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This paper presents a structure-exploiting nonlinear model reduction method for systems with general

nonlinearities. First, the nonlinearmodel is lifted to amodelwithmore structure via variable transformations and the

introduction of auxiliary variables. The lifted model is equivalent to the original model; it uses a change of variables

but introduces no approximations. When discretized, the lifted model yields a polynomial system of either ordinary

differential equations or differential-algebraic equations, depending on the problem and lifting transformation.

Proper orthogonal decomposition (POD) is applied to the lifted models, yielding a reduced-order model for which all

reduced-order operators can be precomputed. Thus, a key benefit of the approach is that there is no need for

additional approximations of nonlinear terms, which is in contrast with existing nonlinear model reduction methods

requiring sparse sampling or hyper-reduction. Application of the lifting and PODmodel reduction to the FitzHugh–

Nagumobenchmark problem and to a tubular reactormodel with Arrhenius reaction terms shows that the approach

is competitive in terms of reduced model accuracy with state-of-the-art model reduction via POD and discrete

empirical interpolation while having the added benefits of opening new pathways for rigorous analysis and input-

independent model reduction via the introduction of the lifted problem structure.

Nomenclature

A = system matrix
B = input matrix
D = Damköhler number
E = mass matrix
H = matricized quadratic tensor
I = identity matrix, with subscript if needed
N, Ni = bilinear term matrices
n = dimension of state
r, r1, r2 = reduced model dimensions
s = spatial variable (continuous) in PDE
t = time
u�t� = control input function
V, V1, V2 = matrices of proper orthogonal decomposition basis

vectors
wi, wi = auxiliary states in lifting method
x�t� = state vector
xROM�t� = vector of reduced-order-model-approximated

original states
x̂�t� = reduced state vector in r dimensions
θ, θ = temperature in tubular reactor
ψ , ψ = species concentration in tubular reactor
⊗ = Kronecker product
⊙ = Hadamard (componentwise) vector product

Superscript

^ = reduced-order model quantities

I. Introduction

R EDUCED-ORDERmodels (ROMs) are an essential enabler for
the design and optimization of aerospace systems, providing a

rapid simulation capability that retains the important dynamics
resolved by amore expensive high-fidelity model. Despite a growing
number of successes, there remains a tremendous divide between
rigorous theory (well developed for the linear case) and the
challenging nonlinear problems that are of practical relevance in
aerospace applications. For linear systems, ROMs are theoretically
well understood (error analysis, stability, and structure preservation)
as well as computationally efficient [1–4]. For general nonlinear
systems, the proper orthogonal decomposition (POD) has been
successfully applied to several different problems, but its success
typically depends on careful selection of tuning parameters related to
the ROM derivation process. For example, nonlinear problems often
do not exhibit monotonic improvements in accuracy with increased
dimension of the ROM; indeed, for some cases, increasing the
resolution of the ROM can lead to a numerically unstable model that
is practically of no use; see Ref. [5] (Sec. IV.A), as well as Refs. [6,7].
In this paper, we propose an approach to bridge this divide: we show
that a general nonlinear system can be transformed into a polynomial
form through the process of lifting, which introduces auxiliary
variables and variable transformations. The lifted system is
equivalent to the original nonlinear system, but its polynomial
structure offers a number of key advantages.
Reference [8] introduced the idea of lifting nonlinear dynamical

systems to quadratic-bilinear (QB) systems for model reduction, and
it showed that the number of auxiliary variables needed to lift a
system to QB form is linear in the number of elementary nonlinear
functions in the original state equations. The idea of variable
transformations to promote system structure can be found across
different communities, spanning several decades of work.
Reference [9] introduced variable substitutions to solve nonconvex
optimization problems. Reference [10] introduced variable trans-
formations to bring general ordinary differential equations (ODEs)
into Riccati form in an attempt to unify theory for differential
equations. Reference [11] showed that all ODE systemswith (nested)
elementary functions can be recast in a special polynomial system
form, which is then faster to solve numerically. The idea of
transforming a general nonlinear system into a system with more
structure is also common practice in the control community: the
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concept of feedback linearization transforms a general nonlinear
system into a structured linear model [12,13]. This is done via a state
transformation, in which the transformed state might be augmented
(i.e., might have increased dimension relative to the original state).
However, the lifting transformations known in feedback linearization
are specific to the desired model form, and they are not applicable in
our work here. In the dynamical systems community, the Koopman
operator is a linear infinite-dimensional operator that describes
the dynamics of observables of nonlinear systems. With the choice
of the right observables, linear analysis of the infinite-dimensional
Koopman operator helps identify finite-dimensional nonlinear state-
space dynamics; see Refs. [14–18].
Lifting has been previously considered as a way to obtain QB

systems for model reduction in Refs. [19–21]. However, the models
considered therein always resulted in a QB system of ordinary
differential equations (QB-ODEs), and only one auxiliary lifting
variablewas needed to yield aQB-ODE.Here, we present amultistep
lifting transformation that leads to a more general class of lifted
systems. In particular, for the aerospace example considered in this
paper, the system is lifted either to a QB system of differential-
algebraic equations (QB-DAEs) or to a quartic systems of ODEs.We
then perform POD-based model reduction on this lifted system,
exploiting the newly obtained structure. There are a number of
important advantages to reducing a polynomial and, in particular, a
QB system. First, ROMs for polynomial systems do not require
approximation of the nonlinear function through sampling because
all reduced-order operators can be precomputed. This is in contrast to
a general nonlinear system, in which an additional approximation
step is needed to obtain an efficient ROM [22–27]. This property
of polynomial ROMs has been exploited in the past, for example,
for the incompressible Navier–Stokes equations with quadratic
nonlinearities [28,29] and in the trajectory piecewise linear method
[30]. Second, promising progress has been made recently in
specialized model reduction for QB systems, such as moment
matching [8,19], the iterative rational Krylov algorithm [20], and
balanced truncation [21]. The structure of QB systems makes them
amenable to input-independent reduced-order modeling, which is an
important feature for control systems and systems that exhibit
significant input disturbances. Third, reducing a structured system is
promising in terms of enabling rigorous theoretical analysis of ROM
properties, such as stability and error analysis.
In this work, our first main contribution is to derive two lifted

