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Abstract

This paper presents a non-intrusive data-driven approach for model reduction
of nonlinear systems. The approach considers the particular case of nonlinear
partial differential equations (PDEs) that form systems of partial differential-
algebraic equations (PDAEs) when lifted to polynomial form. Such systems
arise, for example, when the governing equations include Arrhenius reaction
terms (e.g., in reacting flow models) and thermodynamic terms (e.g., the Helmholtz
free energy terms in a phase-field solidification model). Using the known struc-
tured form of the lifted algebraic equations, the approach computes the reduced
operators for the algebraic equations explicitly, using straightforward linear alge-
bra operations on the basis matrices. The reduced operators for the differential
equations are inferred from lifted snapshot data using operator inference, which
solves a linear least squares regression problem. The approach is illustrated for
the nonlinear model of solidification of a pure material. The lifting transfor-
mations reformulate the solidification PDEs as a system of PDAEs that have
cubic structure. The operators of the lifted system for this solidification exam-
ple have affine dependence on key process parameters, permitting us to learn
a parametric reduced model with operator inference. Numerical experiments
show the effectiveness of the resulting reduced models in capturing key aspects
of the solidification dynamics.

Keywords: Reduced Order Model, Nonlinear Model Reduction, Lifting
Transformations, Differential Algebraic Equation, Proper Orthogonal
Decomposition, Operator Inference, Additive Manufacturing, Solidification.

1. Introduction

Model reduction is effective in reducing the computational cost of simulating
complex systems but remains a challenging task when the governing physics
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exhibit nonlinear dynamics that are not readily amenable to low-dimensional
approximations. Variable transformations combined with data-driven learning5

of the reduced-order model (ROM) operators have emerged as one strategy
to address the challenges of nonlinear model reduction [1, 2]; however, for a
large class of systems, including those that arise in reacting flow and phase-
field models, the desired variable transformations lead to systems of partial
differential-algebraic equations (PDAEs). This paper considers the form of the10

PDAEs that arise in lifting a nonlinear system to polynomial form and exploits
that structure to extend the Operator Inference (OpInf) approach of [3] to these
lifted PDAE systems.

As a driving application, we consider a solidification process in metal addi-
tive manufacturing. Additive manufacturing is a process during which a three-15

dimensional part is built via the layer-by-layer deposition of material according
to its digital model. Additive manufacturing’s layer-wise process adds value by
allowing for the manufacturing of components with complex geometries that are
either infeasible or difficult to build by conventional manufacturing processes.
However, the additive manufacturing process takes place over a wide range of20

length scales and time scales, making numerical simulations computationally ex-
pensive. Further, uncertainty quantification is essential since the structure and
properties of the resulting components are sensitive to process parameter vari-
ations [4]. Thus, ROMs are key enablers to making control, optimization, and
uncertainty quantification computationally feasible for additive manufacturing.25

ROMs can be used in multiscale modeling of additively manufactured parts to
reduce the computational costs of part-scale simulations while maintaining the
desired properties at microscale [5].

Our target problem poses several challenges for existing model reduction
methods. First, the transport-dominated physics of the solidification interface30

result in highly localized changes in the state solution with time. Classical
projection-based model reduction methods that seek approximations of the state
in a linear subspace (see e.g., [6–9]) require many modes to achieve accuracy in a
problem such as this one, rendering the resulting ROMs inefficient. Second, the
forward solidification model, a coupled system of nonlinear partial differential35

equations (PDEs) comprising a phase-field equation and a heat equation, has
a strong nonlinear dependence on the process parameters. Classical projection-
based model reduction methods that use hyper-reduction methods (such as the
Empirical Interpolation Method [10] and the Discrete Empirical Interpolation
Method [11]) will require many interpolation points to approximate the nonlin-40

ear terms, again rendering the resulting ROMs inefficient.
Methods based on variable transformations are becoming an effective alter-

native for model reduction of nonlinear systems of PDEs. These approaches
draw upon the notion that the introduction of auxiliary variables (often re-
ferred to as “lifting”) can lead to a reformulation of the governing equations45

in a structured form. For example, [12] shows how general nonlinear ordinary
differential equations (ODEs) can be written as so-called “polynomial ordinary
differential systems” through the introduction of additional variables. In biol-
ogy, variable transformations called “recasting” are used to transform nonlinear
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ODEs to the so-called S-system form, a polynomial form that is faster to solve50

numerically [13]. Approaches based on the Koopman operator lift a nonlinear
dynamical system to an infinite-dimensional space in which the dynamics are
linear [14, 15]. Ref. [16] introduced the idea of reformulating nonlinear dynami-
cal systems in quadratic form for model reduction and showed that the number
of auxiliary variables needed to lift a system to quadratic-bilinear form is linear55

in the number of elementary nonlinear functions in the original state equations.
The work in [16] shows that a large class of nonlinear terms that appear in
engineering systems (including monomial, sinusoidal, and exponential terms)
may be lifted to quadratic form. Lifting has been extended to model reduction
of problems governed by PDEs and shown to be a competitive alternative to60

hyper-reduction methods [1, 17]. Yet, for many practical applications it is nei-
ther feasible nor desirable to explicitly transform the high-fidelity PDE solver,
which motivates the use of non-intrusive data-driven model reduction.

Following the definitions in [18], a non-intrusive model reduction method
computes the ROM using outputs of the high-fidelity simulation but without65

access to the full-order operators (or to their action on a vector). This is in
contrast to a black-box method, which computes the ROM without using a pri-
ori or explicit knowledge of the form of the high-fidelity problem definition or
its numerical implementation. Ref. [18] notes that black-box methods are non-
intrusive, but not all non-intrusive methods are necessarily black-box: a non-70

intrusive method can exploit knowledge of the high-fidelity problem definition
and the corresponding problem structure, even though it does not access the
full-order operators themselves. Per this definition, non-intrusive approaches
are also different from gray box modeling paradigm which combines aspects of
black-box modeling and intrusive approaches. The advantage of non-intrusive75

approaches is that they compute the ROM directly from simulation data, with-
out needing access to the high-fidelity operators. Methods such as dynamic
mode decomposition (DMD) [19–23] and OpInf [3, 18, 24] operate on snapshot
data (i.e., simulated state solutions), as do approaches that directly build surro-
gate models of the proper orthogonal decomposition (POD) modal coefficients80

[25–29]. Other non-intrusive methods, such as those based on the Loewner
framework [30–34], require only compressed data (e.g., input-output measure-
ments or transfer function measurements), and are input-invariant in contrast
to OpInf where the reduced model depends on the chosen snapshots. Recent
work has recognized the advantages of non-intrusive reduction methods when it85

comes to exploiting the power of variable transformations as discussed above.
In particular, the Lift & Learn method of [2] combines lifting of a nonlinear
PDE with data-driven learning of the ROM via the OpInf method of [3], so
that variable transformations are applied only to snapshot data and not to the
high-fidelity PDE solver itself.90

