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We present a novel method for learning reduced-order models of dynamical systems using nonlinear manifolds. First,
we learn the manifold by identifying nonlinear structure in the data through a general representation learning prob-
lem. The proposed approach is driven by embeddings of low-order polynomial form. A projection onto the nonlinear
manifold reveals the algebraic structure of the reduced-space system that governs the problem of interest. The matrix
operators of the reduced-order model are then inferred from the data using operator inference. Numerical experiments
on a number of nonlinear problems demonstrate the generalizability of the methodology and the increase in accuracy
that can be obtained over reduced-order modeling methods that employ a linear subspace approximation.

Model reduction rests on the fundamental assumption that
system states in complex, physics-based models can often
be represented with a smaller number of variables without
a significant loss of information. The identification of such
intrinsic, low-dimensional structure in these problems,
and the subsequent inference of projection-based reduced-
order models lies at the heart of this paper. We treat the
construction of nonlinear state approximations of poly-
nomial form as a general representation learning prob-
lem. By leveraging data-driven operator inference, we can
then learn reduced-order models directly from available
snapshot data. These models are physics-informed in that
their algebraic structure is dictated by the original, high-
dimensional problem. The proposed nonlinear model re-
duction method is interpretable and effective for reducing
large-scale, dynamical-system models.

I. INTRODUCTION AND BACKGROUND

Projection-based model reduction is comprised of a fam-
ily of methods that build approximations of complex physics-
based models with (generally speaking) orders-of-magnitude
reduction in computational complexity. Through identifica-
tion of inherent low-dimensional structure, the cost of many
computational tasks can be lowered significantly. Model re-
duction makes tractable many applications in control, uncer-
tainty quantification, optimal experimental design, and inverse
problems.1 The key idea behind many model reduction meth-
ods is to identify a low-dimensional representation for a set of
training snapshots by applying data compression. The compu-
tation of high-dimensional states is then replaced with identi-
fication of the coefficients of a basis expansion in the reduced
subspace. As the effectiveness of the reduction step hinges on
the ability to find a sufficiently accurate reduced-dimensional
representation of full-state vectors, the task of identifying and
learning such a representation is crucial to model reduction

theory and methods.
Traditionally, linear approaches such as the Proper Or-

thogonal Decomposition (POD) are the method of choice in
problems with high-dimensional state spaces associated with
physics-based data and modeling.2–4 There are several model-
reduction approaches based on POD, such as dynamic mode
decomposition, balanced POD, the reduced basis method,
POD-based discrete empirical interpolation, and data-driven
operator inference.5–15 While all such methods have their own
strengths and limitations, their formulation in terms of linear
dimension reduction principles can lead to difficulties in prob-
lems for which the Kolmogorov N-width decreases slowly
with increasing N. The Kolmogorov N-width is a measure
for the worst-case error that might arise from the projection of
a solution manifold onto a linear subspace of dimension N.16

Nonlinear methods with machine learning techniques at
their core have received have received a surge in attention
over the past few years for adoption in reduced-order mod-
eling applications.17–21 We here focus on methods that build
on the concept of nonlinear embeddings.22–27 More specifi-
cally, this paper develops a methodology in which we learn
a reduced, nonlinear representation of the data, after which
the system dynamics can be expressed and learned in terms of
this new representation. We first reveal the low-dimensional
manifold structure of a dynamical system by fitting a nonlin-
ear basis expansion to the observed data. (The task of char-
acterizing and representing this inherent structure is often re-
ferred to as representation learning in the machine learning
community.28) The construction of nonlinear state represen-
tations is achieved here by enriching linear approximations
with low-order polynomial terms. We then summarize two
different approaches for learning the manifold geometry from
data. The first is based on the POD, while the second builds
on alternating minimization techniques.26 Once the nonlinear
manifold can be represented in the form of a basis expansion,
a projection of the PDE model onto the manifold reveals the
algebraic structure of the reduced-order model for the prob-
lem of interest. Data-driven operator inference (OpInf) is then
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used to construct projection-based reduced-order models from
data in a non-intrusive fashion.14,15

A major benefit of our proposed methodology is that the
system states are expressed through a compact modal rep-
resentation. The use of modal decomposition and analysis
techniques has paved the way to scalable nonlinear model re-
duction methods that favor interpretability and promote phys-
ical intuition. Modal representations have a long history in
approximations of physics-based models, stretching back to
early work in normal mode representations in structures and
reduced basis representations.29–31. In many applications the
modes have physical significance in that they represent dom-
inant physical modal responses.32–35 Our proposed method-
ology follows this template in that the latent space coordi-
nates are the multipliers (i.e., modal coordinates) of a non-
linear combination of basis vectors with physical interpreta-
tion. An immediate consequence of this construction is that
the coordinates now also represent the evolution of the dynam-
ical system on a low-dimensional manifold. Because the pro-
posed techniques are directly applicable to discrete-time ob-
served data, the reduced model constructed in this fashion has
the form of a system of nonlinear ordinary differential equa-
tion (ODEs), which can be solved effectively by modern ODE
solvers.

The proposed approach shares conceptual parallels with the
seminal work from Kevrekidis and coworkers on so-called ap-
proximate inertial manifolds.36–39 The theory of inertial man-
ifolds states that infinite-dimensional system of partial differ-
ent equations (PDEs) may be described accurately in their
long term behavior by finite-dimensional systems. The ex-
istence of inertial manifolds has been established for vari-
ous PDE systems in computational physics.36,40–42 Approx-
imate inertial manifold calculations are carried out as fol-
lows. One first performs a Galerkin approximation in the
derivation of low-dimensional reduced systems, after which
the higher-order modes are represented by means of the lower-
order modes (a process sometimes referred to as slaving). Of
particular relevance to this paper is the idea suggested in Dean
et al.43: "A particularly interesting direction is to combine the
approximate inertial manifold method with the POD eigen-
mode hierarchy, and approximate the solution component on
the higher POD modes as a function of its components on the
lower, more energetic ones".

An outline of the remainder of the paper follows. Section II
discusses the construction of nonlinear state approximations
through the lens of representation learning. We demonstrate
carefully how conventional linear state approximations can be
enriched with polynomial terms and how the unknown basis
matrices, coefficient matrix, and representation of the data in
a low-dimensional coordinate system can be determined in
a principled manner. Section III works with these nonlinear
state approximations to derive the algebraic structure of the
corresponding reduced-order models and shows how physics-
based reduced-order models may be learned from data using
the OpInf methodology. We then provide numerical evidence
for the effectiveness of manifold-based OpInf approaches in
Section IV using representative numerical experiments. Some
conclusions and future research directions are presented in

Section V.