systems for a strongly nonlinear model of a tubular reactor that

models a chemical process. The first lifted model is a quartic ODE.
We show that, if the goal is to further reduce the polynomial order
from quartic to quadratic, then algebraic equations are required to
keep the model size of a QBmodel moderate. Thus, our second lifted
model is a QB-DAE. The lifting transformations are nontrivial and
proceed inmultiple layers. Our secondmain contribution is to present
a POD-based model reduction method applied to the lifted system.
POD is a particularly appropriate choice for the model reduction step
(in contrast to previous work that used balanced truncation and
rational Krylov methods) due to the flexibility of the POD approach.
In particular, we show that, for both the quartic ODE and the QB-
DAEs, our POD model reduction method retains the respective
structure in the reduction process. Third, we present numerical
comparisons to state-of-the-art methods in nonlinear model
reduction. Our lifted ROMs are competitive with state of the art;
however, as mentioned previously, the structured (polynomial or
quadratic) systems have several other advantages. Figure 1 illustrates
our approach and puts it in contrast to state-of-the-art model
reduction methods for nonlinear systems.
This paper is structured as follows: Sec. II briefly reviews POD

model reduction, defines polynomial systems and QB-DAEs, and
presents the POD-basedmodel reduction of such systems. Section III
presents the method of lifting general nonlinear systems to
polynomial systems, with a particular focus on the case of QB-DAEs.
Section IV demonstrates and compares the lifting method with state-
of-the-art POD combined with the discrete empirical interpolation
method (POD-DEIM)model reduction for the benchmark problemof
the FitzHugh–Nagumo system. SectionVpresents the tubular reactor
model for which two alternative liftedmodels are obtained, namely, a
quartic ODE and a QB-DAE. Numerical results for both cases are
compared with POD-DEIM. Finally, Sec. VI concludes the paper.

II. Polynomial Systems and Proper Orthogonal
Decomposition Model Reduction

Section II.A briefly reviews the PODmethod and its challenges. In
Sec. II.B, we introduce the polynomial systems of ODEs and POD
model reduction for such systems. Section II.C formally introduces
QB-ODE and QB-DAE systems, which are polynomial systems of
order two but, in the latter case, with algebraic constraints embedded.
That section also presents structure-preserving model reduction for
the QB-DAE systems via POD. The quartic QB-ODE and QB-DAE
forms all appear in our applications in Secs. IV and V.

Original system
of governing equations

Nonlinear ROM
reduced dimension
expensive to solve

POD model 
reduction 

variable 
transformations

hyper-reduction 
(additional approximation) 

Nonlinear ROM
reduced dimension

cheap to solve

Structured nonlinear ROM
reduced dimension

cheap to solve
amenable to analysis

POD model 
reduction

Lifted system 
with auxiliary states

Fig. 1 Nonlinear model reduction: Existing approach via hyper-reduction vs our approach of lifting and then reduction.
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A. Proper Orthogonal Decomposition Model Reduction

Consider a large-scale nonlinear dynamical system of the form

_x � f�x� � Bu (1)

where x�t� ∈ Rn is the state of (large) dimension n, t ≥ 0 denotes
time, u�t� ∈ Rm is a time-dependent input of dimension m, B ∈
Rn×m is the input matrix, the nonlinear function f:Rn ↦ Rn maps the
state x to f�x�, and _x � dx∕dt denotes the time derivative.
Equation (1) is a general form that arises in many engineering
contexts. Of particular interest are the systems arising from
discretization of partial differential equations. In these cases, the state
dimension n is large and simulations of such models are
computationally expensive. Consequently, we are interested in
approximating the full-order model (FOM) in Eq. (1) by a ROM of
drastically reduced dimension of r ≪ n.
The most common nonlinear model reduction method, which is

proper orthogonal decomposition, computes a basis using snapshot
data (i.e., representative state solutions) from simulations of the
FOM; see Refs. [28,31,32]. POD has had considerable success in
application to aerospace systems (see, e.g., Refs. [33–41]). Denote
the PODbasismatrix asV ∈ Rn×r, which contains as columns rPOD
basis vectors. V is computed from a matrix ofM solution snapshots,
i.e., X � �x�t0�; x�t1�; : : : ; x�tM��. In the case in which we have
fewer snapshots than states (i.e.,M ≪ n), the simplest form of POD
takes the singular value decomposition X � UΣWT and chooses the
first r columns of U to be the POD basis matrix V � U�:; 1:r�.
Alternatively, the method of snapshots by Sirovich can be employed
[32] to compute V. Regardless, the POD approximation of the state
is then

x ≈ Vx̂ (2)

where x̂�t� ∈ Rr is the reduced-order state of (small) dimension r.
Substituting this approximation into Eq. (1) and enforcing
orthogonality of the resulting residual to the POD basis via a
standard Galerkin projection yields the POD ROM

_̂x � f̂�x̂� � B̂u (3)

with B̂ � VTB ∈ Rr×m, and f̂:Rr ↦ Rr with f̂�x̂� � VTf�Vx̂�.
Equation (3) reveals awell-known challengewith nonlinear model

reduction: the evaluation of VTf�Vx̂� still scales with the FOM
dimension n. To remedy this problem, the state of the art in nonlinear
model reduction introduces a second layer of approximation, which
is sometimes referred to as “hyper-reduction”. Several nonlinear
approximation methods have been proposed (see Refs. [22–27]): all
of which are based on evaluating the nonlinear function f�⋅� at a
subselection of sampling points. Of these, the discrete empirical
interpolation method (DEIM) in Ref. [22] has been widely used in
combination with POD (POD-DEIM), and it has been shown to be
effective for nonlinear model reduction over a range of applications.
The number of sampling points used in these hyper-reduction
methods often scales with the reduced-order model dimension,
which leads to an efficient ROM. However, problems with strong
nonlinearities can require a high number of sampling points
(sometimes approaching the FOM dimension n), rendering the
nonlinear function evaluations expensive. This has been observed in
the case of ROMs for complex flows in rocket combustion engines in
Ref. [5]. A second problem with hyper-reduction is that it introduces
an additional layer of approximation to the ROM, which in turn can
hinder the rigorous analysis of ROM properties such as stability and
errors.