For several classes of nonlinear PDEs, the particular form of the nonlinear
terms means that lifting will lead to a system of PDAEs. For example, this is the
case for the Arrhenius reaction terms in the tubular reactor example of [1]. It is
also the case for the nonlinear thermodynamic dependencies in the solidification
model considered in this paper. It is well known that reduction of PDAEs,95
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and, in the semi-discrete case, DAEs, is challenging and that the algebraic
equations require special treatment [35, 36]. In some applications the DAEs
can be reformulated as a system of differential equations and model reduction
techniques are applied to the index-reduced ODEs [37], but these approaches
often lead to stiff systems [38]. Another approach taken in the literature is100

index-aware model reduction in which the nonlinear DAE is linearized about
a stationary solution, the linearized DAE is decoupled into the differential and
algebraic parts, and model reduction is applied to each part individually [38,
39]. These existing DAE model reduction approaches are intrusive; here we
formulate a non-intrusive data-driven approach. When the algebraic equations105

arise through the lifting process, they take on a particular structured form. In
this paper we elicit that structured form and we exploit it to learn the resulting
ROM via non-intrusive operator inference. In particular, we show that the
reduction of the lifted algebraic equations can be computed explicitly using
only manipulations of the low-dimensional basis vectors, while the reduction of110

the differential equations follows the OpInf approach of [3].
Section 2 of this paper presents the lifting of a nonlinear system of PDEs to

polynomial form and discusses the form of the algebraic equations that arise.
Section 3 develops the proposed non-intrusive operator inference approach for
the lifted system of DAEs. Section 4 presents application of the approach to115

solidification of a pure metal. Finally, concluding remarks are presented in
Section 5.

2. Nonlinear Model Reduction via Lifting to Polynomial Form

This section first presents the general projection-based reduction of a nonlin-
ear system and discusses its computational challenges. We then discuss lifting of120

nonlinear systems to systems with polynomial terms with particular attention
to the differential-algebraic structure that arises for several classes of nonlinear
equations. We derive the form of the ROM of the lifted DAE system.

2.1. Projection-based nonlinear model reduction

Our goal is to derive ROMs of systems of nonlinear PDEs. We consider the
case where we have a system of dq PDEs. To keep the presentation of our model
reduction approach general, we consider the semi-discrete system of nonlinear
ODEs that arises from spatial discretization of the PDEs of interest:

q̇ = f (q) , q (0) = q0, (1)

where q(t) ∈ Rndq is the ndq-dimensional semi-discrete state vector, with n the125

number of degrees of freedom in the spatial discretization, and f : Rndq → Rndq

is the discretized nonlinear function. The time interval of interest is t ∈ [0, tf ]
and q0 is the specified state initial condition. We refer to (1) as the full-order
model (FOM).

To construct a projection-based ROM, we define a basis matrix U ∈ Rndq×r,130

where r ≪ n is the ROM dimension. Using the POD method of snapshots
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[40], this is done by constructing a set of K solution snapshots of (1), Q =[
q (t0) q (t1) · · · q (tK−1)

]
where q (ti) is the solution of the FOM (1) at

t = ti obtained from a time-stepping scheme. The POD basis is comprised of
the r left singular vectors of Q corresponding to the r largest singular values.135

That is, given the thin singular value decomposition Q = ΘΣΨ⊤ in which the
diagonal matrix Σ contains the singular values of Q in non-increasing order,
then Θ contains as its columns the left singular vectors of Q and the POD
basis is given by the first r columns of Θ, i.e., U = Θ1:r. The POD basis
is orthonormal, i.e., U⊤U = Ir×r, where Ir×r denotes the identity matrix of140

dimension r × r.
The POD ROM is derived by forming the POD approximation of the state,

q ≈ Uq̂, and then performing a Galerkin projection to yield

˙̂q = f̂ (q̂) , q̂ (0) = U⊤q0, (2)

where q̂ ∈ Rr is the reduced-order state, and f̂ (q̂) = U⊤f (Uq̂) ∈ Rr. Although
(2) is a low-dimensional system of order r ≪ n, it is not computationally effi-

cient. The issue lies in the evaluation of the reduced nonlinear function f̂ which
still scales with the dimension of the FOM, because to evaluate it we need to145

transform the reduced state q̂ back to the full-order state space, evaluate the
nonlinear function, and then project the full-order nonlinear function f back to
the reduced space.

To resolve this computational complexity issue arising with nonlinear model
reduction, one common approach in the literature is the introduction of another150

layer of approximation (commonly referred to as hyper-reduction), which limits
the evaluation of the nonlinear function to a subselection of sampling points
[10, 11, 41–44]. Among existing hyper-reduction methods, the discrete empirical
interpolation method [11] (DEIM) has been used broadly in the literature for a
wide range of nonlinear model reduction applications [45–49]. It has been shown155

in [50, 51] that for highly nonlinear functions, the number of sampling points
required for hyper-reduction is relatively high compared to the dimension of the
FOM, undermining the efficacy of the resulting ROM.

2.2. Lifting transformations

An alternative nonlinear model reduction approach is to employ variable160

transformations to expose system structure, so that hyper-reduction is not
needed [1, 2, 16]. For nonlinear models of polynomial form, Operator Inference
(OpInf) [3] is a non-intrusive approach to model reduction where the reduced op-
erators are learned from data through least squares minimization. For nonlinear
PDEs with general nonlinearity, one can lift the governing nonlinear PDEs—165

that is, introduce auxiliary variables—to an equivalent polynomial structure,
thus making the lifted system well-suited for OpInf, and then construct the
ROM for the lifted form via the OpInf learning scheme [2].

The lifting happens at the PDE level. For some specialized cases, transfor-
mations can be found that preserve the number of PDE unknowns (dq) in the170

transformed equations, but in general the lifting transformation increases the
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number of PDE unknowns (and correspondingly the number of equations) in
the lifted form, to dl > dq. This is because auxiliary variables are introduced
to recast the nonlinear terms. In what follows, we consider the case where the
lifting map introduces additional auxiliary variables (i.e., dl > dq).175

According to [16] many nonlinear systems can be lifted to an exact equiva-
lent polynomial representation; however, for many of the nonlinear terms that
appear in scientific and engineering applications, lifting leads to algebraic equa-
tions. This means that the resulting lifted system has a PDAE form. Algebraic
equations can also arise due to an imposed constraint on either the polynomial180

degree of the lifted formulation or the number of introduced auxiliary variables.
For example, the tubular reactor example of [1] has Arrhenius reaction terms
that can be lifted to quartic form as a set of PDEs or to quadratic form as a set
of PDAEs. Since the fourth-order operator in the quartic ROM leads to an op-
erator inference problem with O(r4) degrees of freedom, it is typically desirable185

to bring the system to a quadratic or cubic form. In this paper, we explicitly
consider the form of the PDAE system and its algebraic constraints that arise
in such cases, and we formulate an OpInf approach that learns ROMs in this
setting.

Following [2], we define a lifting map T : Rndq → Rndl that transforms
the native discretized PDE state q ∈ Rndq into a lifted semi-discrete state of
dimension ndl. We partition the lifted semi-discrete state into its components
corresponding to the differential equations, denoted y, and its components cor-
responding to the algebraic equations, denoted z. That is, the lifted state is[

y
z

]
∈ Rndl .