II. LEARNING NONLINEAR MANIFOLDS

This section outlines our method for learning nonlinear
manifolds and presents an illustrative example. Section II A
discusses the general representation learning problem for con-
structing nonlinear state approximations in problems with
high-dimensional state spaces. The numerical procedures in-
troduced by Geelen et al.26 for solving this learning problem
are summarized in Section II B. In Section II C, a geometric
interpretation of the method is illustrated by means of a sim-
ple three-dimensional example. A Jupyter notebook outlin-
ing the computational steps for this example is available at
https://github.com/geelenr/nl_manifolds.

A. A general representation learning problem

Our focus is on data generated from complex PDE models
that represent the governing laws of nature. A training data
set is comprised of a set of snapshots, each snapshot being a
sample of the high-fidelity state representing a particular con-
dition of the physical system. We denote each snapshot by
s j ∈ Rn for n ∈ N, and construct a snapshot matrix S ∈ Rn×k

from k such snapshots:

S :=

 | | |
s1 s2 . . . sk
| | |

 . (1)

We make use of a reference state, sref ∈Rn, and denote by Sref
the n× k reference matrix each of whose columns is sref.

To approximate the high-dimensional state s(t) ∈ Rn, we
seek low-dimensional approximations Γ : Rr 7→ Rn such that

s(t)≈ Γ(ŝ(t)), (2)

where t ∈ R is some parameter on which the state depends
(frequently, time). The vector ŝ(t) ∈ Rr denotes the reduced
state coordinate vector of dimension r. The transformation Γ
constitutes a nonlinear mapping from the reduced-state coor-
dinate system to the original, high-dimensional state space.
We consider the following specific nonlinear modal basis
structure for Γ:

s(t)≈ Γ(ŝ(t)) := sref +Vŝ(t)︸ ︷︷ ︸
linear

+VΞg(ŝ(t))︸ ︷︷ ︸
nonlinear

, (3)

where V = [v1 | . . . |vr] ∈ Rn×r and V = [v1 | . . . |vq] ∈ Rn×q

are a pair of basis matrices. The matrix Ξ∈Rq×(p−1)r is a co-
efficient matrix that controls the weighting of the basis func-
tions contained in V. The vector g(ŝ(t)) ∈ R(p−1)r has the
form

g(ŝ(t)) =


ŝ2(t)
ŝ3(t)

...
ŝp(t)

 , (4)
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where each ŝ j(t) ∈Rr consists of the jth power of the compo-
nents of ŝ(t), that is, ŝ j(t) = [ŝ1(t) j, ŝ2(t) j, . . . , ŝr(t) j]. While
one could instead employ Kronecker products of the reduced-
state vector ŝ(t) (in contrast to the proposed element-wise
formulation without the cross terms), the number of terms
in g(ŝ(t)) would grow exponentially in such a construction.
Keeping the dimension of g(ŝ(t)) relatively small is of partic-
ular importance in learning physics-based reduced-order mod-
els, to be discussed in Section III.

The representation learning problem to construct a nonlin-
ear state approximation of the form (3) is now posed as a con-
strained optimization problem26

min
V,V,Ξ,Ŝ

(
F(V,V,Ξ, Ŝ)+

γ

2
‖Ξ‖2

F

)
such that

(
V V

)
∈ Vn,(r+q),

(5)

where Ŝ := (ŝ1, ŝ2, . . . , ŝk) ∈ Rr×k is the reduced-state repre-
sentation of the given system states s j for j = 1, . . . ,k; the
objective function term F is defined as

F(V,V,Ξ, Ŝ) =
1
2

k

∑
j=1

∥∥s j−Γ(ŝ j)
∥∥2

2

=
1
2

k

∑
j=1

∥∥∥∥s j− sref−
(
V V

)( ŝ j
Ξg(ŝ j)

)∥∥∥∥2

2
;

(6)

Frobenius norm regularization involving Ξ is used to to avoid
overfitting to the training data; γ ≥ 0 is a regularization pa-
rameter; and Vn,(r+q) is the Stiefel manifold, defined as the set
of matrices in Rn×(r+q) with orthonormal columns, that is,

Vn,(r+q) = {
(
V V

)
∈ Rn×(r+q) :

(
V V

)> (V V
)
= Ir+q},

(7)
where Ir+q is the R(r+q)×(r+q) identity matrix.

It should be noted that an expressive approximation of the
form (3) has the tendency to overfit noise or anomalous behav-
ior in the data. In general, the more parameters in the model,
the higher the likelihood that it will overfit. Specifically, ap-
proximations with only low-order polynomial degree p (as we
advocate here) are less prone to overfitting in comparison to
higher order polynomial methods or alternative black-box re-
gression methods. The addition of Frobenius regularization in
(5) also helps to mitigate overfitting.

B. Computing the basis expansion

This section summarizes the two methodologies from Gee-
len et al.26 for finding a numerical approximation to the solu-
tion of the representation learning problem (5)–(6): the POD-
based and alternating-minimization-based methods. To build
approximations of the form (3), these approaches make in-
formed choices on the basis matrices V and V, the coefficient
matrix Ξ, and the reduced-state representation of the data Ŝ.

In the POD-based representation learning method (see Al-
gorithm 1), the columns of V are chosen to be the POD ba-
sis vectors, that is, the left singular vectors of S−Sref corre-
sponding to the r largest singular values. The columns of the

Algorithm 1 POD-based representation learning

Input: Snapshot matrix S∈Rn×k, reference state sref ∈Rn, regular-
ization γ ∈ R+, polynomial order p ∈ N≥2.

Output: Basis matrices V ∈Rn×r and V ∈Rn×q, coefficient matrix
Ξ ∈ Rq×(p−1)r, projected snapshot data Ŝ ∈ Rr×k.
Step 1: Fixing an orthogonal set of basis vectors

S−Sref =ΦΣΨ>. (8)

(V,V)← the r+q leading left singular vectors of S−Sref
Step 2: Compute snapshot representation in POD coordinates

Ŝ = V>(S−Sref). (9)

Step 3: Fixing V, V and Ŝ at their values defined above, compute
the coefficient matrix Ξ by solving a linear least-squares problem:

min
Ξ

(
F(V,V,Ξ, Ŝ)+

γ

2
‖Ξ‖2

F

)
. (10)

Algorithm 2 Alternating minimization based representation
learning

Input: Snapshot matrix S∈Rn×k, reference state sref ∈Rn, regular-
ization γ ∈ R+, polynomial order p ∈ N≥2, stopping criterion.

Output: Basis matrices V ∈Rn×r and V ∈Rn×q, coefficient matrix
Ξ ∈ Rq×(p−1)r, projected snapshot data Ŝ ∈ Rr×k.
while stopping criterion not satisfied do

Step 1: Orthogonal Procrustes: Compute the basis vectors Ω :=(
V V

)
by solving

min
Ω

1
2

∥∥∥∥S−Sref−Ω

(
Ŝ

Ξg(Ŝ)

)∥∥∥∥2

F

such that Ω>Ω= Ir+q.

