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Surrogate modeling for systems with high-dimensional quantities of interest is important
for many applications in science and engineering, but remains a challenge in situations where
training data are expensive to acquire. This work develops multifidelity (MF) approaches for
multivariate multi-output linear regression for data-poor applications with high-dimensional
outputs. The MF approach combines information from many low-cost, low-fidelity (LF) model
evaluations with limited expensive, high-fidelity (HF) model evaluations. We implement and
contrast three MF linear regression methods with projections to a lower-dimensional space
through proper orthogonal decomposition basis vectors. The three MF linear regression
approaches developed in this work are: (i) an additive method based on the Kennedy-O’Hagan
framework, (ii) a direct data augmentation using LF data, and (iii) a data augmentation method
using explicit linear regression mapping between LF and HF data. The data augmentation
technique combines the HF and the LF data into one training data set and the linear regression
model is trained using weighted least squares with different weights for the different fidelity
models. We apply the projection-enabled MF linear regression methods to approximate the
surface pressure field on a hypersonic vehicle in flight. The MF linear regression outperforms the
single-fidelity linear regression in the low data regime of 3−10 HF samples with an improvement
in the range of approximately 3 − 12% in median accuracy for similar computational cost.

I. Introduction
An important challenge in scientific machine learning research is to develop methods that can exploit and maximize

the amount of learning possible from scarce data [1]. The need for such research arises often in science and engineering,
and especially in the case of computational fluid dynamics (CFD), since expensive-to-evaluate high-fidelity (HF)
models make many-query problems such as uncertainty quantification, risk analysis, optimization, and optimization
under uncertainty computationally prohibitive [2]. Thus, there is a need for surrogate models that can approximate the
solutions to HF models to accelerate the design and analysis process. However, lack of sufficient HF data adversely
affects the accuracy of surrogate models. We propose multifidelity linear regression methods that can use multiple
cheaper lower-fidelity (LF) information sources along with the limited HF data for training linear regression models.

Linear regression [3–6], including polynomial regression or the response surface methodology (RSM) [7], is a
regression analysis technique that has been extensively used for surrogate modelling and prediction in aerospace
applications. Madsen et al. [8] utilized RSM using polynomials for diffuser shape optimization with up to five input
design variables. Nakamura et al. [9] applied linear regression methods to predict fluid-flow over two-dimensional
cylinders and the state-estimation from wall characteristics in turbulent flow using training samples on the order of
𝑂 (103). Another line of work seeks to use low-order polynomial RSM approximations as a tool within multidisciplinary
design optimization frameworks in order to deal with data plagued by high computational cost and noise in aerospace
design applications [10, 11]. Recently, there has also been a growing wealth of literature on using even more data to
train and create surrogate models. Ladický et al. [12] investigated the feasibility of random forests to approximate fluid
particle behaviour in time and compared it to the state-of-the-art position based fluid approach using 𝑂 (109) training
samples. In many of these studies, the amount of training data procured to train the respective surrogate models was
a computationally intensive effort. While these levels of data procuration are possible, they are not always plausible
without access to significant computing resources. In this work, we propose multifidelity versions of linear regression
that can alleviate the issue of a lack of data.
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Multifidelity (MF) linear regression methods that can fuse information from cheaper LF data with the sparse HF
data have been explored to address the prohibitive data requirement for regression in many applications. A MF linear
regression technique was proposed by Balabanov et al. [13] that used a quadratic RSM created using many coarse finite
element structural model simulations and a correction RSM using a small number of finer mesh finite element model
simulations for civilian transport wing design. Along a similar vein, the work in [14–17] on surrogate modelling in
computational fluid dynamics and structural mechanics for low-dimensional problems found MF linear regression to to
be more efficient and have a higher accuracy than a single-fidelity approach given the same computational cost. There
has also been development on MF surrogate modelling using artificial neural networks [18, 19] and using Gaussian
process regression [20, 21]. The focus of this paper is on linear regression that can tackle problems in the ultra low-data
regime and with high-dimensional outputs.