To ease notation, we will present the case where the lifting of the PDEs leads
to one algebraic equation (i.e., z ∈ Rn) and dl − 1 differential equations (i.e.,
y ∈ Rn(dl−1)); however, it is straightforward to see how the method applies to
cases with multiple algebraic equations. We write the state y as

y =



y(1)

y(2)

...
y(m)

...
y(dl−1)


∈ Rn(dl−1), y(m) =



y
(m)
1
...

y
(m)
l
...

y
(m)
n


∈ Rn, (3)

where the notation y(m) denotes the semi-discretization of the mth lifted state190

component, and thus forms an n-dimensional block component of the vector

y. The notation y
(m)
l denotes the value of this mth state component at the

lth discretization point (e.g., corresponding to the lth spatial point for a finite
difference discretization or the lth finite element basis function, etc.).
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2.3. Lifting to a system of DAEs with polynomial terms195

Consider the case where the lifting map T leads to cubic form in the lifted
equations.1 The lifted equations can therefore be notionally written as

ẏ = C+A

[
y
z

]
+H

([
y
z

]
⊗

[
y
z

])
+G

([
y
z

]
⊗

[
y
z

]
⊗

[
y
z

])
,

(4)

z = C +Ay +H (y ⊗ y) + G (y ⊗ y ⊗ y) , (5)

although it is important to note that we do not arrive at (4) and (5) by discretiz-
ing the lifted PDAEs; we present these equations only to motivate the form of
the ROM. In (4) and (5), the symbol ⊗ denotes the Kronecker product (follow-
ing the notation from [52]). The operators C ∈ Rn(dl−1), A ∈ Rn(dl−1)×(ndl),

H ∈ Rn(dl−1)×(ndl)
2

, and G ∈ Rn(dl−1)×(ndl)
3

are respectively the constant,200

linear, quadratic, and cubic operators of the differential equations in the lifted
system. Similarly, C ∈ Rn, A ∈ Rn×[(dl−1)n], H ∈ Rn×[n(dl−1)]2 , and G ∈
Rn×[n(dl−1)]3 are respectively the constant, linear, quadratic, and cubic opera-
tors corresponding to the algebraic equation in the lifted system corresponding
to the constants of the polynomial algebraic equation. Note that the governing205

equations are typically sparse with respect to the underlying variables (i.e., the
number of one-way, two-way and three-way interactions among the dl variables
is typically quite small, so that A, H, G, A, H, and G will contain a large
number of zero blocks).

The projection-based ROM of the DAE system (4) and (5) preserves the
cubic structure, giving

˙̂y = Ĉ+ Â

[
ŷ
ẑ

]
+ Ĥ

([
ŷ
ẑ

]
⊗

[
ŷ
ẑ

])
+ Ĝ

([
ŷ
ẑ

]
⊗
[

ŷ
ẑ

]
⊗

[
ŷ
ẑ

])
,

(6)

ẑ = Ĉ + Âŷ + Ĥ (ŷ ⊗ ŷ) + Ĝ (ŷ ⊗ ŷ ⊗ ŷ) , (7)

where ŷ ∈ Rr1 , ẑ ∈ Rr2 are the reduced state vectors for the differential and
algebraic equations, respectively. That is, given an r1-dimensional POD basis
V ∈ Rn(dl−1)×r1 for the differential states y and another r2-dimensional POD
basis W ∈ Rn×r2 for the algebraic states z, the approximation of the full-order
states in the POD subspace is:[

y
z

]
≈

[
V 0
0 W

] [
ŷ
ẑ

]
. (8)

Our task now is to determine the ROM defined by (6) and (7) by inferring210

the reduced operators Ĉ ∈ Rr1 , Â ∈ Rr1×(r1+r2), Ĥ ∈ Rr1×(r1+r2)
2

, Ĝ ∈

1Note that we consider the cubic case because it arises in our additive manufacturing
example problem in Section 4, but it is straightforward to see how our approach applies to
systems with at most quadratic terms, as well as systems with higher-order polynomial terms.
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Rr1×(r1+r2)
3

, Ĉ ∈ Rr2 , Â ∈ Rr2×r1 , Ĥ ∈ Rr2×r21 , and Ĝ ∈ Rr2×r31 . The forms
of (6) and (7) reveal how lifting to polynomial form circumvents the need for
hyper-reduction techniques. Whereas in (2) the ROM embeds evaluations that
scale with the dimension of the FOM, the polynomial form of (6) and (7) means215

that once the reduced operators Ĉ, Â, Ĥ, Ĝ, Ĉ, Â, Ĥ, and Ĝ are derived, the
ROM is completely decoupled from the FOM; that is, solving the ROM scales
only with the reduced dimensions r1 and r2 and not with the dimension of the
FOM, nor is any hyper-reduction needed.

3. Operator Inference for Lifted Differential Algebraic Equations220

This section presents our approach for learning the operators of the ROM
defined by (6) and (7). The differential equations (6) use the standard OpInf
approach from [3], as discussed in Section 3.1. In Section 3.2, we develop a
tailored approach for the algebraic equations (7), which exploits the particular
structure of the lifted system.225

3.1. Operator Inference for differential equations

To determine the ROM for the differential equations in (4), we use the

regularized OpInf approach of [53] to infer the reduced operators Ĉ ∈ Rr1 ,

Â ∈ Rr1×(r1+r2), Ĥ ∈ Rr1×(r1+r2)
2

, and Ĝ ∈ Rr1×(r1+r2)
3

. The steps of the
approach are as follows:230

Step 1: Snapshots of the state vector of the original high fidelity model (1) are
generated at K time steps to build the state snapshot matrix for the original
variables, Q ∈ Rndq×K .

235

Step 2: The lifting transformations defined by the lifting map T are applied to
the snapshots. For each snapshot q, we generate[

y
z

]
= T(q),

resulting in the lifted snapshot data for the differential and algebraic equations,
contained in the lifted snapshot matrices Y ∈ Rn(dl−1)×K and Z ∈ Rn×K re-
spectively.