(11)

Step 2: Compute the coefficient matrix Ξ from a linear least-
squares problem:

min
Ξ

(
F(V,V,Ξ, Ŝ)+

γ

2
‖Ξ‖2

F

)
(12)

Step 3: Project data onto the nonlinear manifold by solving

min
ŝ j

1
2

∥∥∥∥s j− sref−Ω

(
ŝ j

Ξg(ŝ j)

)∥∥∥∥2

2
, j = 1,2, . . . ,k. (13)

end while

basis matrix V are chosen to be the left singular vectors cor-
responding to the next q largest singular values. This choice
of matrices {V,V} satisfies constraint (7) by virtue of the or-
thogonality property of singular vectors. Representation of
snapshots in the POD coordinates can be calculated by means
of an orthogonal projection. The coefficient matrix Ξ is ob-
tained from a linear least-squares problem.

The alternating minimization (AM) representation learning
approach (Algorithm 2) proceeds as follows. Initial guesses
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(a) Traditional POD (linear subspace)
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FIG. 1: Comparison of (a) the linear-subspace POD with (b) the POD-based representation learning and (c) alternating
minimization based representation learning approaches for reconstructing, using two modal coefficients, the three-dimensional
manifold. The relative state error ‖S−Γ(Ŝ)‖F/‖S−Sref‖F is given between parentheses. The gray surface denotes the original

three-dimensional manifold, whereas the colored surfaces illustrate the different reconstructions. The black arrows represent
the basis vectors.

are required for the projected snapshot data matrix Ŝ and the
coefficient matrix Ξ. Then the objective in (5) is successively
minimized for the three blocks of variables in turn — first
Ω=

(
V V

)
, then Ξ, then Ŝ — with the pattern repeating un-

til a convergence criterion is satisfied. Generally speaking,
three-block alternating minimization schemes have no theo-
retical guarantees of convergence.44 However in this context,
and many others, they converge on practical instances.26

The minimization with respect to Ω is a standard problem
known as the orthogonal Procrustes problem, and it can be
solved via singular value decomposition.45 The minimization
with respect to Ξ is a linear least squares problem, as in Algo-
rithm 1. The minimization with respect to Ŝ decomposes into
k separate problems, each of which has a single reduced state
ŝ j as its variable.

C. Orthogonal subspace transformations: an illustrative
example

We demonstrate the nonlinear representation (3) by means
of a small numerical example. Consider a manifold in a
three-dimensional Euclidian space parametrized by the vector
s(x,y) = (x,y,sin(x)cos(y))> ∈ R3 for x,y ∈ [0,4]. A dataset
is built by sampling s(x,y) uniformly over the domain with
grid spacings ∆x = ∆y = 0.1. The resulting data matrix S has
dimension 3× 1,681. After defining sref to be the column-
averaged mean of the data matrix, we build approximations
to the nonlinear manifold of dimension r = 2. By choosing a
polynomial embedding of degree p = 3 in (4), the nonlinear
state approximation (3) of the jth data sample becomes

s j ≈ sref +v1ŝ1, j +v2ŝ2, j︸ ︷︷ ︸
linear

+v1
(
Ξ1ŝ2

1, j +Ξ2ŝ2
2, j +Ξ3ŝ3

2, j +Ξ4ŝ3
2, j
)︸ ︷︷ ︸

nonlinear

,
(14)

where the basis vectors v1,v2,v1 form an orthogonal set.
The modal coefficients are given by ŝ1, j and ŝ2, j. Instead
of introducing a separate coefficient for the third basis vec-
tor v1, we express its coefficient in terms of the coefficients
of the first two basis vectors ŝ1, j and ŝ2, j. The coefficients
Ξ= (Ξ1,Ξ2,Ξ3,Ξ4) ∈ R4 control the weighting of v1.

We now follow the steps from the POD-based represen-
tation learning formulation of Algorithm 1. The vectors
v1,v2,v1 are fixed to be the three left singular vectors of the
shifted data matrix. Accordingly, ŝ1, j and ŝ2, j represent the
coefficients of expansion in the basis V. The coefficients Ξ
are inferred from the data via linear regression; see (10).

In the alternating minimization based representation learn-
ing approach of Algorithm 2, the basis vectors v1,v2,v1 and
the data representation in the reduced-space coordinate sys-
tem (through coordinates ŝ1, ŝ2) are computed by way of an
orthogonal Procrustes problem and a set of k = 1,681 uncon-
strained nonlinear optimization problems, respectively. The
computation of the coefficient matrix Ξ is the linear least-
squares problem (12).

Fig. 1 compares the reconstructions of the standard (linear)
POD approximation with those that use (14). Linear-subspace
POD invokes a large projection error and, in this example, is
ill-suited for data reconstruction tasks. The POD-based repre-
sentation learning approach warps the POD subspace to pro-
duce a nonlinear manifold that is slightly closer to the ex-
act solution, see Fig. 1b. By applying a series of rotations
and/or reflections to the POD basis, the alternating minimiza-
tion based method finds preferred directions along which to
apply curvature to further reduce the representation error, as
shown in Fig. 1c.
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III. LEARNING REDUCED-ORDER MODELS ON
NONLINEAR MANIFOLDS

In this section, we show how nonlinear manifold represen-
tations of the form (3) can be employed to learn physics-based
reduced-order model from data. Assuming that the full-space
data s(t) is generated by solving nonlinear governing equa-
tions with particular (widely relevant) structure, we substitute
from (3) to obtain the corresponding system in the reduced
space. We then describe a process for learning the operators
that define the reduced-order model.

Section III A derives the algebraic structure of the under-
lying reduced-order models through a manifold projection
method. In Section III B, we propose a manifold-based in-
ference method for constructing reduced-order models from
snapshot data.

A. Projection-based model reduction

Consider the following initial-value nonlinear ODE prob-
lem:

d
dt

s(t) = f(s(t)); s(0) = s0, (15)

where as before s(t) ∈ Rn is the system state at time t and
f : Rn 7→Rn maps the state to its time derivative. In many sys-
tems that arise throughout computational engineering and sci-
ences, the operator f has a certain linear-quadratic form,15,46,47

allowing us to work with the following special case of (15):

ds
dt

= As+H(s⊗ s); s(0) = s0, (16)

where we omitted the dependence of the system states on t
to simplify the notation, and ⊗ denotes the Kronecker prod-
uct. (We will refer to (16) henceforth as the full-order model
(FOM).) The operators A ∈ Rn×n and H ∈ Rn×n2

denote the
FOM operators corresponding to linear and quadratic terms,
respectively, in the governing semi-discrete equations.

