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This work expands on a strain-based aerodynamic sensing strategy for hypersonics to
account for nonlinear temperature effects in real time. The sensing strategy uses sparse strain
observations to infer the aerodynamic pressure loads, which is mathematically posed as a
partial differential equation (PDE)-constrained inverse problem. In previous work, this inverse
problem was shown to have a closed-form solution, where offline computation of the operations
requiring the PDE solution was exploited to enable real-time evaluation speeds. In this work, the
temperature effects preclude the offline pre-computation acceleration because the PDE operator
is nonlinearly temperature dependent. To address this challenge, the recently developed neural
matrix operator (NEMO) approach is employed to account for the temperature dependence.
The NEMO method explicitly incorporates the physics structure of the governing equations, and
thus preserves the availability of a closed-form inverse solution that can be computed rapidly
onboard the vehicle. This work further considers the tasks of estimating the temperature field
from sparse temperature measurements, and compensation for the thermal strain. The overall
performance is demonstrated on the Initial Concept 3.X hypersonic vehicle. The results show
strong approximation performance of NEMO and corresponding inverse solution accuracy, but
further work is necessary to reduce errors in the thermal strain compensation.

L. Introduction

Aerodynamic sensing is critical for guidance and control of hypersonic vehicles. Particularly, the aerodynamic
pressure loads and the corresponding force and moment coefficients are key information for flight control systems.
Measurement of these aerodynamic quantities, however, poses a large challenge in the extreme aerothermal conditions
of hypersonic flight. We seek to address this challenge through a strain-based sensing approach [1H3]], which can enable
rapid estimation of aerodynamic quantities of interest from internal strain sensors. This vehicle-as-a-sensor concept
requires the rapid solution of a partial differential equation (PDE)-constrained inverse problem, where the PDE describes
the governing physics relating the inversion parameters (pressure) and observables (strain). In Pham et al. [[1]], the
solution to the inverse problem is shown to have a closed-form solution, and all operations involving the computationally
expensive PDE solution can be precomputed offline, enabling real-time performance for online deployment.

In this paper, we extend the prior work to include temperature effects, which requires addressing two key additional
considerations: (1) changes in the temperature-dependent, spatially-varying material properties in the PDE operator,
and (2) compensation for the temperature-induced strain in the strain measurements. With these considerations, the
inverse problem solution theoretically has an explicit solution of the same form as in [1]], but the nonlinear temperature
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dependence no longer allows for offline pre-computations for rapid online evaluation. To achieve faster evaluation
compared to traditional PDE solvers in nonlinear settings, approaches such as model reduction [4H6] and machine
learning [7]] are often used for design and optimization tasks. Here, we seek to address the nonlinear temperature
dependence using machine learning in the form of neural operators. Neural operators approximate maps between
function spaces for spatio-temporal fields, and have been shown to be scalable and accurate surrogates for forward
problems [8H10]]. These methods have also demonstrated success in solving inverse problems [[11H14]]. To address (1),
due to the physics structure in this problem, we use the recently developed neural matrix operator (NEMO) [15]] method
that maps the temperature field T to the PDE parameter-to-observable (p20) operator, denoted by ¥ (T). Crucially for
real-time performance, the NEMO formulation retains the availability of the closed-form solution to the inverse problem.
NEMO considers reduced basis representations of the pressure and temperature fields to enable scalable training and
fast online evaluation, with the additional benefit of providing regularization for the inverse problem. This approach
contrasts with other machine learning approaches which directly learn the inverse map from measurement to parameter,
as previously explored in [3, 16} [17]. While these approaches provide real-time evaluation speeds, they do not expose
the underlying structure of the physics to allow for uncertainty quantification, interpretability, or recoverability analysis
under ill-posed inverse problem conditions.