B. Polynomial Systems and Proper Orthogonal Decomposition

Having discussed nonlinear model reduction via POD in its most
general form, we now develop POD models for the specific case of
nonlinear systems with polynomial nonlinearities. We will show in
Sec. III that lifting transformations can be applied to general
nonlinear systems to convert them to this form.Wedevelop here POD

models for polynomial systems of orders four (quartic systems) and

two (quadratic systems) as those arise in our applications; however,

the following material extends straightforwardly (at the expense of

heavier notation) to the general polynomial case. In the following, the

notation ⊗ denotes the Kronecker product of matrices or vectors.
A quartic FOM with state x�t� of dimension n and input u�t� of

dimension m is given by

_x � Ax� Bu|���{z���}
linear

�G�2��x ⊗ x�|������{z������}
quadratic

�G�3��x ⊗ x ⊗ x�|�����������{z�����������}
cubic

�G�4��x ⊗ x ⊗ x ⊗ x�|����������������{z����������������}
quartic

�
Xm
k�1

N�1�
k xuk|������{z������}

bilinear

�
Xm
k�1

N�2�
k �x ⊗ x�uk|�������������{z�������������}

quadratic−linear

(4)

with B ∈ Rn×m and A ∈ Rn×n, as well as G�i�, N�i�
k ∈ Rn×ni . In this

form, the matrix A represents the terms that are linear in the state

variables; thematrixB represents the terms that are linearwith respect

to the input; the matrices G�i�, i � 2; : : : ; 4 represent matricized

higher-order tensors for the quadratic, cubic, and quartic terms; and

the matrices N�1�
k and N�2�

k represent, respectively, the bilinear and

quadratic-linear couplings between the state and the input, with one

term for each input of uk, k � 1; : : : ; m.
To reduce the quartic FOM [Eq. (4)], approximate x ≈ Vx̂ in the

PODbasisV and perform a standardGalerkin projection as described

in Sec. II.A, leading to the ROM

_̂x � Â x̂�B̂u� Ĝ�2��x̂ ⊗ x̂� � Ĝ�3��x̂ ⊗ x̂ ⊗ x̂�

� Ĝ�4��x̂ ⊗ x̂ ⊗ x̂ ⊗ x̂� �
Xm
k�1

N̂�1�
k x̂uk �

Xm
k�1

N̂�2�
k �x̂ ⊗ x̂�uk

(5)

The reduced-order matrices and tensors are all straightforward

projections of their FOM counterparts onto the POD basis: Â �
VTAV, B̂�VTB, Ĝ�2��VTG�2��V⊗V�, Ĝ�3��VTG�3��V⊗V⊗V�,
Ĝ�4� � VTG�4��V ⊗ V ⊗ V ⊗ V�, N̂�1�

k � VTN�1�
k V, and N̂�2�

k �
VTN�2�

k �V ⊗ V�. Note that all these reduced-order matrices and

tensors can be precomputed once the POD basisV is chosen; thus, the

POD ROM for the polynomial system recovers an efficient offline–

online decomposition and does not require an extra step of hyper-

reduction. Nevertheless, despite Eq. (5) preserving the polynomial

structure of the original model [Eq. (4)], the model reduction problem

remains challenging. In particular, the training data for POD basis

computation, the number of selected modes (especially for problems

with multiple variables), and the properties of the model itself

(manifested in the system matrices) can all influence the quality of

the ROM.

C. Quadratic-Bilinear Systems and Proper Orthogonal
Decomposition

As a special case of polynomial systems, we focus on quadratic-

bilinear systems for the reasonsmentioned in Sec. I. The general form

of a QB system is written as

E _x � Ax� Bu|���{z���}
linear

�H�x ⊗ x�|����{z����}
quadratic

�
Xm
k�1

Nkxuk|�����{z�����}
bilinear

(6)

with E ∈ Rn×n, A ∈ Rn×n, B ∈ Rn×m, H ∈ Rn×n2 , and Nk ∈ Rn×n,

k � 1; : : : ; m. The matrices have the same meaning as in the quartic

case, except that we use the usual notationH for thematricized tensor

that represents the terms that are quadratic in the state variables. In

addition, we have introduced the matrix E (sometimes called the

“mass matrix”) on the left side of the equation.
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If thematrixE is nonsingular, thenEq. (6) is aQB systemofODEs.

If the matrixE is singular, then Eq. (6) is a QB system of differential-

algebraic equations (DAEs)‡; in particular, E will have zero rows

corresponding to any algebraic equations.
We now focus on the QB-DAE case because such a system arises

from lifting transformations, as we will see later for the tubular

reactor model in Sec. V.C. The QB-DAE state is partitioned as

x � � xT1 xT2 �T , with x1 ∈ Rn1 being the dynamically evolving

states and x2 ∈ Rn2 the algebraically constrained variables, with

n � n1 � n2. A lifting transformation resulting in QB-DAEs often

leads to matrices with special structures as follows:

E �
"
E11 0

0 0

#
; A �

"
A11 A12

0 In2

#
; H �

"
H1

H2

#
;

Nk �
"
Nk;11 Nk;12

0 0

#
; B �

"
B1

0

#
(7)

Here, In2 is then2 × n2 identitymatrix and 0 denotes amatrix of zeros

of appropriate dimension. Moreover, B1 ∈ Rn1×m and A11, E11,

N11 ∈ Rn1×n1 . The QB-DAE with the aforementioned structure can

then be rewritten as

E11 _x1 � A11x1 � A12x2 � B1u�H1�x ⊗ x�

�
Xm
k�1

Nk;11x1uk � Nk;12x2uk (8)

0 � x2 − ~H2�x1 ⊗ x1� (9)

where ~H2 ∈ Rn2×n22 is obtained from H2 ∈ Rn2×n2 by deleting

columns corresponding to the zeros in the Kronecker product. We

note that Eq. (8) is the n1th-order system of ODEs describing the

dynamical evolution of the states x1, whereas Eq. (9) is the n2
algebraic equations that enforce the relationship between the

constrained variables x2 and the states x1.
The QB-DAE [Eqs. (6) and (7)] can be directly reduced using a

POD projection. To retain the DAE structure in the model, we use the

projection matrix

V �
�
V1 0
0 V2

�
(10)

where V1 ∈ Rn1×r2 and V2 ∈ Rn2×r2 are the POD basis matrices that

contain as columns PODbasis vectors for x1 and x2, respectively; and
r1 � r2 � r. We approximate the state x ≈ Vx̂, where x̂ ∈ Rr is the

reduced state of dimension r ≪ n. By definition, x1 ≈ V1x̂1 and

x2 ≈ V2x̂2. Introducing this approximation to Eq. (6) and using the

standard POD Galerkin projection yields the reduced-order model

Ê _̂x � Â x̂�B̂u� Ĥ�x̂ ⊗ x̂� �
Xm
k�1

N̂kx̂uk (11)

The reduced-order matrices can be precomputed as

Ê �
"
Ê11 0

0 0

#
; Â �

"
Â11 Â12

0 Ir2

#
; Ĥ �

"
Ĥ1

Ĥ2

#
;

N̂k �
"
N̂k;11 N̂k;12

0 0

#
; B̂ �

"
B̂1

0

#

where Ê11 � VT
1E11V1; Â11 � VT

1A11V1; Â12 � VT
1A12V2; N̂k;11 �

VT
1Nk;11V1; N̂k;12 � VT

1Nk;12V2; and B̂1 � VT
1B1.