Step 3: Compute the POD basis matrices for the lifted snapshots using thin
singular value decomposition:

Y = Θ1Σ1Ψ
⊤
1 , V = (Θ1)1:r1 ∈ Rn(dl−1)×r1 , (9)

Z = Θ2Σ2Ψ
⊤
2 , W = (Θ2)1:r2 ∈ Rn×r2 , (10)

where V and W are the POD basis matrices for Y and Z, respectively. The240

size of the bases r1 and r2 are chosen by assigning a threshold for the relative
cumulative energy of the POD modes. That is, choose r1 (respectively r2) so
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that ϵ =
(∑r1

i=1 σ
2
i

)
/
(∑K

i=1 σ
2
i

)
is greater than the specified tolerance, where

σi is the ith singular value of Σ1 (respectively Σ2).
245

Step 4: Project the lifted snapshot matrices Y and Z onto their correspond-
ing POD subspaces, to obtain the coordinates of the lifted snapshots in the
POD bases. Estimate numerically the time derivative for the snapshots of the
differential states:

Ŷ = V⊤Y =

 | | |
ŷ (t0) ŷ (t1) · · · ŷ (tK−1)

| | |

 ∈ Rr1×K , (11)

˙̂
Y =

 | | |
˙̂y (t0) ˙̂y (t1) · · · ˙̂y (tK−1)
| | |

 ∈ Rr1×K , (12)

Ẑ = W⊤Z =

 | | |
ẑ (t0) ẑ (t1) · · · ẑ (tK−1)
| | |

 ∈ Rr2×K . (13)

Step 5: Infer the ROM operators for the differential states from snapshot data
via OpInf by posing a least squares problem in a minimum residual sense:

min
Ĉ,Â,Ĥ,Ĝ

∥∥∥∥1KĈ⊤ + Ŝ⊤Â⊤ +
(
Ŝ⊙ Ŝ

)⊤
Ĥ⊤ +

(
Ŝ⊙ Ŝ⊙ Ŝ

)⊤
Ĝ⊤ − ˙̂

Y⊤
∥∥∥∥2
F

,

(14)

where ∥.∥F is the Frobenius norm, Ŝ⊤ =
[
Ŷ⊤ Ẑ⊤

]
∈ RK×(r1+r2) collects the

differential and algebraic snapshot matrices in a single matrix, 1K is a column
vector of length K of values of unity, and ⊙ denotes the Khatri-Rao product of
two matrices (also known as column-wise Kronecker product [52]). It has been
shown in [3] that the reduced operators obtained from (14) converge to those250

obtained from intrusive projection when dt → 0.
As shown in [3], (14) decomposes into r1 independent least squares problems,

one for each row of the reduced system of (6). This reduces the computational
cost of the OpInf problem and also lowers the amount of training data required,
since the number of coefficients to be inferred in each least squares problem255

scales with r3 rather than r4 (with r = r1 + r2). For the cubic structure
in (14), the number of unknowns for each least squares problem is at most
s = 1+r+r (r + 1) /2+r (r + 1) (r + 2) /6, where we account for the elimination
of the redundant terms arising from the commutativity of multiplication within
Ĥ and Ĝ. The number of unknown coefficients in the OpInf regression problem260

can be reduced further by constructing a separate POD basis for each physical
variable, which leads to a block diagonal POD basis matrix. As noted before, the
governing equations are typically sparse with respect to the underlying variables
and a block diagonal POD basis preserves this sparsity. Any sparsity in the
ROM can be accounted for in (14) trivially by eliminating from the least squares265

problem the matrix coefficients that are known to be zero, and solving (14) over
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the subset of coefficients that are non-zero. This is possible due to the minimum
residual formulation of the OpInf least squares problem and the fact that the
sparsity pattern is known a priori. Using a separate POD basis also has the
advantage of being able to select a different number of modes for each variable,270

although its sparsity-preserving advantage can be offset by an increase in the
total number of modes required to achieve a desired accuracy level. The number
of snapshotsK must be chosen to be at least as large as the number of unknowns
s to avoid an underdetermined system. In addition, the snapshot set must be
sufficiently rich to avoid ill-conditioning of (14), which suggests that we should275

choose K > s. The required number of snapshots needed for a certain accuracy
is generally problem dependent, but can be checked during computation of the
OpInf ROM by evaluating the condition number of the data matrix as described
in [53]. The scaling of the computational cost of OpInf with respect to n, K,
and r is analyzed in detail in [53].280

The least-squares problem (14) is data-driven. There are multiple sources

of noise in the data Ŝ and
˙̂
Y, which affect the solution of (14). Sources of

noise include the errors introduced due to numerical approximation of the time

derivatives
˙̂
Y, closure error due to the disregarded POD modes, and any po-

tential model mis-specification error. Thus, to avoid overfitting the operators285

to the data, regularization is needed as discussed in [53].

3.2. Reduced representation of the algebraic equations

We now present the approach for deriving the reduced operators Ĉ, Â, Ĥ,
and Ĝ of the algebraic equation (7). Our approach leverages the known structure
of the algebraic equations that arise during the lifting of the original nonlinear
system to polynomial form. In particular, we observe that the algebraic equa-
tions have a pointwise structure because they arise from lifted equations that
specify definitional relationships between lifted continuous variables (this will
be illustrated in our example in Section 4). We can expand the terms in the
algebraic equations (5) in a component-wise summation format as

z = C +

dl−1∑
i=1

A(i)y(i) +

dl−1∑
i=1

dl−1∑
j=i

H(i,j)y(i) ⊗ y(j)

+

dl−1∑
i=1

dl−1∑
j=i

dl−1∑
k=j

G(i,j,k)y(i) ⊗ y(j) ⊗ y(k), (15)

where y(i) denotes the semi-discretization of the ith lifted state component as
defined in (3), and A(i) ∈ Rn×n, H(i,j) ∈ Rn×n2

, and G(i,j,k) ∈ Rn×n3

denote
the corresponding blocks within the operators of (5). Since the projection-based290

ROM inherits the structure of the FOM, the algebraic equations of the ROM
(7) would similarly inherit the summation structure of (15). The summation
format of (15) accounts for all possible linear, quadratic and cubic terms in the
algebraic equation, but in practice, the algebraic equations are typically sparse
and only include a few terms (further discussed in Section 4).295
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In principle, one could learn the reduced operators of the ROM correspond-
ing to (15), Â(i) ∈ Rr×r, Ĥ(i,j) ∈ Rr×r2 , and Ĝ(i,j,k) ∈ Rr×r3 , via least squares
with a reformulation of (14) to reflect the residual of the algebraic equation
(which does not have a time derivative term). However, this indirect learning
from data is unnecessary: due to the structure of the algebraic equation, its
reduced operators can be determined explicitly in a straightforward manner.
In particular, due to the pointwise structure of the algebraic equation (which
as noted above arises because, at the continuous level, the algebraic equations
specify definitional relationships between lifted continuous variables), the oper-
ators A(i), H(i,j), and G(i,j,k) each will have only one non-zero term at each row
corresponding respectively to the one-way, two-way, and three-way definitional
relationship encoded in the algebraic equation. Therefore, we have

C = c1n, (16)

A(i) = a(i)In×n, (17)

H(i,j) = h(i,j)
[
e1 0n×n e2 0n×n · · · 0n×n en

]
n×n2 , (18)

G(i,j,k) = g (i,j,k)
[
e1 0n×(n2+n) e2 0n×(n2+n) · · · 0n×(n2+n) en

]
n×n3 ,

(19)

where 0α×β represents a zero block with α rows and β columns, ep is a column
vector of length n with all zeros and a unity value at the pth row, and c, a(i),
h(i,j) and g (i,j,k) are scalar constants in the algebraic equation. We can then
exploit this form to determine the ROM operators

Ĉ = W⊤C = cW⊤1n, (20)

Â(i) = W⊤A(i)V(i) = a(i)W⊤V(i). (21)

Ĥ(i,j) = W⊤H(i,j)
(
V(i) ⊗V(j)

)
, (22)

Ĝ(i,j,k) = W⊤G(i,j,k)
(
V(i) ⊗V(j) ⊗V(k)

)
, (23)

where V(i) denotes the partitioning of the POD basis V (whether it is block
diagonal or not) in the same format as (3):

V =



V(1)

V(2)

...
V(m)

...
V(dl−1)


, (24)

where each block V(i) has dimension n× r1. Observe that the definition of Ĉ in
(20) and Â in (21) use products of the POD basis matrices V and W that are
straightforward to compute and then combine with the known constants c and
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a(i). Similarly, since each row of the operators H(i,j), and G(i,j,k) contains only
one non-zero element as shown in (18) and (19), computation of the reduced

operators Ĥ(i,j) and Ĝ(i,j,k) can be achieved efficiently and without having to
first construct the corresponding full-order operators. Given (18) and (22) for

the quadratic operator, and (19) and (23) for the cubic operator, Ĥ(i,j) and

Ĝ(i,j,k) can be written as

Ĥ(i,j) = h(i,j)W⊤



V
(i)
1 ⊗V

(j)
1

V
(i)
2 ⊗V

(j)
2

...