To address (2), we introduce an additional neural operator that estimates the thermal strain z(7) for a given
temperature field. This allows us to compensate for the thermal strain in the observations, so that the inverse problem is
performed on only the pressure-induced strain. Both (1) and (2) require knowledge of the temperature field; we also
consider the task of reconstructing the temperature field from sparse temperature measurements. Figure [T| shows a
block diagram of the PDE forward problem that represents the governing physics mapping pressure and temperature to
strain, and the neural operator surrogates and dimension reduction strategies implemented in order to enable real-time
inverse solutions. In the remainder of the paper, Section [ describes the problem setup and methodology. Section
demonstrates the numerical results for a canonical hypersonic vehicle geometry. We summarize the discussion and
future work in Section [[V]
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Fig.1 Block diagram of forward problem components and corresponding approximations to enable real-time
hypersonic aerodynamic sensing.

I1. Methodology
In this section, we outline the methodology for the strain-based sensing approach with thermal effects. First, we
define the forward PDE model describing the governing physics and the formulation of the neural operator learning
problem using reduced basis representations of the pressure and temperature fields. We then illustrate how the neural
operators are used to enable real-time inverse problem solutions on a reduced subspace.



A. Forward model definition

The relationship between the pressure, temperature, and strain is governed by the partial differential equation of
elasticity. Consider the elasticity equation for the displacement u(x) on domain Q c R3, with governing equations and
boundary conditions given by
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where 0Qin, 0Q0ext, 08,5 are the internal, external, and aft boundary surfaces, respectively, and r = —p - n where p is
the aerodynamic surface pressure field and » is the outward-pointing unit normal. The strain-displacement relation
is given by & = %(Vu + Vu™), where ¢ is the strain tensor. For spatially varying temperature field T, the constitutive
equation for the stress tensor o is given by

o=Atr(e)] +2ue — (31 +2u)(T — Ty)1 )

thermal load

where A(T), u(T), a(T) are temperature-dependent material properties (Lamé parameters, thermal expansion coeflicient),
and Ty is a reference temperature. From the governing equations, and defining A(T') as the temperature-dependent PDE
operator, the forward problem can be written as

A(Mu=Cp+ f(T) (3a)
y =Bu (3b)

where y are the discrete strain observations at the sensor locations, B is the observation operator that extracts the
observable strains from the state u, C maps the pressure to forces, and f(7T) is the thermal load. We can write the full
parameter-to-observable (p20) map as

y = BA(T)™!(Cp + f(T)). @)

We define 7 (T) = BA(T)~'C as the p20 operator, which maps the pressure field to the strains observed at the sensor
locations. The p2o0 operator is expensive to apply, since it requires the solution of the expensive PDE (represented
mathematically by A(7T)~!). The p2o operator is also nonlinearly temperature-dependent, and thus cannot be pre-
computed offline as in our prior work [[1]. Consequently, we seek surrogate models in the form of neural operators to be
used by the inverse problem solution for rapid, real-time tractability. In the next section, we outline the neural operator
learning problem, which utilizes reduced basis representations of the functions p and 7" with the NEMO architecture
to explicitly incorporate the physics structure of the problem. As we will show in Section [[L.D] the physics-structure
preservation enables a closed-form solution that can be evaluated rapidly in real-time.

B. Reduced basis neural operators using governing physics structure
We consider orthonormal reduced basis representations of the functions p € P and T € 7, where P,7 are
real-valued Hilbert spaces. The approximations are given by
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where p;, f,v are the i-th modal coefficients, ¢;,; are the i-th basis functions, p, T are the affine shifts, and Tp,Ty
are the number of retained modes, for the pressure and temperature fields respectively. We denote the vector of
reduced coordinates for each function as p, T. These are computed from the original functions as p = @ (p — p) and
T=Y¥(T- T), where ®, is the vector of pressure basis functions ¢; fori = 1,...,r,, ¥, is the vector of temperature
basis functions y; fori = 1, ...,r,., and * denotes the adjoint. Substituting the reduced coordinate representation of the



