM error over [t0, tk−1].

14: λ∗1, λ
∗
2 ← argmin TrainError(λ1, λ2)

15: ĉ, Â, Ĥ, B̂← solve Eq. (5) with optimal regularizer Γ = Λ(λ∗1, λ
∗
2)

16: return ĉ, Â, Ĥ, B̂

The regularization approach of Algorithm 1 may be viewed as a stabilization method
since it selects a ROM with reasonable behavior over a given time domain. It should
be noted, however, that this method does not modify an existing ROM to achieve
stability, different from other stabilization methods such as eigenvalue reassignment
(Kalashnikova et al. 2014; Rezaian and Wei 2020). The optimization is driven by a
penalization but has no built-in constraints, which is a major advantage in terms
of the computational cost, but the resulting ROMs are not guaranteed to preserve
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properties such as energy conservation. Adding constraints to Operator Inference to
target conservation, similar to the work in Carlberg et al. (2018), is a subject for
possible future work.

2.3. Scalable Implementation

The steps of Algorithm 1 are highly modular and amenable to large-scale problems.
The variable transformation Q = T (Z) of step 2 consists of O(nk) elementary compu-
tations on the original snapshot matrix Z ∈ Rñ×k. To compute the rank-r POD basis
V ∈ Rn×r in step 3, we use a randomized singular-value decomposition algorithm re-
quiring O(rnk + r2(n+ k)) operations (Halko et al. 2011); since r � k, n, the leading

order behavior is O(rnk). The projection Q̂ = V>Q in step 4 costs about 2nk opera-

tions. Note that Q̂ ∈ Rr×k is small compared to Q ∈ Rn×k, as typically r ∼ 100–103

and n ∼ 104–109. The time derivatives R ∈ Rr×k in step 5 may be provided by the
full-order solver or estimated, e.g., with finite differences of the columns of Q̂. In the
latter case, the cost is O(rk). Step 6 is a simple O(rk) selection. The computational
cost of steps 2–6 is therefore O(rnk).

The subroutine TrainError: R2 → R comprising steps 7–13 must be evaluated for
several choices of λ1 and λ2. In step 8, we solve the minimization problem Eq. (5) via
the linear system Eq. (6). Forming D>D ∈ Rd(r,m)×d(r,m) and D>R> ∈ Rd(r,m)×r costs
O(d(r,m)2k+rd(r,m)k) = O(r4k) operations, but these can be precomputed once and
reused in each subroutine evaluation; for specific λ1 and λ2, we form Γ ∈ Rd(r,m)×d(r,m)

and compute D>D + Γ>Γ ∈ Rd(r,m)×d(r,m) with only 2d(r,m) additional operations
since Γ is diagonal. Solving Eq. (6) via the Cholesky decomposition has a leading
order cost of 1

3(d(r,m)3) = 1
24r

6 operations (Demmel 1997), but this estimate can be
improved upon with iterative methods for larger r if desired. The ROM integration
in step 9 can be carried out with any time-stepping scheme; for explicit methods,
evaluating the ROM at a single point, i.e., computing the right-hand side of Eq. (2),
costs O(r3) operations. The total cost each evaluation of TrainError: R2 → R is
therefore dominated by the cost of solving Eq. (6), which is independent of n and k.

Finally, the minimization in step 14 is carried out with a derivative-free search
method, which enables fewer total evaluations of the subroutine than a fine grid search.
However, a coarse grid search is useful for identifying appropriate initial guesses for
λ1 and λ2.

3. Results

This section applies regularized OpInf to a single-injector combustion problem, studied
previously by Swischuk et al. (2020), on the two-dimensional computational domain
shown in Figure 1. Section 3.1 describes the governing dynamics, a set of high-fidelity
data obtained from a CFD code, and the variable transformations used to produce
training data for learning reduced models with Algorithm 1. The resulting OpInf ROM
performance is analyzed in Section 3.2 and compared to a state-of-the-art intrusive
model reduction method in Section 3.3.
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Figure 1. The computational domain for the single-injector combustion problem. On the left, monitor lo-
cations for numerical results. On the right, a typical temperature field demonstrating the complexity and

nonlinear nature of the problem.