V
(i)
l ⊗V

(j)
l

...

V
(i)
n ⊗V

(j)
n


, Ĝ(i,j,k) = g (i,j,k)W⊤



V
(i)
1 ⊗V

(j)
1 ⊗V

(k)
1

V
(i)
2 ⊗V

(j)
2 ⊗V

(k)
2

...

V
(i)
l ⊗V

(j)
l ⊗V

(k)
l

...

V
(i)
n ⊗V

(j)
n ⊗V

(k)
n


,

(25)

where V
(i)
l denotes the lth row of V(i).

4. Application: Solidification Process in Additive Manufacturing

We test the efficacy of the proposed method for a solidification process in
metal additive manufacturing. The additive manufacturing process takes place
over a wide range of length scales and time scales, and it is sensitive to vari-300

ations in process parameters. Numerical simulations of the additive manufac-
turing process are computationally expensive, making it a challenge to achieve
control, optimization, and uncertainty quantification. Reduced-order modeling
is thus a critical enabler for achieving models that are sufficiently accurate and
computationally efficient. Section 4.1 presents the target problem of phase-field305

simulation of the solidification process. Section 4.2 derives the lifting transfor-
mation map to expose a cubic polynomial PDAE structure in the solidification
model, and discusses the different choices and possibilities that exist in the lift-
ing process. Section 4.3 discusses the construction of the POD basis, and the
determination of the ROM operators for the algebraic equation of the lifted310

formulation. Finally, section 4.4 presents numerical experiments that test the
efficacy of the proposed model reduction method.

4.1. Phase-Field Simulation of Solidification

This study uses Kobayashi’s solidification model [54] for pure materials in
which the evolution of the order parameter is represented by the Allen-Cahn
equation. The governing equations are{

u̇ = ∇. (K (ϕ)∇u) + LH ϕ̇, on (0, tf ]× (0, ℓ)

τ ϕ̇ = ξ2∆ϕ− p′ (ϕ)− q (u, ϕ) , on (0, tf ]× (0, ℓ) ,
(26)
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where the phase-field order parameter, ϕ (x, t), characterizes the phase at spatial
location x at time t and u (x, t) is the temperature. The phase-field equation
accounts for the evolution of the diffuse interface in an implicit manner where
ϕ = 0 and 1 represent the liquid and solid phases, respectively, and ϕ = 0.5
is considered to be the location of the solid-liquid interface [55–57]. LH is the
non-dimensional latent heat, K is the thermal diffusivity, τ is the relaxation
parameter, ξ represents the width of the diffuse interface, ℓ is the length of the
one-dimensional physical domain, and tf is the final time. The terms p′ (ϕ) and
q (u, ϕ) appearing in (26) arise respectively from the differentiation of the first
and second terms of the free energy density with respect to ϕ. The Helmholtz
free energy density used in this study is [54]

f (u, ϕ) =
1

4
ϕ2 (1− ϕ)

2
+

(
1

3
ϕ3 − 1

2
ϕ2

)
m (u) , (27)

where

m (u) =
β

2
m0 (u) , with m0 (u) = tanh [γ (uM − u)] , (28)

where β < 1 is the parameter that controls the magnitude of m and γ is the
parameter controlling the rate of change of m about the melting temperature
uM . The constraint β < 1 is to enforce |m (u)| < 1/2 which guarantees that
the Helmholtz free energy f acquires local minimum at liquid (ϕ = 0) and solid
(ϕ = 1) phases, and a local maximum at ϕ = 1/2 −m. Given the free energy
density (27), we have

p′ (ϕ) =
1

2
ϕ (1− ϕ) (1− 2ϕ) , q (u, ϕ) = ϕ (ϕ− 1)m (u) , (29)

where p (ϕ) = f (ϕ, uM ) = 1
4ϕ

2 (1− ϕ)
2
, and the prime denotes differentiation

with respect to ϕ. The thermodynamical driving term is controlled by m with315

m > 0 driving the system towards solidification, and m < 0 resulting in the
liquid phase as the stable phase. Note that the definition of m in (28) is not
a unique choice [54]; other monotonically decreasing continuous functions of u
can be used for m as long as |m (u)| < 1/2.

Homogeneous Neumann boundary conditions are imposed on the tempera-
ture and order parameter. In this study the initial conditions are chosen to be:

ϕ(x, 0) = ϕ0 =
1

2
(1− tanh (1000(x− x0))) , u(x, 0) = u0 = uMϕ0 (30)

where ϕ0 corresponds to having a solid phase in 0 < x < x0 and a liquid phase320

in x0 < x < ℓ with x0/ℓ as the initial solid fraction, and the temperature in
the solid phase is considered to be equal to the melting temperature uM . The
initial conditions are chosen such that u ≤ uM , hence the system will be driven
towards solidification.
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In this study, the thermal diffusivity is taken to depend on the phase of
the material through an interpolation function h (which satisfies h (0) = 0 and
h (1) = 1):

K (ϕ) = K0 (1− h (ϕ)) +K1h (ϕ) , (31)

whereK0, andK1 represent the thermal diffusivity of the liquid and solid phases,325

respectively. The selected interpolation function is h (ϕ) = 6ϕ5 − 15ϕ4 + 10ϕ3

where h′ (ϕ) = 120p (ϕ) [4].
Figure 1 shows an example result of the phase-field simulation of the solid-

ification phenomena. The figure depicts the evolution of the temperature and
order parameter in time over the one-dimensional spatial domain (ℓ = 1). Sharp330

transitions in the order parameter occur along the interface (the dashed line),
and the interface moves in time. Because of the existence of the latent heat
term in the heat equation (26), abrupt transitions along the interface are also
evident in the temperature field. The moving front nature of the solidification
phenomena makes it a challenging problem for model reduction.

Figure 1: Phase-field simulation of the solidification phenomena of a pure material (LH = 1.0,
K0 = 1.0, K1 = 0.1, ξ = 0.01, τ = 0.0003, uM = 1.0, β = 0.9, x0 = 0.1, ℓ = 1). The dashed
line represents the location of the interface. Note: the horizontal axis corresponds to the
physical domain, and the vertical axis represents the time.