The quadratic tensors can be precomputed as

Ĥ1 � VT
1H1

��
V1 0
0 V2

�
⊗
�
V1 0
0 V2

��
∈ Rr1×�r1�r2�2 (12)

Ĥ2 � VT
2
~H2�V1 ⊗ V1� ∈ Rr2×r21 (13)

The ROM can then be rewritten as

Ê11
_̂x1 � Â11x̂1 � Â12x̂2 � B̂1u� Ĥ1

 "
x̂1

x̂2

#
⊗

"
x̂1

x̂2

#!

�
Xm
k�1

N̂k;11x̂1uk � N̂k;12x̂2uk (14)

0 � x̂2 − Ĥ2�x̂1 ⊗ x̂1� (15)

With this projection, the index of theDAE is preserved because the
structure of the algebraic equations remains unaltered. Because all
ROM matrices and tensors can be precomputed, no additional
approximations (e.g., DEIM, other hyper-reduction) are needed. The
solution of this system is described in the Appendix. Note that, as a
special case, if V2 � I, we can obtain a quartic ROM by eliminating
the algebraic constraint and inserting x̂2 (� x2) from Eq. (15)
into Eq. (14).
Having formally introduced QB systems, the next section shows

the lifting method applied to nonlinear systems, as well as how QB
systems (DAEs and ODEs) can be obtained in the process.

III. Lifting Transformations

With the formal definition of polynomial and QB systems at hand,
we now introduce the concept of lifting and give an example that
illustrates the approach. Lifting is a process that transforms a
nonlinear dynamical system with n variables into an equivalent
system of ~n > n variables by introducing ~n − n additional auxiliary
variables. The lifted system has larger dimension, but it has more
structure. For more details on lifting, we refer the reader to Ref. [8].
Our goal is to transform the original nonlinear model into an
equivalent polynomial system via lifting. We target this specific
structure because a large class of nonlinear systems can be written in
this form, and because polynomial systems (and as a special case QB
systems) are directly amenable to model reduction via POD.
Moreover, as will be illustrated in the following, lifting to a system of
DAEs instead of requiring the lifted model to be an ODE keeps the
number of auxiliary variables to a manageable level.
The method is best understood with an example.
Example 1: Consider the ODE

_x � x4 � u (16)

where u�t� is an input function, and x�t� is the one-dimensional state
variable. We choose the auxiliary state w1 � x2, which makes
the original dynamics [Eq. (16)] quadratic. The auxiliary state
dynamics are (according to the chain rule or Lie derivative)
_w1 � 2x _x � 2x�w2

1 � u�, and hence cubic in the new state �x; w1�.
Now, introduce another auxiliary state w2 � w2

1. Then, we have
_w1 � 2x�w2

1 � u� � 2x�w2 � u� and _x � w2 � u. However, we
have that _w2 � 2w1 _w1 � 4xw1�w2 � u�, which is still cubic.
Choosing one additional auxiliary state w3 � xw1 then makes the
overall system QB because we have

_w3 � _xw1 � x _w1 � �w2 � u�w1 � x�2xw2 � 2xu�
� w1w2 �w1u� 2w1w2 � 2w1u

‡Note that, when the system is a DAE, x�t� is not technically a “state” in the
sense of being the smallest possible number of variables needed to represent
the system; however, it is common in the literature to still refer to x�t� as the
state, as we will do here.
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Overall, nonlinear equation (16) with one state variable is
equivalent to the QB-ODE with four state variables:

_x � w2 � u (17)

_w1 � 2xw2 � 2xu (18)

_w2 � 4w2w3 � 4w3u (19)

_w3 � 3w1w2 � 3w1u (20)

An alternative approach is to include the algebraic constraint
w1 � x2 and instead obtain aQB differential-algebraic equationwith
two variables as

_x � w2
1 � u (21)

0 � w1 − x2 (22)

We emphasize that the system of Eqs. (17–20) and the system of
Eqs. (21) and (22) are both equivalent to the original nonlinear
equation [Eq. (16)] in the sense that all three systems yield the same
solution: x�t�.
This example illustrates an interesting point in lifting dynamic

equations. Even when lifting to a QB-ODE might be possible, our
approach of permittingDAEs keeps the number of auxiliary variables
low. In particular, Gu [8] showed favorable upper bounds for
auxiliary variables for lifting to QB-DAEs versus QB-ODEs. This
will become important when we consider systems arising from the
discretization of PDEs, for which the number of state variables is
already large.

The lifted representation is not unique, and we are not aware of an
algorithm that finds theminimal polynomial system that is equivalent
to the original nonlinear system. Moreover, different lifting choices
can influence system properties, such as stiffness of the differential
equations.
Example 2: Writing the system of (17–20) in the form of Eq. (6)

with x � � x w1 w2 w3 �T and the quadratic term

x ⊗ x�
h
x2 xw1 xw2 xw3 w1x w2

1 w1w2 w1w3 w2x w2w1 w2
2 w2w3 w3x w3w1 w3w2 w2

3

i
T

yields

E �

2
666664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
777775; A �

2
666664
0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

3
777775;

N1 �

2
666664
0 0 0 0

2 0 0 0

0 0 0 4

0 3 0 0

3
777775; B �

2
666664
1

0

0

0

3
777775

and, for the quadratic tensor H ∈ R4×16, we have

H2;3 � 2; H3;12 � 4; H4;7 � 3; Hi;j � 0 otherwise

Note that this is a system of ODEs (the matrix E is full rank).