3.1. Problem setup

The combustion dynamics for this problem are governed by conservation laws

∂~qc

∂t
+∇ · ( ~K − ~Kv) = ~S, (8)

where ~qc =
[
ρ ρvx ρvy ρe ρY1 ρY2 ρY3 ρY4

]>
are the conservative vari-

ables, ~K are the inviscid flux terms, ~Kv are the viscous flux terms, and ~S are the
source terms. Here ρ is the density [ kg

m3 ], vx and vy are the x and y velocity [m
s ], e is

the total energy [ J
m3 ], and Y` is the `th species mass fraction with ` = 1, 2, 3, 4. The

chemical species are CH4, O2, H2O, and CO2, which follow a global one-step chemical
reaction CH4 + 2O2 → CO2 + 2H2O (Westbrook and Dryer 1981). See Harvazinski
et al. (2015) for more details on the governing equations.

At the downstream end of the combustor, we impose a non-reflecting boundary
condition while maintaining the chamber pressure via

pback(t) = pback,ref (1 + 0.1 sin(2πft)) (9)

where pback,ref = 106 Pa and f = 5,000 Hz. The top and bottom wall boundary
conditions are no-slip conditions, and for the upstream boundary we impose a constant
mass flow at the inlets.

Swischuk et al. (2020) show that if the governing equations (8) are transformed to
be written in the specific volume variables, many of the terms take a quadratic form.
Following that idea, we choose as learning variables the transformed and augmented

state ~q =
[
p vx vy T ξ c1 c2 c3 c4

]>
where p is the pressure [Pa], T is the

temperature [K], ξ = 1/ρ is the specific volume [m3

kg ], and c1, . . . , c4 are the species

molar concentrations [kmol
m3 ] given by c` = ρY`/M` with M` the molar mass of the

`th species [ g
mol ]. As shown in Swischuk et al. (2020), the equations for vx, vy, and

ξ are exactly quadratic in ~q, while the remaining equations are quadratic with some
non-polynomial terms in ~q. Note that, differently from Swischuk et al. (2020), ~q here is
chosen to contain specific volume, pressure, and temperature, even though only two of
the three quantities are needed to fully define the high-fidelity model (and the equation
of state then defines the third). We augment the learning variables in this way because
doing so exposes the quadratic form while also directly targeting the variables that are
of primary interest for assessing ROM performance. In particular, the resulting ROMs
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provide more accurate predictions of temperature when temperature is included ex-
plicitly as a learning variable. We can do this since the transformations are applied
only to the snapshot data, not to the CFD model itself. Indeed, constructing the full-
order spatial operators in these transformed coordinates would be both impractical
and inexact. This flexibility to learn from transformed snapshots instead of trans-
formed full-order operators is a major advantage of the non-intrusive OpInf approach
in comparison to traditional intrusive projection-based model reduction methods.

To generate high-fidelity training data, we use the finite-volume based General
Equation and Mesh Solver (GEMS) (Harvazinski et al. 2015) to solve for the variables[
p vx vy T Y1 Y2 Y3 Y4

]
over nx = 38,523 cells, resulting in snapshots with

8nx = 308,184 entries each. The snapshots are computed for 60,000 time steps beyond
the initial condition with a temporal discretization of δt = 10−7 s, from t0 = 0.015 s
to tf = 0.021 s. The computational cost of computing this dataset is approximately
1,200 CPU hours on two computing nodes, each of which contains two Haswell CPUs
at 2.60 GHz and 20 cores per node.

Scaling is an essential aspect of successful model reduction and is particularly critical
for this problem due to the wide range of scales across variables. After transforming
the GEMS snapshot data to the learning variables ~q, the species molar concentrations
are scaled to [0, 1], and all other variables are scaled to [−1, 1]. This scaling ensures
that null velocities and null molar concentrations are preserved. For example, some
upstream regions of the injector have zero methane concentration at all times. By
construction, the POD basis vectors and thus the ROM predictions will preserve those
zero concentration values.