335

4.2. Lifting Transformation

We define a lifting map that lifts the nonlinear governing equations (26) to
a polynomial system with cubic form. We define the auxiliary variables

K = K0 + (K1 −K0)
(
6ϕ5 − 15ϕ4 + 10ϕ3

)
p =

1

4
ϕ2 (1− ϕ)

2

p′ =
1

2
ϕ (1− ϕ) (1− 2ϕ)

p′′ = 3ϕ (ϕ− 1) +
1

2
m0 = tanh [γ (uM − u)]

z = −γ
(
1−m2

0

)
.

(32)
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The lifted states are then defined with y =
[
u ϕ K p p′ p′′ m0

]⊤
,

and z = −γ(1−m2
0). This leads to the lifted equations

u̇ = ∇. {K∇u}+ LH

τ

[
ξ2∆ϕ− p′ − β

6
m0

(
p′′ − 1

2

)]
τ ϕ̇ = ξ2∆ϕ− p′ − β

6
m0

(
p′′ − 1

2

)
K̇ =

120 (K1 −K0)

τ
p

[
ξ2∆ϕ− p′ − β

6
m0

(
p′′ − 1

2

)]
ṗ =

1

τ
p′
[
ξ2∆ϕ− p′ − β

6
m0

(
p′′ − 1

2

)]
ṗ′ =

1

τ
p′′

[
ξ2∆ϕ− p′ − β

6
m0

(
p′′ − 1

2

)]
ṗ′′ =

3

τ
(2ϕ− 1)

[
ξ2∆ϕ− p′ − β

6
m0

(
p′′ − 1

2

)]
ṁ0 = z

(
∇. {K∇u}+ LH

τ

[
ξ2∆ϕ− p′ − β

6
m0

(
p′′ − 1

2

)])
z = −γ

(
1−m2

0

)

(33)

These equations comprise a PDAE system of seven PDEs and one algebraic
equation. The lifted system has cubic form; that is, all terms on the right-hand
side of (33) are constant or have only linear, quadratic, or cubic dependence on
the lifted states y and z. The lifted system is sparse in the sense that only a340

limited number of the possible interactions among auxiliary variables appear in
the equations. For example, in (33), the equation for ϕ̇ includes on its right-hand
side only four terms: linear in ϕ, linear in p′, linear in m0, and bilinear in m0

and p′′. The lifting introduces no approximations—it is simply a rewriting of the
equation set (26), but since it employs the chain rule to derive the equations for345

the auxiliary variables, the lifting assumes that the necessary derivatives exist.
An important point to emphasize is that the lifted equations (33) will not be
discretized or solved, but rather provide the guiding structure for defining the
variables over which the POD basis is computed and in formulating the operator
inference problem.350

The lifting transformation is not unique and the choice employed in (32) is
just one of a number of choices available for this example. A different lifting
transformation will lead to a different lifted system. For example, in the solidifi-
cation problem of (26) an alternative choice for the auxiliary variables would be

to replace
[
K p p′ p′′

]⊤
with

[
ϕ5 ϕ4 ϕ3 ϕ2

]⊤
. We chose the for-355

mer set of auxiliary variables, because they each represent some physical aspect
of the solidification model (i.e., diffusion coefficient, double-well potential, and
the first and the second derivative of the double-well potential which appear
explicitly in (26)). However, in principle one could choose the latter set of aux-
iliary variables. This would also lead to a PDAE system with cubic structure,360

but the sparsity structure of the system of equations would be different, because
the relationships among auxiliary variables are different.

Yet another choice for the lifting transformations is to eliminate the variable
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z by replacing it with z = −γ(1−m2
0) in the evolution equation for ṁ0 in (33).

This would lead to a lifted system of seven PDEs with quartic structure, with365

the advantage of eliminating the algebraic equation. A similar observation was
made in [1] for the Arrhenius reaction term of a tubular reactor model, with
different lifting transformations resulting in either a quartic system of PDEs or a
quadratic PDAE system. The disadvantage of the quartic PDE lifting choice for
our solidification example is that the number of reduced operator coefficients370

to be learned for the cubic structure of (33) scales with r3, whereas for the
quartic structure it would scale with r4. Consequently, even though the PDAE
structure requires a special treatment, it reduces the number of reduced operator
coefficients to be learned, which is important for the numerical conditioning,
robustness and snapshot data requirements of the OpInf implementation.375

In general the lifting map T is not bijective. However, with our chosen lifting
transformations the lifted state in (33) subsumes the original state variables u
and ϕ. It is therefore straightforward to recover ROM estimates of the original
variables without defining a reverse lifting map. Approximations introduced by
the ROM will destroy the one-to-one mapping present in the lifted snapshot380

data. For example, using a ROM prediction of ϕ to compute a corresponding
prediction of K(ϕ) will in general not give the same result as computing K
directly from the lifted POD basis.

This discussion highlights the richness of possibilities for choosing lifting
transformations, and the corresponding tradeoffs in computational complexity385

and numerical well-posedness (i.e., the polynomial degree of the lifted system
and number of coefficients to be inferred), lifted system structure (i.e., PDEs
versus PDAEs, sparsity structure), directly approximating physical quantities of
interest (e.g., the primary variables of the original governing equations) through
the choice of basis variables, and overall cost-accuracy performance of the re-390

sulting ROMs. The choices made in this paper balance these considerations as
determined through exploring several different options. The optimal choices will
be highly problem-dependent; automated strategies to learn/guide such choices
are an important area of future work.

4.3. POD Basis and ROM Structure395

With the lifting transformations chosen, the next step is to compute the
POD basis. As already discussed in Section 3.1, one could use a separate POD
basis for each variable to preserve the PDAE sparsity structure with respect to
the physical variables. In addition, this choice allows for different POD basis
dimensions for each variable, which gives more control over ROM accuracy. On
the other hand, one could construct a single POD basis for all physical variables
concatenated together, which can reduce the overall dimension of the entire
POD basis. After exploring several options, we choose here to construct the
POD basis matrix in a block-diagonal manner

V =

 V(u) 0 0
0 V(ϕ) 0
0 0 V(aux)

 , W = W(aux), (34)
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with a separate basis for temperature (V(u) ∈ Rn×ru), the order parameter

(V(ϕ) ∈ Rn×rϕ), the five auxiliary differential variables (V(aux) ∈ R5n×rdaux), and
the auxiliary algebraic variable (W(aux) ∈ Rn×raaux). We use reduced dimensions
of ru to approximate the temperature, rϕ to approximate the order parameter,
rdaux to approximate the auxiliary differential variables, and raaux to approximate400

the auxiliary algebraic variable. The dimension of bases V and W is r1 =
ru + rϕ + rdaux and r2 = raaux, respectively. This choice resulted in a good
tradeoff between accuracy and cost. It preserves the block sparsity that exists
between u, ϕ, the auxiliary differential variables, and the auxiliary algebraic
variable, although we lose any sparsity of interactions among the five auxiliary405

differential variables. It also has the advantage that we can more easily control
accuracy of the representations for the original state variables u and ϕ, since
they each have a separate basis.