The use of nonlinear state approximations of the form (3)
informs the algebraic structure of the reduced-order analog
of (16), requiring that we account for cubic and higher-order
interactions between the modal coefficients. Specifically, by
introducing (3) into (16), and projecting the residual of the
resulting system onto the span of V, we obtain

dŝ
dt

= V>Asref +V>AVŝ+V>AVΞg(ŝ)+V>H(sref⊗ sref)

+V>H(sref⊗Vŝ)+V>H(sref⊗VΞg(ŝ))

+V>H(Vŝ⊗ sref)+V>H(Vŝ⊗Vŝ)

+V>H(Vŝ⊗VΞg(ŝ))+V>H(VΞg(ŝ)⊗ sref)

+V>H(VΞg(ŝ)⊗Vŝ)+V>H(VΞg(ŝ)⊗VΞg(ŝ)),
(17)

with ŝ(0) = ŝ0 the representation of the initial condition s0
in the low-dimensional coordinate system. An alternative ap-
proach would be to choose a nonlinear, state-dependent pro-
jection of the state equations, which comes at the cost of in-
creased algebraic complexity in the reduced-order models48.

By adapting the argument of Section 2.2 from a previous
work24 to this case, we can show that when V and Ŝ are ob-
tained from a SVD of S−Sref (as in standard linear POD), Ξ
is fixed at some reasonable value, and we minimize the objec-
tive function in (5) over V alone, the orthogonality property
V>V = 0 will be satisfied automatically by the minimizing
value of V. Although this property cannot be guaranteed to
hold when we optimize simultaneously with respect to V, V,
Ŝ, and Ξ, as in (5), much remains to be gained in terms of sim-
plification of our inferred reduced-order model. Specifically,
by enforcing the orthogonality property in (5) the left-hand
side of (17) simplifies to a time derivative applied to the re-
duced state vector ŝ(t). A lack of orthogonality, on the other
hand, would result in an expression that involves the time
derivative of the polynomial function g(ŝ(t)). The added non-
linearity would cause the evaluation of the data-driven models
to be more mathematically cumbersome.

The right-hand side of (17) contains polynomial nonlin-
ear terms up to order 2p. In practice this structure poses a
significant challenge from the implementation viewpoint: ex-
plicitly computing the different projected operators becomes
cumbersome and requires explicit access to the full-order op-
erators A and H. Rather than operating on (17) directly, we
expose its polynomial structure by using the mixed-product
property of Kronecker products and grouping the constant,
linear, quadratic, and higher-order terms as follows:

dŝ
dt

= ĉ+ Âŝ+ Ĥ(ŝ⊗ ŝ)+ P̂ĝ(ŝ) (18)

where ĉ ∈ Rr, Â ∈ Rr×r,Ĥ ∈ Rr×r2
, P̂ ∈ Rr×d(r,p) are the re-

duced matrix operators. The operator P̂ accounts for the
higher-order interactions between the modal coefficients in
the reduced-order model. These interactions are captured
by the vector ĝ(ŝ) (which is a subvector of g(ŝ) defined in
(4)) and consist of monomials from degree three to degree
2p. The total number of unique coefficients in ĝ(ŝ) scales
as d(r, p) ∼ O(p2r2). Example III.1 provides an illustration
of the structure of ĝ(ŝ) and the scaling of d(r, p) in reduced-
order models of the form (18). A technique for approximat-
ing the reduced-order operators ĉ, Â,Ĥ, P̂ is presented in Sec-
tion III B.

Example III.1. For illustration purposes, consider a state ap-
proximation of dimensionality r = 2 and polynomial degree
p = 3 given by

s≈ sref +V(ŝ1, ŝ2)
>+VΞ(ŝ2

1, ŝ
2
2, ŝ

3
1, ŝ

3
2)
>, (19)

where V ∈ Rn×2 and V ∈ Rn×q are the basis matrices and
Ξ ∈ Rq×4 is the coefficient matrix, calculated as described
in Section II. The modal coefficients ŝ1, ŝ2 are the only un-
knowns. By substituting from (19) into the linear-quadratic
full-order model (16) and following the derivation from Sec-
tion III A, we obtain a reduced model of the form (18). This
model then accounts for the following nonlinear interactions
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TABLE I: Dimension d(r, p) as a function of the reduced
basis dimension, r and the degree of the polynomial

embeddings, p.

p = 2 p = 3 p = 4
r = 2 7 16 27
r = 4 26 64 114
r = 6 57 144 261
r = 8 100 256 468

r = 10 155 400 735

among the modal coefficients:

ŝ = (ŝ1, ŝ2)
> ∈ R2,

ŝ⊗ ŝ =
(
ŝ2

1, ŝ1ŝ2, ŝ2
2
)> ∈ R3,

ĝ(ŝ) =
(
ŝ3

1, ŝ1ŝ2
2, ŝ

2
1ŝ2, ŝ3

2, ŝ
4
1, ŝ1ŝ3

2, ŝ
3
1ŝ2, ŝ2

1ŝ2
2, ŝ

4
2, . . .

ŝ5
1, ŝ

2
1ŝ3

1, ŝ
3
1ŝ2

2, ŝ
5
2, ŝ

6
1, ŝ

3
1ŝ3

2, ŝ
6
2 )
> ∈ Rd(r,p)=16,

(20)
where ŝ, ŝ⊗ ŝ, and ĝ(ŝ) contain monomials of the modal co-
efficients of first, second, and higher-order degree, respec-
tively. Using elementwise powers of the reduced-state vector
ŝ (see (4)) ensures that the number of entries in ĝ(ŝ) remains
tractable. Table I lists d(r, p) the number of terms contained
in ŝ as a function of the reduced basis dimension r and the
degree of the polynomial embeddings p.

B. Learning physics-based reduced-order models from data

We employ the data-driven operator inference (OpInf)
method for learning the low-dimensional dynamical system
(18) from time-domain simulation data.14 While traditional
linear-subspace POD lies at heart of the formulation of Pe-
herstorfer and Willcox,14 OpInf can be extended to the non-
linear manifold setting, as demonstrated in Geelen et al. for
linear systems.24 Here, we consider reduction of nonlinear
systems. The OpInf methodology finds the reduced matrix
operators ĉ, Â,Ĥ, P̂ that define the reduced model that best
matches the projected snapshot data, in the following sense
of regularized least squares:(

ĉ, Â,Ĥ, P̂
)
= argmin

c̃,Ã,H̃,P̃

(
J(c̃, Ã,H̃, P̃)

+
λ1

2
(
‖c̃‖2

2 +‖Ã‖2
F
)
+

λ2

2
‖H̃‖2

F +
λ3

2
‖P̃‖2

F

)
,

(21)

where the function J(c̃, Ã,H̃, P̃) is defined to be

k

∑
j=1

∥∥∥∥c̃+ Ãŝ j + H̃(ŝ j⊗ ŝ j)+ P̃ĝ(ŝ j)−
dŝ j

dt

∥∥∥∥2

2
, (22)

while the nonnegative scalars λi with i = 1,2,3 are Tikhonov
regularization parameters that promote stability in the inferred
reduced-order models and inhibit the overfitting of the sys-
tem operators to potentially noisy data.49 Generally speaking,