pressure field, the expanded equation (@) becomes

y= BA(T)*(c(m sti) +f(T)) (62)
= BA(T)™'C®,p
+BA(T)" £ (T) (6b)
+BA(T)"'cp

Observing the first term in Equation (6b), we define the reduced p2o (rp20) operator BA(T)~'C®, = 7 (T)®,, which
maps the reduced coordinates of pressure to the pressure-induced (mechanical) strain. Here, we employ a NEMO
approximation of the rp2o operator. Due to the reduced basis representation of the pressure field, the rp2o operator is a
matrix of size ny, X r,, where n, is the number of strain sensors. Since these dimensions are moderate, the NEMO
method is able to directly output the rp20 matrix. In other words, NEMO represents the mapping T — ¥ (T)®,.. Direct
output of the rp20 operator preserves the linear relationship between the strain and the reduced pressure coordinates.
We will see that this is instrumental for real-time inverse problem solutions, which is further detailed in Section [I.D]
For scalability of method, the temperature is also represented in its reduced coordinate form as the input to the NEMO
network. We will refer to the NEMO approximation of the rp20 operator as Fy(7), where 6 indicates the neural network
weight parameters. We train NEMO with objective function given by
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where N is the total number of training samples, and F denotes the Frobenius norm.

We must also consider the remaining strain component terms in (6b). The thermal strain component, which we
denote as z = BA(T)~! f(T), is also temperature dependent. To evaluate this term rapidly, we seek to learn an additional
neural operator which approximates the map T — z(T). The thermal strain neural operator (NO) output is similarly
denoted by zg (7). To train the thermal strain model, we utilize the following objective:
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The magnitude of the remaining component BA(T)~'Cp is small, and the temperature-dependent variation of this
component is smaller than the considered noise levels. Therefore, we assume it to be a constant, § = BA(T) ™' Cp.

C. Constructing reduced bases

Dimension reduction is the foundational methodology that enables scalability of the neural operator learning
problems. Defining appropriate reduced bases is also critical to the performance of the inverse problem. In this work, we
consider linear subspaces constructed from data by utilizing additional physics simulation to obtain representative fields
of the pressure and temperature. This approach allows us to construct reduced bases that are informed by physics models
and characteristic of the flight condition ranges of interest, as opposed to using more general, smoothing eigenfunctions.
Specifically, we use computational fluid dynamics (CFD) and transient thermal simulations to produce snapshots of the
pressure and temperature fields over a set of flight conditions of interest. These data are used to construct appropriate
subspaces via the proper orthogonal decomposition (POD). We compute samples for a function p from a distribution p
that is characterized by the selected flight condition range. Then, we compute the reduced basis modes (eigenfunctions)
by solving the eigenvalue problem given by

Eppl{p =P.9j)p (P =P = 2;8;  ($is¢j)p = bij- (€

where A; denotes the eigenvalue corresponding to the j-th eigenfunction ¢, 6;; is the Kronecker delta, and (-, -),,
denotes the inner product on . We can choose the number of basis functions r for truncation based on the eigenvalue
decay and reconstruction accuracy requirements.



D. Real-time inverse problem solution with neural operators

The inverse problem is posed in the reduced subspace as a least-squares problem with regularization. We define the
measured strain as § = y + n, where n ~ N'(0, ;) is the Gaussian noise model with zero mean and covariance I';,. The
inverse problem in the reduced subspace with the neural operator approximations is given by
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st. y=Fo(T)p+y+2z4(T).
The solution to the subspace inverse problem is given by
P+ = (Fo ()L, Fo(T) +yD) ™ Fo (DI (¥ - § — 2o (T)). (11

By using Fy in place of the true rp20 operator, we are able to directly evaluate the closed-form solution without solving
the expensive PDE online. The main contributors to the computational cost are the evaluation of NEMO and the thermal
strain neural operator, and the matrix inverse in (TT). Using NEMO instead of computing the true rp2o using the PDE
results in over three orders of magnitude speedup, as shown in [I5]]. To be considered real-time, the solution must be
able to evaluated at the typical onboard sensor measurement frequency, which is approximately 100 Hz. Since we solve
the problem on a reduced subspace, the matrix to be inverted is of size 7, X r,,. Since r, can typically be chosen to
be small, this enables the solution to be evaluated rapidly. Further, posing the problem in the reduced subspace is
advantageous because it provides regularization for the solution, which is critical since the inverse problem is ill-posed.
The POD subspace also provides characteristics that are informed by the CFD models. Similar to other regularization
approaches, such as truncated SVD, the subspace approach eliminates the higher spatial frequency modes which are not
recoverable due to ill-posedness [18].