In contrast, the system of (21) and (22) with x � � x w1 �T and

x ⊗ x � � x2 xw1 w1x w2
1 �T yields the DAEs, also of the form

of Eq. (6) but with smaller dimension and singular E, as follows:

E �
"
1 0

0 0

#
; A �

"
0 0

0 1

#
; H �

"
0 0 0 1

−1 0 0 0

#
;

N1 �
"
0 0

0 0

#
; B �

"
1

0

#

Again, note that both of these representations are equivalent to the
original system [Eq. (16)], with no approximation introduced.

IV. Benchmark Problem: FitzHugh–Nagumo

This section illustrates our nonlinear model reduction approach on
the FitzHugh–Nagumo system, which is a model for the activation
and deactivation of a spiking neuron. It is a benchmark model in
nonlinear reduced-order modeling, and it has been explored in the
context of the DEIM in Ref. [22], the balanced model reduction in
Ref. [21], and the interpolation-based model reduction in Ref. [19].

A. FitzHugh–Nagumo Problem Definition

The FitzHugh–Nagumo governing partial differential equations are

ϵ _v � ϵ2vss − v3 � 0.1v2 − 0.1v −w� c (23)

_w � hv − γw� c (24)

where s ∈ �0; L� is the spatial variable, and the time horizon of interest
is t ∈ �0; tf�. The states of the system are the voltage v�s; t� and the
recovery of voltage w�s; t�. The notation vss�s; t� ≔ �∂2∕∂s2�v�s; t�
denotes a second-order spatial derivative; similarly, vs�s; t� denotes a
first spatial derivative. The initial conditions are specified as

v�s; 0� � 0; w�s; 0� � 0; s ∈ �0; L�

and the boundary conditions are

vs�0; t� � u�t�; vs�L; t� � 0; t ≥ 0

whereu�t� � 5 × 104t3 exp�−15t�. In the problem setupwe consider,
the parameters are given by L � 1, c � 0.05, γ � 2, h � 0.5,
and ϵ � 0.015.

B. FitzHugh–Nagumo Lifted Formulation

To lift the FitzHugh–Nagumo equations to QB form,we follow the
same intuitive lifting as in Ref. [19]. Choose z � v2, which renders
the original Eqs. (23) and (24) quadratic. The auxiliary equation

becomes

_z � 2v _v � 2v
h
ϵ2vss − v3 � 0.1v2 − 0.1v −w� c

i
� 2

h
ϵ2vvss − z2 � 0.1zv − 0.1z − wv� cv

i
and is quadratic in the new variable. The lifted QB system then

reads as

ϵ _v � ϵ2vss − zv� 0.1z − 0.1v −w� c

_w � hv − γw� c

_z � 2
h
ϵ2vvss − z2 � 0.1zv − 0.1z −wv� cv

i
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The initial conditions for the auxiliary variable need to be
consistent, i.e., z�s; 0� � v�s; 0�2; s ∈ �0; L�. The boundary con-
ditions are obtained by applying the chain rule:

zs�L; t� � 2v�L; t�vs�L; t�|��{z��}
�0

� 0

and on the left side,

zs�0; t� � 2v�0; t�vs�0; t�|�{z�}
u�t�

� 2v�0; t�u�t�

The full model is discretized using finite differences, where each
variable is discretized with n � 512 degrees of freedom, i.e., the
overall dimension of the QBmodel is 3n � 1536. The resulting QB-
ODE system is

E _x � Ax� Bu�H�x ⊗ x� �
X2
k�1

Nkxuk

whereE � ϵI3n is diagonal;A,N1,N2 ∈ R3n×3n; andH ∈ R3n×�3n�2 .
The input matrix is B ∈ R3n×2, with the second column of B being
copies of c [the constant in Eqs. (23) and (24)] and the first column of
B having a 1 at the first entry. Thus, the input is u � �u�t�; 1�. This
benchmark model is freely available.§

C. FitzHugh–Nagumo Lifted Quadratic-Bilinear Reduced-Order
Model

We simulate this lifted full-order system for tf � 12 s and collect
nt � 150 snapshots of the state solutions at equally spaced times. For
the computation of the PODbasis, we only use the first 100 snapshots
until t � 8 s. Thus, all the ROMs in this section predict 50% further
past the training data.We compute a separate PODbasis for each state
variable. This means that, for the original system, we compute a POD
basis for v and a POD basis for w; for the lifted system, we also
compute a POD basis for the auxiliary variable z � v2. Figure 2 (left)
shows the decay of the singular values for the snapshotmatrices of the
three state variables: v,w, and z. As expected, the singular values for
the snapshot matrix of the auxiliary variable z � v2 show the same
decay (up to numerical accuracy) as those for the original variable v.
We compute the POD reduced model of the lifted QB system, as

described in Sec. II.C. Figure 2 (right) shows quantities of interest
[namely, w�0; t� and v�0; t�] computed using the FOM and the
QB-POD reduced model with 3r � 9 (r reduced states per variable).
The reduced model captures the limit-cycle oscillations well and the
output is visually indistinguishable from the FOM solution.
Figure 3 compares the accuracy of the lifted QB-POD models

with POD-DEIM models. As first introduced in Ref. [22], the

POD-DEIM approach reduces the original system with an additional

approximation (viaDEIM) of the nonlinear term. This approximation

is necessary in order for the reduced model to be computationally

efficient.¶ This requires the following additional steps:
1) During the full model simulation, collect snapshots of the

nonlinear term in addition to snapshots of the states.
2) Apply the POD to the nonlinear term snapshot set to compute

the DEIM basis.
3) Select rDEIM DEIM interpolation points.
4) Approximate the projected nonlinear term using the corres-

ponding first rDEIM basis vectors.
As in Ref. [22], we approximate each variable with r basis

functions, and so the POD-DEIM model has 2r dimensions. Let

x�t� � �v�t�T;w�t�T �T be the state vector of the FOM and xROM�t� be
the approximation of that state computed by the different ROM

simulations [i.e., xROM�t� contains those components of Vx̂�t� that
correspond to the original states; for QB-POD,we do notmeasure the

error in approximations of the auxiliary variables in order to provide

an appropriate comparison]. Plotted in Fig. 3 are the relative errors in

the state vector averaged over time, i.e.,

1

nt

Xnt
i�1

kx�ti� − xROM�ti�k
kx�ti�k

(25)

The horizontal axis plots the overall dimension of the ROM, i.e.,

the total number of basis functions for the two (for the POD-DEIM

model) or three (for the QB-PODmodel) variables. We show several

POD-DEIMmodelswith varying rDEIM interpolation points. Figure 3

shows the characteristic POD-DEIM reducedmodel error behavior in

which the number ofDEIM interpolation points limits the accuracy of

the reduced model, and thus the errors flatten out once a threshold

number of PODbasis functions is reached. The quality of the reduced

model can then only be improved by increasing the number of DEIM

interpolation points, which reduces the error in the approximation of

the nonlinear term.We also show a POD-DEIMmodel that increases

the DEIM interpolation points with the reduced dimension, i.e., we

have rDEIM � r, yet this model also levels out around r � 35; so,
increasing the DEIM dimension does not further improve the model.