Using the approximation (8) together with the basis choice in (34), we seek
a ROM with the cubic structure (6)–(7). As described in Section 3, the reduced
operators for the differential equations are inferred from the projected snapshot
data using OpInf, while the reduced operators for the algebraic equations are
computed explicitly as follows. For the particular lifting transformations that
arise here, the only non-zero terms in the summations of (15) are the constant
term C with scalar c = −γ, and one quadratic term H(7,7) with scalar h(7,7) = γ.
This latter term corresponds to the coefficient multiplying m2

0 (recall that m0 is
the seventh state variable in the lifted formulation of (33)). Hence the reduced-
space representation of the algebraic equation is

ẑ = Ĉ + Ĥ(7,7) (ŷ ⊗ ŷ) , Ĉ = −γWT1n, Ĥ(7,7) = γWT


V

(7)
1 ⊗V

(7)
1

V
(7)
2 ⊗V

(7)
2

...

V
(7)
n ⊗V

(7)
n

 .

(35)

This illustrates that the terms Ĉ and Ĥ(7,7) can be computed explicitly from the
basis matrices V and W in the offline stage. That is, once the basis matrices410

are determined, the reduced-space representation of the algebraic equation can
be computed directly and does not need to be learned via operator inference.
This is due to the known structure of the algebraic equations, which encode the
pointwise relationships in (32) that arise during lifting.

4.4. Parametric ROM simulations415

We conduct parametric studies considering variations in the latent heat, LH ,
and the parameter γ appearing in the thermodynamic term (28). Both LH and
γ appear explicitly in the lifted equations (33). In addition, γ appears in the
initial conditions for the evolution of auxiliary variable m0. Other parameters
are set to the values τ = 0.0003, ξ = 0.01, β = 0.9, uM = 1.0, K0 = 1,420

and K1 = 0.1. The one-dimensional spatial domain has length ℓ = 1 and is
discretized into n = 1000 cells (chosen to ensure that the diffuse interface is
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sufficiently resolved with 1/n = ξ/10) . The timestep for numerical simulations
is chosen to be ∆t = 8.33 × 10−7 based on a numerical convergence study.
Simulations are initialized by setting the initial solid fraction to cover 10% of425

the spatial domain (i.e., ϕ(x, 0) = 1 for x < 0.1 and ϕ(x, 0) = 0 otherwise) and
the initial temperature profile is such that the solidified region is at melting
temperature, and the remainder of the spatial domain is at the undercooling
temperature of zero as defined in (30). The final time for the simulations is
chosen to be tf = 0.03 resulting in K = 36000 snapshots. The time-stepping430

scheme for the heat equation and the phase-field equation are Crank-Nicolson,
and Strang splitting, respectively.

The OpInf minimization problem (14) is augmented with Tikhonov regular-
ization to guard against ill-conditioning and over-fitting. Tikhonov regulariza-
tion is chosen following the studies in [53]. This choice maintains the linearity435

of the regression problem while addressing the numerical ill-posedness that ap-
pears in the OpInf optimization problems. Other choices of regularization are
possible, but not yet explored in the literature. The criterion for choosing the
optimal regularization parameter is to minimize the relative error between the
ROM predictions and the FOM snapshots of the original variables (i.e., tem-440

perature and order parameter) over a set of regularization parameters. This
approach leads to stable ROMs. The L-curve criterion [58], which is often used
in the literature to select the optimal regularization parameter, resulted here in
unstable ROMs for a number of the studied cases.

Parametric studies are conducted on variations of the two process parameters445

LH and γ. A global POD basis is constructed by performing SVD on the global
snapshot matrix obtained from concatenating the snapshots corresponding to
all parameters sampled in the training set [7]. The time derivatives Ẏ needed for
OpInf are estimated numerically from the snapshots using a five-point central
difference scheme (as in [59]) which is fourth-order accurate. Reduced operators450

are inferred for each parametric condition in the training set, so that we compute
multiple ROMs each defined at a single parametric condition. ROM solutions for
parameter values not in the training set are computed using linear interpolation
of ROM solutions corresponding to the neighboring samples in the training set.
The lifting map of (32) gives rise to an affine parametric dependence in (33).455

The affine structure can be utilized in a systematic way for a more efficient
parametric model reduction strategy [7], which is the subject of future studies.

The efficacy of the method is tested by evaluating the relative error of ROM
versus FOM solutions for every sample in the test set. The errors are also eval-
uated for the samples in the training set. For the target problem in this study,460

error metrics are defined for ROM predictions of temperature, order parameter,
and interface location. The interface location is determined in a post-processing
step, defined by the point at which ϕ = 0.5 and computed by interpolating the
estimated order parameter field. The error metrics for temperature and order
parameter are defined by the norm of the difference between full and reduced465

solutions divided by the norm of the full model solution (i.e.,
∥∥∥Ũ−U

∥∥∥2
F
/ ∥U∥2F
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and
∥∥∥Φ̃−Φ

∥∥∥2
F
/ ∥Φ∥2F for temperature and order parameter, respectively, where

U and Φ are the FOM solutions, and Ũ and Φ̃ are the reconstructed ROM so-
lutions for temperature and order parameter, respectively). The interface loca-
tion prediction error is defined to be ∥x̃interface − xinterface∥2 / ∥xinterface∥2 where470

xinterface and x̃interface are the FOM and ROM predictions of the location of the
interface, respectively, determined by postprocessing on Φ and Φ̃.

For the first set of numerical results, we set γ = 10 and vary the latent heat
between LH = 0 and LH = 1. The training and test sets are:

Ltrain
H = {0.0, 0.1, · · · , 0.9, 1.0}, Ltest

H = {0.05, 0.15, · · · , 0.85, 0.95}.

The global basis matrices V(u), V(ϕ), V(aux), and W(aux) are obtained by per-
forming SVD on a snapshot matrix constructed by concatenating snapshots of
the respective variables from all training simulations with ∆t intervals. Figure 2475

shows the POD singular values (normalized by the largest singular value in each

case) and the energy in the neglected modes (1−
∑r

i=1 σ2
i∑n

i=1 σ2
i
) for a given basis di-

mension. Due to the moving front nature of the solidification phenomena, the
decay of the singular values is slow, which makes this a challenging problem for
model reduction.

Figure 2: Left: the decay in the singular values of the snapshot matrices for temperature,
order parameter, and auxiliary states in differential and algebraic form, varying the latent
heat. Right: energy in the neglected POD modes for a given basis dimension.

480

Figure 3 shows the dimensions of each component of the basis matrices in
(34) for increasing retained POD energy. As indicated in Figure 2, the singular
value decay rate for the auxiliary variables is slower than that for the tem-
perature and order parameter, and therefore the auxiliary states have a larger
contribution to the total basis dimensions in Figure 3.485

We assess the ROM performance by plotting relative errors for each of tem-
perature, order parameter, and interface location in Figure 4. The reduced basis
dimension r for the data points corresponds to the retained energies listed in
Figure 3. Figure 4 shows the mean relative errors averaged over all samples in
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Figure 3: POD basis dimensions for variations in the latent heat at different levels of retained
POD energy.

the test set, as well as the relative errors for the LH values at which the ROM490

performs the best (minimum error) and the worst (maximum error). Mean, min-
imum, and maximum relative errors are also plotted for the training set. The
relative errors in temperature and order parameter decrease with the increase
in the dimension of the POD basis, as expected. The interface location is not
directly approximated by the POD basis, and while its accuracy improves, the495

error reduction is less than that observed for temperature and order parameter.