In the solution in Eq. (TT)), we compensate for the thermal strain by subtracting z¢ from the measured strain y. We
note that the errors in estimating the thermal strain corrupts the remaining signal (the pressure-induced mechanical
strain) from which the aerodynamic pressure must be inferred. Controlling this error is therefore critical to the inverse
problem performance.

II1. Numerical Results
In this section, we present the model vehicle and numerical results. First, we describe the numerical testbed setup
and modeling details in Section [[ILA]and [[I.B] In Sections [[I.C]and [[I.D] we show the errors associated with
estimating the reduced temperature coordinates from measurements, and assess neural operator errors with the exact
and estimated reduced temperature inputs. Then, we assess the impacts of these errors on inverse problem solution
quality combined with NEMO in Section [[ILE] and the thermal strain neural operator in Section [[IL.F
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Fig. 2 IC3X components.

A. IC3X modeling

We demonstrate the methodology on a conceptual hypersonic vehicle, the Initial Concept 3.X (IC3X) [19]. We
consider a modified version of the IC3X, which has the same outer mold line but adapted structural components as
shown in Figure[2] The values for the material properties, including the thermal conductivity, specific heat capacity,
Young’s modulus and thermal expansion coeflicients, are taken from Section 5.2.2 in [20]]. For the structural model, the



thermal expansion coefficient for all components is assumed constant. The Young’s modulus of the nose ballast, casing,
and thermal protection system (TPS) is constant with temperature, while the Young’s modulus of the monocoque is
temperature dependent for the structural model.

We solve the PDE in Eq. (I) with a structural finite element model using FEniCS [21]] to obtain the displacement u
for the pressure and temperature at a given flight condition. The surface pressure fields p are obtained by solving the
steady, inviscid Euler equations using CART3D [22]] at a given flight condition. The temperature fields 7' (over the
full domain ) are obtained by solving a transient thermal problem (heat equation) using SIERRA/Aria [23] with an
aerothermal heating boundary condition based on thin film theory. For each temperature field, the reference temperature
Ty is taken to be the temperature at a fixed point on the internal structure of the vehicle. The aeroheating fields needed
by the thermal solver are obtained using the Sandia Parallel Aerodynamics and Reentry Code (SPARC) [24] at a steady
flight condition. The flow over the vehicle is assumed to be fully turbulent and modeled using a Reynolds-Averaged
Navier—Stokes solver with the Spalart-Allmaras turbulence model. Since the aeroheating boundary conditions are not
expected to be sensitive to wall temperature for flight conditions considered, a constant wall temperature of 350K is
used for the SPARC simulation.

We consider a set of strain and temperature sensors at axial locations (x-positions) with eight circumferential
locations at each x-position, as shown in Figure E} For the strain sensors, we consider measurement of strain in both the
axial and circumferential directions on the interior surface of the monocoque at each location (two sensors). The total
number of strain sensors is 128. For the temperature sensors, we consider interior surface measurements at all axial
locations, and outer monocoque temperature measurements (below the thermal protection layer) at two of the axial
locations. Two additional temperature sensors are placed at the nose of the vehicle. The total number of temperature
sensors is 50.
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Fig.3 Pressure and temperature sensor locations.