Algorithm 3 The standard (POD-based) OpInf methodology
for quadratic systems14,49

Input: Snapshot matrix S ∈ Rn×k, reference state sref ∈ Rn

Output: Reduced operators ĉ, Â, Ĥ
1: Compute SVD of S−Sref
2: V← The r leading left singular vectors of the S−Sref
3: Ŝ← V>(S−Sref) {Project snapshot data onto POD subspace}

4: Approximate
d
dt

Ŝ from Ŝ {Time derivative approximation}

5: Choose λ1,λ2 {Hyperparameter optimization}
6: Find reduced operators ĉ, Â, Ĥ through OpInf regression

Algorithm 4 Proposed nonlinear manifold based OpInf
method for quadratic systems

Input: Snapshot matrix S∈Rn×k, reference state sref ∈Rn, regular-
ization parameter γ ∈ R+, polynomial order p ∈ N≥2, stopping
criterion

Output: Reduced operators ĉ, Â, Ĥ, P̂
1: Compute SVD of S−Sref
2: r,q← Choose number of left singular vectors to be used in basis

matrices V and V
3: Γ(V,V,Ξ, Ŝ)← Approximate the solution to general represen-

tation learning problem (5) using Algorithm 1 or 2

4: Approximate
d
dt

Ŝ from Ŝ {Time derivative approximation}

5: Choose λ1, λ2, λ3 {Hyperparameter optimization}
6: Solve OpInf regression problem (21) to find ĉ, Â, Ĥ, P̂.

good choices of the regularization parameters λi tend to be dif-
ferent as they are coefficients of terms with different scales.
The time derivatives in the objective function are typically
estimated numerically using finite difference approximations.
The optimization problem (21) decouples into r independent
linear least-squares problems.14

Algorithm 3 presents the steps of the linear-subspace OpInf
approach for quadratic systems,14,49 while the workflow of
the proposed nonlinear manifold-based OpInf methodology is
summarized in Algorithm 4. We use the acronyms MPOD-
OpInf and MAM-OpInf to distinguish between the nonlinear
manifold OpInf approaches based on Algorithm 1 and Algo-
rithm 2, respectively. These methodologies differ in the man-
ner in which the projected snapshot data are computed and
thus also in their subsequent reconstructions in the original
state space. This is due to differences in the adopted low-
dimensional basis, coefficient matrix, and reduced-state data
representation; see Section II.

IV. NUMERICAL EXPERIMENTS

In this section, we discuss application of the OpInf model
reduction methods described in Section III to several dynami-
cal systems. We compare the OpInf approach from Peherstor-
fer and Willcox14 (Algorithm 3) and the nonlinear-manifold-
based OpInf approaches proposed above: MPOD-OpInf and
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MAM-OpInf (see Algorithm 4). We report numerical results
for benchmark problems involving the Allen-Cahn equation,
the Korteweg-de Vries equation, and a cylinder flow problem.

A. Practical considerations

The dimensionality of a reduced-order model is typically
informed by the representation error of the training data used
in its construction. For nonlinear approximations of the form
(3) we compute the metric24

εr =
‖VŜ+VΞg(Ŝ)‖2

F

‖S−Sref‖2
F

. (23)

When V is zero (as in the linear-subspace OpInf approach) we
recover the well-known expression

εr =
r

∑
j=1

σ
2
j /

k

∑
j=1

σ
2
j , (24)

where σ j denotes the jth singular value of the mean-centered
snapshot matrix S−Sref. This indicator is commonly referred
to as the (cumulative) snapshot energy captured by the ba-
sis. The dimensionality of the reduced-order models, r, and
the number of orthogonal basis vectors in the nonlinear part
of the approximation, q, are user-specified. In the following
these values are chosen based on the singular value decay of
the shifted snapshot matrices. The polynomial order, p, of ap-
proximation (3) is chosen, in accordance with r and q, based
on the ability to represent data in the reduced-state coordinate
system to sufficient accuracy.

The primary error metric used in numerical experiments is
the relative error in the states, namely, ‖S−Γ(Ŝ)‖F/‖S−
Sref‖F . Initial guesses for V,V,Ξ, Ŝ in the alternating min-
imization method from Algorithm 2 are obtained from the
POD-based representation learning method of Algorithm 1.
The iterative process from Algorithm 2 is terminated when the
change in the relative snapshot energy εr (23) on consecutive
iterations falls below 10−3. Note that this termination crite-
rion for the alternating minimization scheme is not indicative
of the snapshot energy captured by a given number of basis
vectors and reduced-state coefficients. One might change this
threshold based on model size or desired optimization toler-
ance. The function tolerance for the nonlinear least-squares
solver used in solving (13) is set to 10−9. It is noted that the
MAM-OpInf approach calls for a representation of the ini-
tial condition in the reduced-state coordinate system. This
involves computing r coefficients through a nonlinear least-
squares problem which is carried out at the start of each re-
duced model evaluation.

The regularization parameters λi with i = 1,2,3 in (21) and
the regularization parameter γ in representation learning prob-
lem (5) are calibrated through a grid search conducted over a
predetermined range of candidate values. We seek the param-
eter combination that minimizes the relative state error over
the available training data.49 This requires that the reduced-
order model be evaluated for every parameter combination.
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FIG. 2: Normalized singular values of the centered snapshot
matrix for the Allen-Cahn problem. The blue and red areas

denote the singular values whose corresponding left singular
vectors are columns in V and V, respectively, in the

MPOD-OpInf formulation.

We also note that γ does not (explicitly) show up in OpInf
problem (21) as it appears only upon computing a represen-
tation of the data in the original state-space through (3). The
time derivatives of the projected snapshot data in the OpInf
regression problems are estimated via a fourth-order finite dif-
ference approximation.

B. The Allen-Cahn equation

While the Allen-Cahn model was originally conceived to
describe the motion of anti-phase boundaries in metallic
alloys,50 it has become prototypical for describing phase sepa-
ration and interfacial dynamics in many application domains.
The equation has also been studied in the context of model
reduction.51,52 We consider the Allen-Cahn equation

∂ts = κ∂
2
x s+ s− s3 (25)

in the domain x ∈ [−1,1] with Dirichlet boundary conditions
s(−1, t) =−1;s(1, t) = 1 and initial condition

s(x,0) = µx+(1−µ)sin(−1.5πx), (26)

in which the parameter µ varies uniformly on the range
[0.5,0.6]. The operators ∂x and ∂t in (25) denote partial dif-
ferentiation with respect to space and time, respectively. The
interface parameter κ ∈ R+ is positive constant which rep-
resents the thickness of the interface that separates the two
phases.