We implement Algorithm 1 via the rom operator inference Python package,3

which is built on NumPy, SciPy, and scikit-learn (Walt et al. 2011; Virtanen et al. 2020;
Pedregosa et al. 2011). The time derivatives in step 5 of Algorithm 1 are estimated
with fourth-order finite differences, and the least-squares problem in step 8 are solved
by applying the LAPACK routine POSV to Eq. (6). The learned ROMs are integrated
in step 9 with the explicit, adaptive, fourth-order Runge-Kutta scheme RK45, and
the error evaluation of step 13 uses the L2([t0, tk−1]) norm in the reduced space. To
minimize the function TrainError: R2 → R in step 14, we find an initial estimate
of the minimizer via a coarse grid search, then refine the result with a Nelder-Mead
search method (Nelder and Mead 1965). The code and details are publicly available
at https://github.com/Willcox-Research-Group/ROM-OpInf-Combustion-2D.

3.2. Sensitivity to Training Data

We study the sensitivity of our approach to the training data by varying the number of
snapshots used to compute the POD basis and learn the OpInf ROM. Specifically, we
consider the three cases where we use the first k = 10,000, k = 20,000, and k = 30,000
snapshots from GEMS as training data sets. In each case we compute the POD basis
and, to select an appropriate reduced dimension r, the cumulative energy based on the

POD singular values: Er =
(∑r

j=1 σ
2
j

)/(∑k
j=1 σ

2
j

)
, where {σj}kj=1 are the singular

values of the learning variable snapshot matrix Q (see Figure 2). Specifically, we
choose the minimal integer r such that Er is greater than a fixed energy threshold.
Table 1 shows that r is increasing linearly with the number of snapshots, indicating
that the basis is not being saturated as additional information is incorporated. This
is an indication of the challenging nature of this application, due to the rich and

3See https://github.com/Willcox-Research-Group/rom-operator-inference-Python3.
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Figure 2. The POD singular values for varying size

of the snapshot training set.

Table 1. The basis size r required to exceed a given

cumulative energy level Er increases linearly with
the number of snapshots k in the training set; the

dimension d = d(r,m) increases quadratically with r.

Cumulative energy Er
0.985 0.990 0.995

k = 10,000
r = 22 r = 27 r = 36
d = 277 d = 407 d = 704

k = 20,000
r = 43 r = 53 r = 72
d = 991 d = 1,486 d = 2,701

k = 30,000
r = 66 r = 82 r = 110
d = 2,279 d = 3,487 d = 6,217
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Figure 3. Traces of pressure and x-velocity through time at monitor locations 1 and 3 of Figure 1, respectively,

for k = 10,000 (top row), k = 20,000 (middle row), and k = 30,000 (bottom row) training snapshots. The
vertical black lines separate the training and prediction periods. For each choice of k, the error over the

training domain is low, but increasing k has a significant impact on the behavior in the testing domain. Here

r is chosen in each case so that Er > 0.985.

complex dynamics. Table 1 also shows the column dimension d(r,m) of the data matrix
D ∈ Rk×d(r,m) in the Operator Inference problem, which grows quadratically with r;
choosing r so that k � d(r,m) helps ensure that D has full rank.

Figure 3 plots the GEMS and OpInf ROM results for pressure and x-velocity predic-
tions over time at two of the monitor locations in Figure 1.4 While it can be misleading
to assess accuracy based on predictions at a single spatial point, these plots reveal sev-
eral representative insights. First, each OpInf ROM faithfully reconstructs the training
data but has some discrepancies in the prediction regime. Second, the pressure and
x-velocity frequencies are well captured throughout the time domain, but the ampli-
tudes are sometimes less accurate in the prediction regime. The effects of the 5,000 Hz
downstream pressure forcing are clearly visible in the pressure. Third, we see the im-
portance of the training data—as the amount of training data increases, the ROM
predictions change significantly and generally (but not always) improve. This is yet
another indication of the complexity of the dynamics we are aiming to approximate.

The effectiveness of the low-dimensional basis differs among the state variables.

4See https://github.com/Willcox-Research-Group/ROM-OpInf-Combustion-2D for additional results.
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Figure 4. Spatially averaged relative errors in time for pressure and temperature (left) and temperature
profiles for the GEMS dataset and an OpInf ROM averaged over 60,000 time steps (right). The basis comprises

the r = 43 dominant singular vectors of k = 20,000 training snapshots.