B. Reduced bases

We compute reduced bases for the pressure and temperature fields by collecting representative samples over a range
of flight conditions and computing the POD basis. For the pressure fields, we consider a range of [—10, 10] degrees
for the angle of attack « and sideslip angle B, and a Mach number range of [5, 7] at an altitude of 20 kilometers. The
flight conditions are grid sampled with angle spacing of two degrees and Mach number spacing of one, resulting in 363
pressure samples. The temperature fields are taken from a time span of [20, 80] seconds in the thermal simulations
which each use a constant flight condition. For the thermal simulations, we consider angle of attack and sideslip ranges
[—6, 6] degrees over the same Mach number and altitude ranges as the pressure fields. Using these data, we compute
the POD basis for both the pressure and temperature fields as in Equation () using hippyflow([25]]. Figure ] shows the
eigenvalue decay for the temperature and pressure modes. Both functions show rapid decay, indicating they can be
well-represented in a low-dimensional basis. We choose r, = 20 for pressure field and r,. = 7 for the temperature field,
resulting in a decrease of more than two orders of magnitude from the first to the r-th eigenvalue.

C. Temperature reconstruction

The thermal state of the vehicle is inferred from point measurements of the temperature, denoted by T. We employ
a gappy POD approach as a least-squares problem with regularization, given by

T, = mTinuT—schT)n% + |73 (12)
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Fig. 4 Eigenvalue decay for the pressure and temperature modes.

where S is the selection (observation) operator for the temperature sensors, and £ is a regularization parameter. This
minimizes the error between the reconstructed temperature field at the sensor locations and the measurements. The
regularization is added for robustness to noise in the temperature measurements. To produce synthetic temperature
measurements, we use an additive Gaussian noise model defined by 7; ~ N (0, o%), assuming independent noise for all
temperature sensors, and we define 30 to be 1.5% of the magnitude of the temperature for each measurement, where o
is the standard deviation. We then solve Eq. @ via the normal equations to obtain estimate T, which we refer to as
the estimated input to NEMO and the thermal strain neural operator models.

D. Surrogate modeling with neural operators

For both NEMO and the thermal strain neural operator, the models consist of fully-connected feed-forward neural
networks with ReLU activation functions, and are trained using PyTorch using the Adam optimizer with an initial
learning rate of 5e—4 and batch size 64. The temperature input dimension is r,, = 7, the dimension of the reduced
temperature basis. For the NEMO operator, the network output size is ny X , = 128 X 20. The model is trained for
2000 epochs over 500 training samples, and 100 validation samples. For the thermal strain neural operator, the output
size is the number of strain sensors, n,, = 128. The model is trained for 15000 epochs with 650 training samples, and
100 validation samples.

Here, we demonstrate the test accuracy of the surrogate models. The results are shown on a test set consisting
of 100 unseen temperature field samples. To provide a reference for the performance benefits of the NEMO, we
consider a reference constant (temperature-independent) rp2o operator. We choose this reference operator to be the
element-wise mean over the true rp2o operators from the test set, which we refer to as the mean rp2o operator. Figure[J]
shows the relative errors of the models, using inputs of both the the exact and estimated (from solving (12)) reduced
temperature coordinates. For the reduced p2o operators, we show the relative Frobenius errors of NEMO and the
mean rp2o compared to the true rp2o operator. We observe that the NEMO relative errors are small, indicating a
good approximation of the true rp2o operator. The mean rp20 operator errors are small when the mean is a good
representation for the true temperature field. However, when the mean is not close to the truth, the errors are larger
compared to NEMO. For the thermal strains, we show the relative L2 errors of the neural operator outputs. We observe
low relative errors in the thermal strain neural operator for exact inputs, with most test points below 2% error. However,
the thermal strain neural operator is sensitive to errors due to the estimated inputs, with errors reaching above 10% in
the worst cases.