This is a feature of the FitzHugh–Nagumo problem because the

singular values of the states (see Fig. 2) and the nonlinear snapshots

decay to machine precision around r � 35; see also Ref. [22]. In

contrast, our lifted QB-POD reduced model has no additional

approximation step, and its error steadily decreases as the number of

POD basis functions is increased. These results show that our lifted

POD approach recovers the accuracy of a regular POD approach,

but it has the added benefit that it does not require additional

approximation to handle the nonlinear terms.

Fig. 2 FitzHugh–Nagumo system. Decay of singular values of snapshot matrices for three variables (left). Quantities of interest w�0; t� and v�0; t�
comparing FOM simulations and the QB-POD reduced model of dimension 3r � 9 (right).

§“FitzHugh–Nagumo System,”MORwiki—Model Order ReductionWiki,
2018, http://modelreduction.org/index.php/FitzHugh–Nagumo_ System.

¶Although, in fact, we note the cubic nature of the original model, which
could directly be exploited, this seems to be overlooked in the literature.
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V. Application: Tubular Reactor Model

Section V.A describes a tubular reactor model that has strong

nonlinearities and limit-cycle oscillations representative of those in
combustion engines. We demonstrate the benefits of lifting and POD

on this problem. First, we bring the system into polynomial form,

namely, a fourth-order ODE; see Sec. V.B. We further lift the

polynomial system to a QB-DAE in Sec. V.C. Section V.D presents

details for the computation of POD reduced models, and Sec. V.E

shows and discusses the numerical results.

A. Partial Differential Equation Model and Discretization

A one-dimensional nonadiabatic tubular reactor model with a

single reaction is modeled, following Refs. [42,43], as

_ψ � 1

Pe
ψ ss − ψ s −Df�ψ ; θ; γ� (26)

_θ � 1

Pe
θss − θs − β�θ − θref� � BDf�ψ ; θ; γ� (27)

with spatial variable s ∈ �0; 1�, time t > 0, and the nonlinear term

f�ψ ; θ; γ� � ψeγ−�γ∕θ�

Robin boundary conditions are imposed on the left boundary:

ψ s�0; t� � Pe�ψ�0; t� − μ�; θs�0; t� � Pe�θ�0; t� − 1�

and Neumann boundary conditions are imposed on the right:

ψ s�1; t� � 0; θs�1; t� � 0

The initial conditions are prescribed as

ψ�s; 0� � ψ0�s�; θ�s; 0� � θ0�s�

The variables of the model are the species concentration ψ and
temperature θ. The parameters are the Damköhler number D, the
Pèclet numberPe, as well as known constantsB, β, θref , and γ. It was
shown in Ref. [43] that, when Pe � 5, γ � 25, B � 0.5, β � 2.5,
and θref�s� ≡ 1, the system exhibits a Hopf bifurcationwith respect to

D in the range D ∈ �0.16; 0.17�; that is, there exists a critical

Damköhler number of Dc � 0.165 such that, for Dc < D, the
unsteady solution eventually converges to a nontrivial steady state.
We discretize the model via finite differences; for details, see

Ref. [42]. The discretized variables are ψ ∈ Rn and θ ∈ Rn so that

the resulting dimension of the discretized system is 2n. The resulting
FOM reads as follows:

_ψ � Aψψ � bψu�t� −Dψ⊙eγ−�γ∕θ� (28)

_θ � Aθθ� bθu�t� � BDψ⊙eγ−�γ∕θ� (29)

where Aψ and Aθ are n × n matrices, and bψ , bθ ∈ Rn enforce the
boundary conditions via u�t� ≡ 1. Here, we use the (Hadamard)
componentwise product of two vectors, i.e., �ψ ⊙ θ �i � ψ iθi.
Note that, with the exponential nonlinearity, this is a general nonlinear
FOM of the form of Eq. (1). Direct POD of this model would require
additional approximation of the nonlinear term (e.g., via the DEIM).

B. Lifted Model 1: A Quartic Ordinary Differential Equation

We start with polynomializing the system via the dependent
variables

w1 � eγ−�γ∕θ�; w2 � θ−2; w3 � θ−1 (30)

Application of the chain rule yields

_w1 � w1⊙�γθ−2�⊙_θ � γw1⊙w2⊙
_θ

_w2 � −2θ−3⊙_θ � −2w2⊙w3⊙
_θ

_w3 � −θ−2⊙_θ � −w2⊙
_θ

where _θ is given by the right-hand side of Eq. (28). We insertw1,w2,
and w3 into the ODEs [Eqs. (28) and (29)] and append the auxiliary
dynamic equations. Thus, the lifted discretized system is

_ψ � Aψψ � bψu�t� −Dψ⊙w1 (31)

_θ � Aθθ� bθu�t� � BDψ⊙w1 (32)

_w1 � γw1⊙w2⊙�Aθθ� bθu�t� � BDψ⊙w1� (33)

_w2 � −2w2⊙w3⊙�Aθθ� bθu�t� � BDψ⊙w1� (34)

_w3 � −w2⊙�Aθθ� bθu�t� � BDψ⊙w1� (35)

The state of the lifted system is denoted as x �
�ψT; θT;wT

1 ;w
T
2 ;w

T
3 �T . We can write these equations as a quartic

systems of ODEs as in Eq. (4), with B � �bTψ ; bTθ ; 0�T , A �
diag�Aψ ; Aθ; 03n� a block-diagonal matrix, and G�i�, N�i� ∈ Rn×ni

being sparse matrices. Given initial conditions θ0 and ψ0, we find
consistent initial conditions forw1,w2, andw3 by using the definitions
of the auxiliary variables in Eq. (30). This fourth-order polynomial
ODE system is equivalent to the original ODE system [Eqs. (28) and
(29)], in that solutionsψ and θ for both systems are identical.However,
the structure of the system is (as desired) polynomial, at the expense of
increasing the discretization dimension from 2n to 5n.