While the Allen-Cahn equation (25) is characterized by lin-
ear and cubic terms, adding an auxiliary variable yields sys-
tem dynamics with the desired quadratic model structure (16).
We apply the transformation15,53

T :
(
s
)
7→
(

s
s2

)
≡
(

w1
w2

)
(27)
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(a) Reference

(b) Linear-subspace OpInf (POD): r = 2

(c) MPOD-OpInf: r = 2, p = 4

FIG. 3: Comparison of the reference solution at parameter
value µ = 0.5127 (top) with the reconstructions from the
two-equation OpInf (middle) and MPOD-OpInf (bottom)

models for the Allen-Cahn model.

The lifted system is then given by

∂tw1 = ε∂
2
x w1 +w1 +w1w2

∂tw2 = 2w1∂tw1

= 2w1
(
ε∂

2
x w1 +w1 +w1w2

)
= 2εw1∂

2
x w1 +2w2 +2(w2)

2,

(28)

which contains only quadratic nonlinear dependencies on the
state. It is also important to note that no approximations are
invoked in the process of lifting (25) to (28).

State data are computed on a uniform spatial grid consisting
of n = 512 grid points. The state snapshot data are generated
from three simulations of the Allen-Cahn model, correspond-
ing to the parameters µ = [0.50,0.55,0.60]. For testing, ten
more trajectories are generated with parameter µ drawn uni-
formly at random from the interval [0.5,0.6]. The data are
recorded every 0.1 time units up to time T = 60, yielding 600
snapshots per trajectory, for a total of 1,800. The lifted snap-
shot matrix is centered by the mean initial condition across the
test parameters.

Fig. 2 shows the decay of the normalized singular values,
where normalized means that the first normalized singular
value equals 1. The first two POD modes contain 97.7% of
the energy in the lifted state data, but a total of r + q = 20
POD modes are needed to drive the projection error in the
training data below 10−5. We consider two-equation reduced-
order models constructed from OpInf methodologies. For the

(a) Linear-subspace OpInf (POD): r = 2

(b) MPOD-OpInf: r = 2, p = 2

(c) MPOD-OpInf: r = 2, p = 3

(d) MPOD-OpInf: r = 2, p = 4

FIG. 4: Pointwise error in the reconstructions for the test
trajectory at parameter value µ = 0.5127 for the Allen-Cahn

model.

TABLE II: Median of relative state error (23) in the training
and test problems across the parameters for the Allen-Cahn

problem.

Training Testing
Linear-subspace OpInf 3.599×10−1 3.424×10−1

MPOD-OpInf (p = 2) 1.823×10−1 1.552×10−1

MPOD-OpInf (p = 3) 5.091×10−2 4.368×10−2

MPOD-OpInf (p = 4) 2.567×10−2 2.552×10−2

MPOD-OpInf formulation, the basis matrix V contains the
first r = 2 POD modes, with the remaining q = 20− r = 18
POD modes captured in V. The regularization parameter in
the representation learning problem in (5) is chosen to be γ =
10−2. Value for the regularization parameters λi, i = 1,2,3 in
the OpInf problems are found by minimizing the relative state
error across all the training parameters µ .

Fig. 3 shows the reconstructed trajectories at a random test
parameter µ = 0.5127 for the linear-subspace OpInf formu-
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FIG. 5: Normalized singular values of the mean-subtracted
snapshot matrix for the Korteweg-de Vries problem. The

blue and red areas denote the singular values whose
corresponding left singular vectors are columns in V and V,

respectively, in the MPOD-OpInf formulation.

lation and its manifold-based counterpart using fourth-order
polynomial embeddings. The MPOD-OpInf model represents
the phase separation process over time more accurately, both
in the material phases and the interface dynamics. Pointwise
errors in the reconstructions of the original state data for the
nonlinear manifold models are shown in Fig. 4. We note
from these figures that increasing the degree of the polynomial
embeddings can improve the predictive capabilities. (Per-
formance of a linear-subspace OpInf reduced-order model is
shown for reference.) The relative state errors for the reduced-
order models are tabulated in Table II. It can be seen that the
MPOD-OpInf formulation outperforms the linear-subspace
OpInf formulation in the training regime as well as in the pre-
dictive setting.

C. The Korteweg-de Vries equation

The second numerical experiment is concerned with travel-
ing wave physics.54 We consider a single propagating soliton
in a one-dimensional domain with periodic boundary condi-
tions. The evolution of the wave field s in the space-time do-
main [−π,π]× [0,T ] is obtained from the Korteweg-de Vries
equation

∂ts =−αs∂xs−β∂
3
x s. (29)

The initial condition is given by s0(x) = 1+ 24sech2 (√8x
)
.

We use an equidistant computational grid consisting of 256
evenly spaced points in space. State data are saved every
0.0002 time units. We choose a final time T = 1 and model
constants α = 4 and β = 1.

To learn the nonlinear manifolds and train our data-driven
reduced-order models, 1001 snapshots of the solution are col-
lected uniformly across the time interval t ∈ [0,0.2]. The snap-
shot matrix under consideration is centered by its column-
averaged (thus time-averaged) mean value; the decay of its
singular values is shown in Fig. 5. The dynamics of the sys-
tem can be captured well with only 14 modes capturing 99.3%
of the cumulative snapshot energy. The values of r (the num-
ber of columns of V) and q (the number of columns of V)

(a) Reference

(b) Linear-subspace OpInf, r = 5

(c) MPOD-OpInf, r = 5, p = 2

(d) MAM-OpInf, r = 5, p = 2

FIG. 6: Plots of the reference solution and OpInf-produced
predictions for the Korteweg-de Vries equation over the time
window t ∈ [0,T ] at a reduced basis dimension of r = 5. The
end of the training window is indicated by the dashed line.

are then chosen so that r+q = 14. The regularization param-
eter in the representation learning problem in (5) is chosen
so that γ = 10−3. We now consider the performance of the
reduced-order models in both the training regime as well as in
the predictive setting.

Visual comparisons of the reference solution and the solu-
tions produced by the OpInf models are shown in Fig. 6. The
MPOD-OpInf and MAM-OpInf models use polynomial em-
beddings of degree p = 2. Even at r = 5 basis vectors, the
space-time evolution of the propagating soliton is relatively
well captured. The OpInf, MPOD-OpInf, and MAM-OpInf
models account for 73.6%, 82.0% and 93.1%, respectively, of
the cumulative energy (23) in the system. The relative state
errors for these formulations, over the window of training,
equals 51.4%, 42.5% and 30.0%. Predictably, the addition of
quadratic terms in the state approximation yields an increase
in accuracy. By accounting for orthogonal transformations
of the basis, as induced by the alternating minimization pro-
cedure, the contrast in accuracy becomes more pronounced,
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FIG. 7: Reference and OpInf solution snapshots from the
Korteweg-de Vries experiment at the end of the training

regime (t = 0.2) and predictions for the final time T . The
plots are given for models of dimension r = 5.
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(d) Basis vector 4

FIG. 8: First four basis vectors computed using POD (black
curves) and those obtained by means of orthogonal

Procrustes problem (11) in Algorithm 2 (red curves) for the
Korteweg-de Vries problem. For the latter curves, the modes

are computed for models of size r = 5 with quadratic
embeddings (p = 2).

as the MAM-OpInf model is more accurate than the MPOD-
OpInf variant (despite these two models having the exact same
online computational expense).