E. Inverse problem with NEMO

In this section, we assess the quality of inverse problem solutions using NEMO. Here, we assume exact knowledge
of the thermal strain (i.e., no errors in z(7')). This is equivalent to measuring the pressure-induced mechanical strain
in isolation from the thermal strain. We produce synthetic noisy observations with an additive Gaussian noise model
defined by n; ~ N (0, 0%), assuming independent, identically distributed noise for all measurements, where o is the
standard deviation. The regularization parameter 7y is chosen using the L-curve criterion. The inverse problem test set
consists of all combinations of the 100 test temperature samples and 30 pressure samples, resulting in 3000 total test
samples for the inverse problems.
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Fig.5 (Left) Relative Frobenius error of NEMO and mean rp2o operators. (Right) Relative L2 error of thermal
strain neural operator outputs.

We compute the subspace inverse problem solution p, using Equation (TT). We reconstruct the surface pressure as
p = p + @, p,. Figure[6|shows the relative error in the pressure field reconstruction from the inverse problem solution
when using the true rp20o, NEMO with estimated inputs, and the mean rp2o operators. We define two different noise
levels, choosing three standard deviations 30 of the noise distribution to be 1.5% and 5% of the mean strain response
over all sensors and samples in the test set. In the low noise case (left), we use different regularization parameters 7y for
the three cases, since NEMO and the mean rp2o introduce approximation errors that require additional regularization.
We observe smaller pressure errors with NEMO compared to the mean rp20. The mean rp2o reconstruction errors again
are large when the temperature field is not well-represented by the mean. The NEMO reconstruction errors result from
both the estimated input errors and the NEMO approximation errors. In the high noise case (right), the same vy is used
for all three cases. Here, all three reduced operators achieve similar performance. This indicates that when the noise
level is high, the reduced operator temperature-dependent effects on the strain response are within the noise levels. This
mitigates the benefits of accounting for this temperature dependence using NEMO.
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Fig. 6 Relative errors in the pressure inverse problem solution for (left) low noise level and (right) high noise
level using the true rp2o, NEMO, and mean rp2o operators on the test set.

From the reconstructed pressure fields, we also compute the estimated aerodynamic force and moment coefficients
in the body frame, which are computed by integrating the forces due to the reconstructed pressure over the vehicle.
Figure[/|shows the coefficient normalized errors on the test set for the low noise case, where the normalized error is



computed by
C.-C M, -M

€= max{0.2,C[} M = nax{0.4, M}

where C denotes a force coefficient and M denotes a moment coefficient. This metric is a relative error that avoids
division by small true values of the aerodynamic coefficients, with the sign indicating over- or under- prediction of
the coefficient. We observe that the errors in the aerodynamic coefficients are smaller than their full-field pressure
reconstruction counterparts from Figure[6] since they are integrated (smoothed) quantities. We also observe that the
NEMO coefficient errors are smaller compared to the mean rp2o.
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Fig. 7 Normalized errors in the estimated aerodynamic coefficients on the test set with known thermal strain.

We visualize an example pressure reconstruction using NEMO in the low noise case in Figure[8] The flight conditions
are Mach 6, with angle of attack 2 degrees and sideslip angle 10 degrees. This reconstruction has a relative error of
5.6%. We observe that the NEMO inverse problem smooths the discontinuities in the true pressure, since they cannot be
resolved through the inverse problem. This is a result of the problem ill-posedness, and the corresponding required
regularization to account for the noise and sparsity of the measurements.
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Fig. 8 Example inverse problem aerodynamic surface pressure reconstruction with NEMO.

F. Inverse problem with NEMO and thermal strain neural operator

We now consider the inverse problem solution quality using the thermal strain neural operator for thermal
compensation along with NEMO. Figure[9]shows the pressure reconstruction errors for the inverse problem using thermal
strain neural operator with the exact and estimated input for both NEMO and the mean rp2o. First, the errors in the



pressure reconstruction increase when considering the estimated thermal strain from the neural operator, compared to the
errors in Figure[6] where the thermal strain was known. This arises from the fact that the thermal strain magnitude is often
larger than the pressure-induced mechanical strain. Consequently, with any errors in estimating the thermal strain, the
remaining signal (the mechanical strain) computed by ¥ — z¢ in Equation has a low signal-to-noise ratio. Therefore,
even in the exact input case, where the thermal strain errors are around 2% (as shown in Figure EI) we observe that more
regularization (larger ) is needed compared to either noise scenario in Figure[6] The reconstruction errors increase
further in the estimated input case, emphasizing the effects of the thermal strain neural operator sensitivity to input
errors. Finally, there is not a discernible benefit of using NEMO compared to the mean rp2o, since the errors introduced
by the thermal strain estimate are dominant over the errors due to neglecting the material temperature-dependence.