C. Lifted Model 2: A Quadratic-Bilinear Differential-Algebraic
System

We further reduce the polynomial order of the systemby lifting it to
QB form. This requires introducing the following new dependent
variables:

w4 � ψ⊙w1; w5 � w2⊙w3; w6 � w1⊙w2 (36)

This time, we need algebraic constraints to represent the system
because further differentiation of the variables in Eq. (36) would not
result in a QB system, in turn requiring additional auxiliary variables.
With these new variables, the QB-DAE system is as follows:

_ψ � Aψψ � bψu�t� −Dw4 (37)

_θ � Aθθ� bθu�t� � BDw4 (38)

_w1 � γw6⊙�Aθθ� bθu�t�� � γBDw4⊙w6 (39)

_w2 � −2w5⊙�Aθθ� bθu�t�� − 2BDw4⊙w5 (40)

Fig. 3 Average relative state error [Eq. (25)] as a function of the ROM
dimension, for POD-DEIM models and the lifted QB-POD model.
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_w3 � −w2⊙�Aθθ� bθu�t�� − BDw2⊙w4 (41)

0 � w4 −w1⊙ψ (42)

0 � w5 −w2⊙w3 (43)

0 � w6 −w1⊙w2 (44)

The preceding system is a DAE of index 1. In other words,

differentiating the algebraic constraints one time gives us an explicit

ODE in terms of the other state variables. We partition the state of the

system into the dynamically evolving unconstrained states x1 and the
states x2 that occur in the algebraic variables:

x � �xT1 ; xT2 �T �
�
ψT; θT;wT

1 ;w
T
2 ;w

T
3|��������������{z��������������}

x1 ;unconstrained

;wT
4 ;w

T
5 ;w

T
6|������{z������}

x2;constrained

�
T

The system of Eqs. (37–44) can be written as a QB-DAE of the

form of Eq. (6) with matrices as in Eq. (7), where n1 � 5n, n2 � 3n
and the mass matrix E11 � I5n. Moreover, the matrix B1 �
�bTψ ; bTθ ; 0�T and

A11 �
2
4Aψ

Aθ

I3n

3
5; A12 �

�
−DIn 0 0
BDIn 0 0

�

Here, A11 is the same as matrix A in the quartic ODE of Sec. V.B.

D. Proper Orthogonal Decomposition for Quartic and Quadratic-
Bilinear Differential-Algebraic Equations

We compute ROMs of the quartic system and QB-DAE via

projection onto POD basis vectors as described in Secs. II.B and II.C.

We compute separate modes for each dependent variable. To

illustrate this for the species concentration ψ , let

Ψ �
h
ψ�t0�;ψ�t1�; : : : ;ψ�tM�

i
(45)

be the matrix of solution snapshots at equidistant times ti,
i � 1; : : : ;M. We compute the singular value decomposition of

Ψ � UΣWT and obtain the POD modes by taking the leading r left
singular vectors: Vψ � U�:; 1:rψ �. Here, rψ is chosen such that the

system satisfies a certain accuracy level, as indicated by the decay in

the singular values in Σ. The POD modes for the other dependent

variables θ andwi, i � 1; : : : ; 6 are computed similarly, and they are

stored in matrices Vθ and Vwi
for i � 1; : : : ; 6.

For the quartic system, the projection matrix is

V � blkdiag
�
Vψ ; Vθ; Vw1

; Vw2
; Vw3

�
∈ R5n×r

and used as in Eq. (5) to obtain the quartic ROM. For the QB-DAE

system,

V1 � blkdiag
�
Vψ ; Vθ; Vw1

; Vw2
; Vw3

�
∈ R5n×r1

and

V2 � blkdiag
�
Vw4

; Vw5
; Vw6

�
∈ R3n×r2

are the projection matrices used to obtain a QB-DAE ROM of the

form (14) and (15).
As illustrated in Sec. II.B, the reduction ofQB-ODEs orQB-DAEs

does not require hyper-reduction. However, by using a projection

matrixV2 ≠ I in Eq. (15), we enforce the algebraic constraint (which
encodes the part of the lifting transformation) only in the subspace

V2. In that sense, the original nonlinearity is also approximated in our

approach, but differently than in theDEIM.A similar statement holds

for the QB-ODE case, in which the auxiliary dynamics (again

encoding the lifting transformation) are also projected onto V2, and

thus introduce an approximation to the nonlinearity.

E. Numerical Results

We simulate the tubular reactor with parameters Pe � 5, γ � 25,
B � 0.5, β � 2.5, and θref�s� ≡ 1 until the final time of tf � 30 s and
record a snapshot everyΔt � 0.01 s. The same initial conditions are

used as in Ref. [42]. For the computation of the POD basis, we only

use snapshots until t � 20 s; thus, all the PODmodels in this section

predict 50% further past the training data. Figure 4 shows the relative

POD singular values for each variable. The left plot shows the stable

case with D � 0.162, and the right plot shows the unstable regime

withD � 0.167. The decay of the singular values is faster for all the
variables in the case of a lowDamköhler number, as is expected from

the decaying stable dynamics. Moreover, we see from Fig. 4 (right)

that the POD singular values for the variables θ, ψ , w2, w3, and w5

all decay similarly. A slower decay of the POD singular values

corresponding to the variablesw1,w4, andw6 is observed compared

to the decay of θ, ψ,w2,w3, andw5. Note thatw4 andw6 are related

tow1 [seeEq. (36)], hence their similar decay inPODsingular values.
The quantity of interest for this example is the temperature

oscillation at the reactor exit of θ�s � 1; t�. Figure 5 shows the

quantity of interest predicted using the FOMand the QB-DAEROM,

which was generated via POD as described previously with r1 � 30
and r2 � 9 basis functions. The case of stable dynamics (D � 0.162)
is plotted on the left, and dynamics with limit-cycle oscillations

(D � 0.167) are shown on the right plot. The average relative state

error from Eq. (46) is 6.71 × 10−5 for the stable case and 8.95 × 10−3

for the unstable case. The QB-DAE ROMs are accurate in both cases

and reproduce the limit-cycle amplitude and oscillations well. We

note that, as is often the casewith PODROMs, not all choices of basis

size yield satisfactory ROMs. For instance, in this strongly nonlinear

example, we found that, for a fixed number of modes, certain

90

Fig. 4 Relative singular value decay of snapshot data for tubular reactor simulation. Damköhler number ofD � 0.162 (stable case; left) andD � 0.167
(unstable case; right).
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selections of modes used in Vψ , Vθ, Vw1
, Vw2