Outside the range of their training data (that is t ∈ [0.2,1])
the relative state errors are 52.9%, 43.3%, and 35.1%, for
the OpInf, MPOD-OpInf, and MAM-OpInf models respec-
tively. This experiment demonstrates the potential of both
the MPOD-OpInf and MAM-OpInf methods to outperform
linear-subspace OpInf methods in the training and (especially)
in the predictive regime. These results are corroborated by
comparing the solution snapshots at the end of training (t =
0.2) and at final time (t = 1) for the different methods (see
Fig. 7). While there is some error associated with the predic-
tion of the soliton’s exact spatial location, the MPOD-OpInf,
and MAM-OpInf formulation are better suited for capturing
the soliton’s representation over time.

The first four basis vectors (corresponding to the dominant
left singular vectors) for state approximations of dimension
r = 5 of order p = 2 are shown in Fig. 8. While both the
MPOD-OpInf and MAM-OpInf approaches produce an or-
thogonal set of vectors, the alternating minimization approach
can be seen to incorporate some of the small-scale solution
features into the dominant modes.

When we repeat the experiment but with the dimension
of the reduced-order model increased to r = 16 (choosing
r+ q = 25), the state error for the OpInf, MPOD-Opinf, and
MAM-OpInf models in the range of the training data drops
further to 5.7%, 4.3%, and 2.4% (see Fig. 9). However, if
the models are integrated to final time T , the error increases
rapidly. The state errors across the time interval [0.2,1] are
30.4%, 48.2%, and 76.4%, respectively, for the three OpInf
variants. Fig. 10 shows that these errors can be attributed to
inaccurate predictions of the soliton’s spatial location. These
results demonstrate an important tradeoff between choosing r,
the dimension of the linear subspace described by basis V, and
q, the number of basis vectors in the basis V. With r = 16, the
linear subspace captures 99.7% of the snapshot energy. En-
riching the approximation by adding the V manifold terms
using the next q = 9 singular vectors leads to 99.85% snap-
shot energy being captured by the polynomial manifold rep-
resentation (i.e., an increase of only 0.15%). In this case, the
components of the basis V correspond to singular vectors with
near-zero singular values and the additional terms provide lit-
tle benefit—in fact, in this example they lead to overfitting and
a decline in reduced model predictive performance.

We now shift attention to the computational cost of integrat-
ing reduced models of the form (18). We monitor the accuracy
of the model in the training regime, as given by the represen-
tation error of the training data (23), as a function of the length
of the reduced-representation vector [ŝ>,(ŝ⊗ ŝ)>, ĝ(ŝ)>]>,
which equals r + r(r + 1)/2+ d(r, p). The results are sum-
marized in Fig. 11 for the POD-based and AM-based mani-
fold formulations. A higher dimension for the reduced-order
model leads to both more expensive computation and in-
creased accuracy. However, for models of the same dimen-
sionality (for example, r = 4), it can be seen that the total
number of terms grows rapidly with the degree of the polyno-
mial embeddings. Note that this analysis pertains only to on-
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(a) Reference

(b) Linear-subspace OpInf, r = 16

(c) MPOD-OpInf, r = 16, p = 2

(d) MAM-OpInf, r = 16, p = 2

FIG. 9: Plots of the reference solution and OpInf-produced
predictions for the Korteweg-de Vries equation over the time
window t ∈ [0,T ] at a reduced basis dimension of r = 16. The

end of the training window is indicated by the dashed line.
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FIG. 10: Reference and OpInf solution snapshots from the
Korteweg-de Vries experiment at final time t = 1. The plots

are given for models of dimension r = 16.
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FIG. 11: Cost-accuracy assessment in evaluating
reduced-order model (18) for the Korteweg-de Vries problem
using (a) the POD-based manifold formulation (Algorithm 1)

and (b) the alternating minimization based manifold
formulation (Algorithm 2) as a function of the degree of the

polynomial embeddings, p. The results for the different
models at a reduced dimensionality of r = 4 are indicated by

the triangles (4).

line computational costs. (Reduced-order modeling of large-
scale dynamical systems typically invokes a high cost during
the offline phase, which is performed only once.)

D. Incompressible Navier-Stokes – Flow past a cylinder

We now apply our techniques to the well-investigated prob-
lem of two-dimensional transient flow past a circular cylin-
der. We focus on the configuration with Reynolds number
Re = 100, a value that is above the critical Reynolds number
for the onset of the two-dimensional vortex shedding. The
fluid flow is governed by the incompressible Navier-Stokes
equations

∂tu+∇ · (u⊗u) = ∇p+Re−1
∆u,

∇ ·u = 0.
(30)

The velocity vector is given by u = (u,v)> where u and v are
the components in the x and y-direction, respectively. Pressure
is denoted by p. We integrate the model over time interval
t ∈ [0,8]. Problem setup, geometry, and parameters are taken
from the DFG 2D-3 benchmark in the FeatFlow benchmark
suite.55 In the model reduction experiments that follow, we
did not explicitly account for the pressure term. This omission
is known to be valid for both the transient and periodic regime
of the flow.43,56

We collected 200 snapshots of a periodic reference simula-
tion at Re = 100 in the interval t ∈ [4,5], and store each snap-
shot as a column vector with 292,678 entries. As usual, the
snapshot matrix S is centered by its column-averaged mean
value Sref, and the orthogonal basis vectors are computed by
means of the POD. Because the cylinder flow example is peri-
odic, the POD modes can be grouped in pairs (v1,v2), (v3,v4),
(v5,v6), (v7,v8). Fig. 12 displays the computed mean flow
and the first POD mode for each pair.