Pressure reconstruction
with thermal strain estimate

0.4 T T
— 03 T
o
s | oy L L]
= 0.2 1 Io%e%
g %%
()
m — —_—
0.1 - -
EXXd exact input, y = 8 x 1073
[ estimated input, y = 3 x 1072
0.0

NEMO mean rp20

Fig. 9 Relative errors in the pressure inverse problem solution on the test set with NEMO and the mean rp2o,
and the thermal strain neural operator with exact and estimated inputs.

Figure [10|shows the aerodynamic coefficient normalized errors using NEMO with the thermal strain neural operator
for compensation, alongside NEMO with the exact thermal strain as a reference. As expected, the errors are increased

when using the thermal strain neural operator compared to the exact known thermal strain.
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Fig. 10 Normalized errors in the estimated aerodynamic coefficients on the test set with NEMO and thermal
strain compensation.
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These results show that more accurate compensation for the thermal strain is necessary for the success of a
strain-based sensing strategy for hypersonic vehicles. Similar conclusions were drawn in the experimental setting on a
benchtop testbed setup, where the inverse problem performance in estimating point loads was impacted by the effects
of thermal compensation [26]. Future work will benefit from improved modeling techniques to estimate the thermal
strain from temperature measurements, as well as the consideration of filtering techniques in the time or frequency
domain [27]. Another possible direction is sensor technology with built-in temperature compensation to enable accurate
isolation of the mechanical strain in these settings. Further, the vehicle structure itself may be specifically designed to
increase the mechanical strain signal and limit the impacts of thermal effects.

IV. Conclusion

In this work, a real-time strain-based aerodynamic sensing approach for hypersonics is extended to account for
nonlinear temperature effects via the introduction of neural operators. The two main challenges due to temperature effects
addressed in this work are the temperature-dependent material properties that appear in the PDE parameter-to-observable
operator, and the thermally-induced strain that must be compensated for in the inverse problem. The recently developed
neural matrix operator (NEMO) is used to account for the temperature-dependence of the parameter-to-observable
operator. This method preserves the physics structure of the problem, allowing for a rapid closed-form inverse solution.
An additional neural operator is introduced to compensate for the thermal strain in the inverse problem. The results
show the inverse problem quality for full surface pressure reconstructions, as well as the aerodynamic coefficients.
The effects of different sources of errors are demonstrated, including the thermal state estimation from temperature
measurements, the resultant NEMO and thermal strain neural operator accuracy, and the corresponding impact on the
inverse problem performance. NEMO demonstrates strong performance in both approximation accuracy and the inverse
problem. However, the thermal strain neural operator is susceptible to input noise, and the thermal strain compensation
methods result in lower quality inverse problem solutions due to the magnitude of the thermal strain.

Future work should focus particular attention to the thermal strain compensation. Isolating the mechanical strain
from the thermal strain while preserving a reasonable signal-to-noise ratio for the inverse problem is a significant
challenge. Improved modeling approaches or sensor technologies may improve the performance observed in this work.
Beyond the quasi-static setting considered in this work, signal processing and filtering techniques may be able to
improve the thermal strain characterization by exploiting the timescale difference between thermal and aerodynamic
state changes of the vehicle. Further, we note that there are still many open modeling questions to address in future
work. Specifically, the monocoque thickness, control surfaces, volumetric finite element modeling, temperature strain
locations and fixed aft boundary conditions may be chosen to better reflect a specific real-world hypersonic system.
These modeling considerations should be addressed along with extensive model calibration.
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