, and Vw3
gave better

results than others.
We compute average relative state errors from nt � 3000 state

snapshots of the FOM and ROM solutions as

ϵ�r1; r2� �
1

nt

Xnt
i�1

kx�ti� − xROM�ti�k
kx�ti�k

(46)

where x�ti� � �ψT; θT �T�ti� is the solution of the FOM at time step ti;
likewise, xROM�ti� is the ROM solution of the original variables at

step ti, i.e., we only compare the approximation in the original state

variables ψ and θ. The error is given as a function of r1 and r2, which
are the numbers of POD modes used in V1 and V2 in Eq. (10).
Figure 6 (left) shows the error ϵ�r1; r2� for different ROMs: four

POD-DEIM reduced models of the FOM [Eqs. (28) and (29)] with

rDEIM � 10, 14, 16, 20 DEIM interpolation points; a POD-DEIM

model that increases the DEIM interpolation points with the reduced-

dimension, i.e., we have rDEIM � r; a standard POD reduced model;

and the quartic ROM fromEq. (5). The POD approximation provides

the lower bound on the error because it directly evaluates the full

nonlinear right-hand sides of Eqs. (28) and (29), which scale in

computational complexity with the full state dimension 2n. Even
though the POD model is accurate, it is not computationally feasible

and is shown only for reference. The DEIM approximations are less

accurate than the POD model, but they increase in accuracy when

more DEIM interpolation points are used. As is typically observed

with POD-DEIM reduced models (e.g., Ref. [22]), the interpolation

error dominates after some time for a fixed number of interpolation

points, and so the model cannot improve further as more basis

vectors are added. The POD-DEIMmodel with rDEIM � r, however,
approximates the original POD model well. The quartic ROM

likewise does not suffer from the limitation of a hyper-reduction

interpolation error and increases in accuracy as further basis

functions r1 are added. Figure 6 (right) shows the influence of the

approximation of the constrained states on the accuracy of the

QB-DAE reduced model. As mentioned in Sec. II.C, the case of
V2 � I leads to the quartic ODE. We compare this with the three
cases of r2 � 12, 15, and 18. Figure 6 (right) shows the state errors
plotted against r1, which is the approximation dimension of the
dynamic variables x1. We observe a similar trend by increasing the
approximation of x2 ≈ V2x̂2 as compared to increasing the DEIM
interpolation points. The better the approximation of the constrained
states x2, the more accurate the corresponding QB-DAE ROM.

VI. Conclusions

The approach to first lift a nonlinear dynamical system via auxiliary
variables and then reduce the structured problem presents an
alternative to the state of the art in nonlinear reduced-order modeling.
The nonlinear partial differential equations arising in many aerospace
systems of interest can be lifted to have polynomial form; lifting to a
system of quadratic-bilinear DAEs is shown to have particular
promise. Multistep lifting transformations are derived for a strongly
nonlinear tubular reactor model. The numerical results show that the
lifting approach together with structure-preserving proper orthogonal
decomposition (POD)-based model reduction is competitive with the
state-of-the-art POD-DEIM nonlinear model reduction approach for
the chosen examples. The lifting approach has the added advantage of
introducing no additional approximation in the reduced model
nonlinear terms; this comes at the cost of the extra upfront work to
derive the lifted system, including the matrices and tensors that
represent the lifted dynamics. Another advantage is that the structured
polynomial form of the lifted systems holds significant promise for
buildingmore a rigorous analysis of ROMstability and error behavior,
especially for quadratic-bilinear systems. The results also highlight a
potential drawback, in that the introduction of auxiliary variables
increases the dimension of the state and tends to increase the number of
POD basis vectors needed to achieve an acceptable error. This
drawback could potentially be addressed by using nonlinear projection
subspaces in place of the linear POD subspaces, which is particularly
viable because the lifting transformations are known.

25

Fig. 5 Quantity of interest computed from FOM and QB-DAE ROM with r1 � 30 and r2 � 9. D � 0.162 (stable case; left). D � 0.167 (unstable
case; right).

Fig. 6 Average relative state errors ϵ�r1; r2� forD � 0.167 for different ROMs.
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Appendix: Details on Solving the QB-DAE ROM

This Appendix expands on the details regarding the solution of the
QB-DAE ROM in Eqs. (14) and (15). One can either solve those
equations with specific DAE solvers (such as ode15s inMATLAB)
or we can simulate the DAE by inserting x̂2 into the dynamic
equations. When doing so, we can speed up the simulations by
efficiently precomputing the matricized tensor as follows:

Ĥ1

0
@" x̂1

x̂2

#
⊗

"
x̂1

x̂2

#1A

� Ĥ1

0
@"Ir1

Ĥ2

#"
x̂1

x̂1⊗ x̂1

#1A⊗

0
@"Ir1

Ĥ2

#"
x̂1

x̂1⊗ x̂1

#1A

� Ĥ1

0
@"Ir1

Ĥ2

#
⊗

"
Ir1

Ĥ2

#1A
0
@" x̂1

x̂1⊗ x̂1

#
⊗

"
x̂1

x̂1⊗ x̂1

#1A

≕ ~H1

2
664

x̂1⊗ x̂1

x̂1⊗ x̂1⊗ x̂1

x̂1⊗ x̂1⊗ x̂1⊗ x̂1

3
775

with ~H1 ∈ Rr1×�r21�r3
1
�r4

1
�, and where the second equality follows

from properties of the Kronecker product, i.e., AC ⊗ BD �
�A ⊗ B��C ⊗ D�. Thus, we obtain the ODE

_̂x1 � Â11x̂1 � Â12Ĥ2�x̂1 ⊗ x̂1� � B̂1u� ~H1

2
664

x̂1 ⊗ x̂1

x̂1 ⊗ x̂1 ⊗ x̂1

x̂1 ⊗ x̂1 ⊗ x̂1 ⊗ x̂1

3
775

� N̂11x̂1u� N̂12Ĥ2�x̂1 ⊗ x̂1�u

Thematrix products Â12Ĥ2 and N̂12Ĥ2 can be precomputed offline
for faster online computation.
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