We choose the reference state in (3) to represent the mean
flow. The flow dynamics can be captured well with only eight
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Mean flow

POD mode 1

POD mode 3

POD mode 5

POD mode 7

FIG. 12: Mean flow (top) and the dominant odd-numbered
POD modes in the cylinder flow problem. We show the

vorticity computed from the velocity fields.

modes capturing 99.89% of the snapshot energy. However,
physical and mathematical system reduction approaches have
revealed that only two modes are actual degrees of freedom of
the system; the remaining ones are completely dependent on
these two.56 This insight can also be obtained from a nonlinear
correlation analysis.57 Although the POD analysis indicates
that eight POD modes should be considered for accurate flow
reconstructions, we use instead the proposed nonlinear model
reduction framework for learning dynamical-system models
that respect the problem’s intrinsic dimensionality of 2. Al-
though we could also compute an orthogonal set of basis vec-
tors through an orthogonal Procrustes problem, as in the al-
ternating minimization based representation learning problem
(see Algorithm 2), the advantages accruing from orthogonal
transformations of a POD subspace were found to be negligi-
ble: The Procrustes modes were found to be virtually indistin-
guishable from the ones computed using POD. We thus focus
exclusively on the MPOD-OpInf formulation.

Fig. 13a shows that an OpInf model of size r = 2 is unable
to capture the periodic nature of the fluid flow. The state er-
ror for this model across the training window is 42.9%, while
with all eight modes, the error drops to 7.4%. While the model
does an excellent job of capturing the transient dynamics in
the training regime t ∈ [4,5], it fails soon after exiting the
training window. For the MPOD-OpInf model, we consider
only a reduced basis dimension of r = 2, as informed by phys-
ical intuition. This means that the remaining six POD modes
are contained in the basis matrix associated with the nonlin-
ear part of the state approximation (3), that is, V. These ap-
proximations are built from quadratic embeddings. (Although
high-order embeddings were considered for this problem, a
polynomial degree of p = 2 was found to be sufficient for
learning accurate reduced-order models.) The regularization
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FIG. 13: Comparison of the amplitudes of the first POD
mode over time in the OpInf (top) and the MPOD-OpInf

(bottom) models in the cylinder flow problem. The manifold
models used quadratic embeddings. The gray shaded region
highlights the window over which flow snapshots have been

collected for training.
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FIG. 14: Limit cycles observed in the full simulation model
(4), the eight-equation OpInf model (blue curve), and the

two-equation MPOD-OpInf model (red curve) for the
cylinder flow problem.

parameter for the representation learning problem was set to
γ = 10−2. The training error for the MPOD-OpInf was found
to be 18.6%, which is, as expected, larger than the eight-
equation OpInf model. However, the inferred two-equation
MPOD-OpInf model, which has a quadratic term in the non-
linear part of the state approximation, was found to be stable
well outside of the training regime (see Fig. 13b). The modal
amplitudes of the original simulation model are found when
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(a) Reference (292,678 degrees of freedom)

(b) MPOD-OpInf (2 degrees of freedom)

FIG. 15: Flow field (vorticity) predicted at t = 8 with a
two-equation MPOD-OpInf model using quadratic

embeddings (that is r = 2; p = 2) for the cylinder flow
problem.

the flow data is projected onto the eight POD modes. A com-
parison in the phase space of the first two coefficients, shown
in Fig. 14, finds the MPOD-OpInf model to be accurate and
stable with respect to the flow data. Finally, Fig. 15 shows a
reconstruction of the flow field in the original state space as
predicted at time t = 8 compared to the reference solution at
the same time step. While some of the finer-scale flow features
are not resolved fully, the overall flow dynamics are predicted
accurately.

It should be noted that reduced-order models with excellent
predictive performance can be obtained by other means. For
instance, approaches in which the models are equipped with
linear structure (such as the dynamic mode decomposition5–8)
are reported to work well for capturing periodic vortex shed-
ding in the cylinder flow problem.58 In the work from Baddoo
et al.58, for instance, the data was truncated to the first 15 POD
modes. It remains unclear to what extent dynamic mode de-
composition and its variants can issue efficient and accurate
predictions at or near the true dimensionality of two.

V. CONCLUSION & DISCUSSION

We have presented a general framework for nonlinear
model reduction of large-scale physical systems. We draw
on recently developed techniques for constructing nonlinear
manifolds of polynomial structure via representation learn-
ing in the form of two different learning approaches. First,
a POD-based version of the approach is intuitive due its con-
nection to conventional POD. Second, if one is willing to de-
part from the interpretable nature of POD methods, alternating
minimization techniques can boost model accuracy by means
of better approximations to the solution of the general rep-
resentation learning problem. We then turn to the issue of
learning reduced-order models from data. By projecting PDE
systems onto the nonlinear manifold we can identify the alge-

braic structure of the projection-based reduced-order model.
This process calls for careful consideration of the structure of
(1) the high-dimensional, physical system and (2) the nonlin-
ear state approximation of choice. The non-intrusive OpInf
method was used for learning models directly from time-
domain simulation data. Coupling of the two different repre-
sentation learning approaches with the OpInf framework leads
to a set of methods referred to as POD-based manifold OpInf
(MPOD-OpInf) and alternating-minimization-based manifold
OpInf (MAM-OpInf).

We applied this methodology to the Allen-Cahn equa-
tion, the Korteweg-de Vries equation, and the incompress-
ible Navier-Stokes equation. In all numerical experiments, we
found the proposed OpInf approaches to be able to circum-
vent the limitations of linear-subspace OpInf that are due to
its use of linear state approximations. The polynomial mani-
fold constructions provide the most benefit in situations where
the linear subspace does not accurately represent the full dy-
namics of the training data. In these situations, the manifold
acts as a closure term that accounts for the effects of modes
truncated from the linear subspace. The increased accuracy
enabled by a nonlinear compression of the state data does not
point to computational speedups: The reduced dimensional-
ity comes at the cost of increased algebraic complexity (and
thus computational burden) for the manifold-based reduced
models. Although the results from Section IV(D) imply that
model robustness and predictive performance are important
additional considerations to be made, further investigation is
needed in better understanding the tradeoffs between dimen-
sionality and complexity.

Further improvements in OpInf reduced-order models may
be possible if constraints are introduced to enforce particular
mathematical properties of the dynamical system. For exam-
ple, some classes of problems can be expressed using Hamil-
tonian or Lagrangian formalisms.59 Biasing OpInf models to-
ward such structure may enable more accurate long-time pre-
dictions far outside the training time interval and will be ad-
dressed in future work. In another research direction, data-
driven OpInf could be combined with the dynamic training
via roll outs of neural ordinary differential equations.60 This
OpInf formulation should be more robust against perturba-
tions in the data because the whole predicted trajectory is con-
sidered in the training loss rather than a single time step.
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DATA AVAILABILITY STATEMENT

A Jupyter notebook outlining the representation learn-
ing problem for inferring, from data, nonlinear state ap-
proximations of the form (3) for the problem from Sec-
tion II C is available at https://github.com/geelenr/
nl_manifolds. The notebook features both the POD and al-
ternating minimization based formulations from Algorithms
1 and 2. The data used in numerical experiments from Sec-
tion IV C and IV B are available upon reasonable request from
the authors. The FEniCSx computing platform is used to solve
the equations (30) through their tutorial example.61,62
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