Let z(t) ∈ R8nx denote the GEMS simulation data at time t with components[
s1(t) · · · snx

(t)
]> ∈ Rnx corresponding to a single state variable (e.g., pressure or

temperature), and let T : R8nx → R9nx be the preprocessing variable transformation
and scaling with reverse operator T ∗ : R9nx → R8nx (i.e., T ∗(T (z(t))) = z(t) for all
t). Given the basis V ∈ R9nx×r for the scaled learning variables, the projection of the

GEMS data onto the basis is T ∗
(
VV>T (z(t))

)
. Let

[
sproj

1 (t) · · · sproj
nx (t)

]> ∈ Rnx

denote the components of the projection corresponding to the state variable of in-
terest. Next, letting q̃(t) denote the ROM state (the result of integrating Eq. (2)),
the reconstructed ROM prediction in the original state variables is T ∗ (Vq̃(t)) . Let[
spred

1 (t) · · · spred
nx (t)

]>
∈ Rnx be the components of this reconstruction correspond-

ing to the state variable of interest. We define the spatially averaged relative errors
for the projection and the ROM predictions as

sprojerr(t) =
1

nx

nx∑
i=1

|sproj
i (t)− si(t)|
|si(t)|

, sprederr(t) =
1

nx

nx∑
i=1

|spred
i (t)− si(t)|
|si(t)|

,

respectively. Figure 4 plots these errors against time for pressure and temperature
using a POD basis with r = 43 vectors computed from the first k = 20,000 training
snapshots. While both error measures for pressure remain low throughout the full time
interval, both the projection errors and the ROM prediction errors for temperature
increase significantly at the end of the training regime. The temperature profile is
influenced by both the advective flow dynamics and the local chemical reactions, which
in combination lead to a highly nonlinear and multiscale behavior that is difficult to
represent with the POD basis after the training period. However, while the ROM
struggles to accurately predict the detailed temperature variations pointwise, it does
adequately predict the general trends of temperature evolution beyond the training
horizon. Figure 4 shows the time-averaged temperature profiles for the GEMS data
and for an OpInf ROM, suggesting that the ROM captures the time-averaged behavior
of the temperature dynamics.

Figure 5 plots CH4 and CO2 concentrations integrated over the spatial domain.
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Figure 5. Integrated molar concentrations for CH4 and CO2, computed over the spatial domain for each
point in time, for k = 10,000 (top row), k = 20,000 (middle row), and k = 30,000 (bottom row) training

snapshots. These statistical features further highlight the effect of increasing k. As in Figure 3, r is chosen so

that Er > 0.985.

These measures give a more global sense of the ROM predictive accuracy and the pre-
dicted chemical reaction rate. In each case, the ROMs are able to accurately re-predict
the training data and capture much of the overall system behavior in the prediction
phase, with slightly more training error as the number of snapshots increases.

3.3. Comparison to POD-DEIM

We now compare regularized OpInf to a state-of-the-art nonlinear model reduction
method that uses a least-squares Petrov-Galerkin POD projection coupled with the
discrete empirical interpolation method (DEIM) (Chaturantabut and Sorensen 2010),
as implemented for the same combustion problem in Huang et al. (2019, 2018). This
POD-DEIM method is intrusive—it requires nonlinear residual evaluations of the
GEMS code at sparse discrete interpolation points. This also increases the compu-
tational cost of solving the POD-DEIM ROM in comparison to the OpInf ROM:
integrating a POD-DEIM ROM with r = 70 for 6,000 time steps of size δt = 10−6 s
takes approximately 30 minutes on two nodes, each with two Haswell CPUs processors
at 2.60 GHz and 20 cores per node; for OpInf, using Python 3.6.9 and a single CPU
on an AMD EPYC 7,702 64-core processor at 3.3 GHz with 2.1 TB RAM, we solve
Eq. (5) with k = 20,000 training snapshots and r = 43 POD modes in approximately
0.6 s and integrate the resulting OpInf ROM for 60,000 time steps of size δt = 10−7 s
in approximately 0.4 s. While these measurements are made on different hardware,
and though the execution time for POD-DEIM can be improved with optimal load
balancing, the difference in execution times (30 minutes versus 1 second) is represen-
tative and illustrates one of the advantages over POD-DEIM of the polynomial form
employed in the OpInf approach.