Figure 4: Relative errors in temperature (left), order parameter (middle), and interface loca-
tion (right) for varying latent heat.

Figure 4 shows that the spread of the relative error for the test set is smaller
than that of the training set, and that (unexpectedly) the test set has lower
mean relative error than the training set. This is an artifact of the latent heat
values selected in Ltrain

H and Ltest
H . As Figure 5 shows for two different basis500
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dimensions, the error is larger for the training set endpoint values LH = 0 and
LH = 1. Following typical reduced modeling best practices, the test set was
chosen to interpolate the training set and so has lower errors at its endpoints.

Figure 5: Variation of the temperature relative error versus LH for two values of the retained
energy over the training set (solid line) and the test set (dashed line).

Table 1 tabulates the online runtime of the ROM for different retained en-
ergies. The following time measurements are wall-clock time obtained from a505

MATLAB 2020 implementation on a local machine with 1.7 GHz Quad-Core
Intel Core i7 CPU and 16GB RAM. The runtimes are averaged over 10 runs.
The last row of the table reports the speedup achieved by the ROM, which is
determined as the relative ratio of the runtime of the FOM to the runtime of
the ROM. The timestep is the same for both the FOM and the ROM solver;510

however, the FOM is solved implicitly whereas the ROM is solved explicitly.
An explicit scheme for the FOM with the current timestep would result in an
unstable system. For total reduced basis dimensions smaller than 35, more than
one order of magnitude of speedup is achieved. As expected, the magnitude of
the speedup decreases with increase in the reduced basis dimension.

retained energy 95.00 97.20 98.30 98.90 99.30 99.60 99.75 99.81
r 11 15 19 24 29 35 41 46
runtime (sec) 1.05 1.63 2.14 3.11 8.11 11.48 17.03 24.34
speedup 109.71 70.57 53.63 36.86 14.15 9.99 6.73 4.71

Table 1: Online runtimes for the ROM for different reduced space dimensions r, and the
speedup of the ROM over the FOM for the numerical example on variations of the latent
heat. The online runtimes are averaged over 10 runs. The runtime for the FOM is 114.69
sec. Speedups of more than one order of magnitude are achieved for smaller reduced basis
dimensions.

515

We present a final numerical example that studies variation of the γ term
appearing in the thermodynamical driving force q. The latent heat is set to
LH = 1.0. The snapshots generated for training and testing use the following
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values:

γtrain = {0.25, 0.75, · · · , 4.75, 5.25}, γtest = {0.5, 1.0, · · · , 4.5, 5.0}.

The global basis matrix is determined from concatenating the snapshots for all
samples from the training set.

Figure 6 shows the normalized singular values and energy in the neglected
POD modes as we increase the dimension of the basis components of (34) and
the dimensions of these basis components are shown in Figure 7. Again, we520

see the slower decay in the singular values for the auxiliary variables, requiring
their basis dimensions to be larger than those for the temperature and order
parameter. The ROM relative errors are plotted in Figure 8 where the reduced
basis dimension of the data points corresponds to the retained energies listed
in Figure 7. The ROM error decays more rapidly for this case than it did for525

variations in the latent heat. This is consistent with the singular value decay
rates, which illustrate that varying the latent heat leads to a more complicated
set of snapshot dynamics.

Figure 6: Left: the decay in the singular values of the snapshot matrices for temperature,
order parameter, and auxiliary states in differential and algebraic form, varying γ. Right:
energy in the neglected POD modes for a given basis dimension.

Figure 9 compares the FOM and ROM solutions for the samples from the
test set with maximum and minimum error. The retained POD energy for the530

ROM is 99.90%, giving a total POD basis dimension of 47. We see that the
ROM is capable of capturing the solidification dynamics. Oscillations about
the solid–liquid interface noticed in the ROM solution for ϕ are due to the
Gibbs phenomenon induced by sharp transitions in the order parameter field.
Table 2 reports the online runtimes for the ROM and the speedup over the535

FOM for different magnitudes of the retained POD energy. The runtime for a
one-dimensional solidification example is 114.17 sec, and speedups of more than
an order of magnitude can be achieved by the ROM for most basis dimensions.

22



Figure 7: POD basis dimensions for variations in γ at different levels of retained POD energy.

retained energy 95.00 97.50 98.50 99.30 99.60 99.75 99.85 99.90
r 11 16 21 26 31 37 42 47
runtime (sec) 1.17 1.54 2.59 5.58 8.86 13.61 18.71 27.17
speedup 97.29 74.36 44.02 20.45 12.89 8.39 6.10 4.20

Table 2: Runtimes of the ROM for different retained POD energies, and the speedup achieved
by the ROM over the FOM for the numerical example on variations in γ. The runtime for
the FOM is 114.17 sec.

5. Concluding Remarks

This paper has proposed and demonstrated a non-intrusive data-driven model540

reduction method that addresses the PDAE structure arising in lifting nonlinear
systems to polynomial form. The approach provides a new alternative for model
reduction of highly nonlinear systems for which more classical hyper-reduction
techniques may be ineffective. The approach is effective for the studied solidifi-
cation problem; however, the relatively slow decay of the POD singular values545

points to the inefficiencies of representing transport-dominated dynamics in a
static linear basis. A fruitful direction of future work is to combine the ap-
proach proposed here with a localized [60, 61] and/or adaptive basis [62–64],
although it remains an open question how to achieve this in a non-intrusive
way. The solidification model also highlights the interesting question of how550

to optimally define the low-dimensional basis. Using a separate basis for each
physical quantity preserves the sparsity of the lifted PDAEs, but may come at
a cost of increased total ROM dimension. The results presented here used four
separate bases—one for temperature, one for order parameter, one for the auxil-
iary differential variables, and one for the auxiliary algebraic variable. Through555

numerical experiments, this choice was found to provide a good tradeoff between

23



Figure 8: Relative errors in temperature (left), order parameter (middle), and interface loca-
tion (right) for varying γ.

block-sparsity and overall ROM dimension, leading to efficiency in the resulting
ROMs. Formalizing the process of optimal basis design is another necessary
area of future research. In this study, the parametric dependencies have been
accounted for through interpolation which is efficient for the one-dimensional560

parametric space studied in this paper. However, for high-dimensional para-
metric spaces, interpolation of the ROM solutions becomes challenging and
inefficient.
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Figure 9: A comparison of the ROM and FOM solutions for the samples of the test set with
minimum and maximum error (γ = 2.0 and γ = 0.5, respectively). The dashed line represents
the location of the interface. The ROM solutions are shown for the retained POD energy of
99.90%.
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