Figure 6 compares select GEMS outputs to POD-DEIM and OpInf ROM outputs,
with each ROM trained on k = 20,000 training snapshots. As before, the OpInf ROM
dimension r = 43 is chosen such that Er > 0.985; the POD-DEIM ROM, which uses
an entirely different basis than the OpInf approach, requires r = 70 vectors to achieve
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Figure 6. Pressure trace at monitor location 3 of Figure 1 (top) and spatially integrated O2 and CO2 molar
concentrations (bottom), computed by GEMS, a POD-DEIM ROM, and an OpInf ROM. Both ROMs use

k = 20,000 training snapshots with r chosen so that Er > 0.985.

the same level of cumulative energy. Both approaches maintain appropriate pressure
oscillation frequencies, and while neither model accurately predicts the global species
concentration dynamics after the training period, the OpInf ROM reconstructs the
training data more faithfully than the POD-DEIM ROM. Huang et al. (2019) show
similar results for the same POD-DEIM model with 1 ms of training and 1 ms of
prediction; here we are using 2 ms of training and 4 ms of prediction. Note from
Figures 3 and 5 that the OpInf ROMs achieve excellent prediction results for the 1 ms
period following the training.

Figures 7 and 8 show, respectively, full-domain results for the temperature and mo-
lar concentration of CH4. The figures show the solution at time instants within the
training regime, at the end of the training regime, and into the prediction regime.
As with the point traces shown earlier, we see that the ROMs have impressive accu-
racy over the training region, but lose accuracy as they attempt to predict dynamics
beyond the training horizon. However, many of the coherent features are reasonably
predicted, especially the recirculation zone dynamics near the dump plane (x = 0 in
Figure 1) shown in the temperature fields. Significantly, both ROMs maintain appro-
priate temperature ranges throughout the prediction phase. The POD-DEIM ROM
explicitly enforces such limits by reconstructing the full solution at each time step,
constraining the temperature to a desired range, and projecting the result back to the
reduced space (see Section IV.G of Huang et al. (2019)); in contrast, the OpInf ROM
selects a regularization that results in bounded behavior due to the criteria |q̂i(t)| ≤ B
(see Eq. (7)). In other words, POD-DEIM limits the temperature in the online phase,
while OpInf builds a similar constraint into the offline phase.
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Figure 7. Temperature fields produced by GEMS (left column), POD-DEIM (middle column), and OpInf

(right column), where each ROMs uses k = 20,000 training snapshots, with r chosen so that Er > 0.985. Each
row shows results for a given time, with an increment of 0.0005 s between rows. The training period ends at

t = 0.0170 s (fourth row); t = 0.0175 s (last row) is well into the prediction regime.

Figure 8. Molar concentrations of CH4 produced by GEMS (left column), POD-DEIM (middle column), and
OpInf (right column), where each ROMs uses k = 20,000 training snapshots, with r chosen so that Er > 0.985.

Each row shows results for a given time, with an increment of 0.0005 s between rows. The training period ends

at t = 0.0170 s (fourth row); t = 0.0175 s (last row) is well into the prediction regime.

14



4. Conclusions

The presented scientific machine learning approach is broadly applicable to problems
where the governing equations are known but access to the high-fidelity simulation
code is limited. The approach is computationally as accessible as black-box surrogate
modeling while achieving the accuracy of intrusive projection-based model reduction.
While the conclusions drawn from the numerical studies apply to the single-injector
combustion example, they are relevant and likely apply to other problems. First, the
quality and quantity of the training data are critical to the success of the method.
Second, regularization is essential to avoid overfitting. Third, achieving a low error
over the training regime is not necessarily indicative of a reduced model with good
predictive capability. This emphasizes the importance of the training data. Fourth,
physical quantities that exhibit large-scale coherent structures (e.g., pressure) are more
accurately predicted by a reduced-order model than quantities that exhibit multiscale
behavior (e.g., temperature, species concentrations). Fifth, a significant advantage
of the data-driven learning aspects of the approach is that the reduced model may
be derived in any variables. This includes the possibility to include redundancy in
the learning variables (e.g., to include both pressure and temperature). Overall, this
paper illustrates the power and effectiveness of learning from data through the lens of
physics-based models as a physics-grounded alternative to black-box machine learning.
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