In this work, we develop and compare three MF linear regression methods: (i) additive structure using the
Kennedy-O’Hagan [22] approach, (ii) data augmentation of LF data directly, and (iii) data augmentation via an explicit
mapping between LF outputs and HF outputs. The MF regression algorithms can be generalized to any other choice
of underlying regression technique. However, we implement the MF regression algorithms using multi-output linear
(or polynomial) regression since we are dealing with a limited number of HF samples. For problems involving
high-dimensional quantities of interest, we show how the MF linear regression methods combine with data-driven
projection techniques to improve the performance and accuracy. We apply the projection-enabled MF linear regression
techniques to predict the pressure loads over the surface of a hypersonic vehicle.

The remainder of this paper is organized as follows. Section II describes the MF regression problem setup. Section
III describes the different MF linear regression methods developed in this work. Section IV describes the hypersonic
vehicle application and provides a detailed analysis of the performance of the algorithms. Finally, Section V concludes
the paper with remarks on the efficacy and performance of the proposed methods.

II. Problem Setup
This paper considers linear regression problems wherein the 𝑑 inputs to a system are 𝒙 ∈ X ⊆ R𝑑 defined on the

input space X, and the output quantity of interest is 𝑚-dimensional 𝒚 ∈ Y ⊆ R𝑚 defined on the output space Y. In
our target applications, 𝒚 is a high-dimensional quantity with 𝑚 in thousands. For a single-fidelity case, a set of 𝑁
input-output samples (𝑿,𝒀), where 𝑿 = [𝒙1, ..., 𝒙𝑁 ] ∈ R𝑑×𝑁 and 𝒀 = [𝒚1, ..., 𝒚𝑁 ] ∈ R𝑚×𝑁 , are available for training
the surrogate model through linear regression using ordinary least squares (OLS). In many aerospace applications,
only sparse data is available for training these surrogates due to the high computational cost associated with the HF
model evaluations. The goal of this work is to develop a multifidelity linear regression method that has the potential to
build accurate surrogates in a data-poor regime using linear regression as the underlying regression method. Given
input-output data of varying fidelity levels, multifidelity linear regression can efficiently approximate the HF quantity of
interest by incorporating information from the cheaper LF models. The training data consists of 𝑁HF samples from the
HF model (𝑿HF,𝒀HF) and 𝑁LF samples from the LF model (𝑿LF,𝒀LF). In this work, we will be considering bifidelity
problems, wherein there are only two models with different levels of fidelity, but the general idea can be extended to
more than two fidelity levels.

III. Multifidelity Linear Regression
In this section, we first discuss how we implement dimensionality reduction to efficiently approximate output

quantities III.A. We then describe two overarching multifidelity linear regression methods, both of which incorporate
dimensionality reduction for high-dimensional outputs: an additive method in Section III.B and data augmentation via
synthetic data generation in Section III.C. Furthermore, all the methods presented here work for the general case of
non-collocated samples, i.e. the 𝒙LF and 𝒙HF in each input training set do not need to be at the same locations.

A. Output Dimensionality Reduction Using Proper Orthogonal Decomposition
This work targets applications with high-dimensional output quantity of interest 𝒚 and with limited training data

for the surrogate. We use dimensionality reduction techniques such as proper orthogonal decomposition (POD) to
reduce output dimensions and train a compact surrogate model with limited data. Similar projection-enabled techniques
have been used for parameteric reduced order models [23–25] and for neural networks [26]. In this work, the POD
basis vectors are obtained by taking the singular value decomposition (SVD) of the training data matrix consisting of
𝑁 samples 𝒀 ∈ R𝑚×𝑁 centered by the sample average mean of the training data 𝒀 . In our target applications, 𝑚 is in
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thousands and the number of samples 𝑁 ≪ 𝑚. The thin SVD of the centered training data matrix is

𝒀 − 𝒀 = 𝑼𝚺𝑽⊤, (1)

where 𝑼 ∈ R𝑚×𝑁 and 𝑽 ∈ R𝑁×𝑁 are orthogonal matrices, and 𝚺 ∈ R𝑁×𝑁 is a square diagonal matrix consisting of
the singular values, 𝜎, of the centered training data matrix. The reduced basis for projection to a lower-dimensional
subspace of size 𝑘 ≪ 𝑚 (and 𝑘 ≤ 𝑁) 𝑼𝑘 ∈ R𝑚×𝑘 consists of the first 𝑘 columns of the left singular vectors 𝑼. The
projection of an output sample 𝒚 on the low-dimensional subspace is given by the reduced state 𝒄 = 𝑼⊤

𝑘
𝒚. The dimension

𝑘 is chosen such that the cumulative energy captured by the first 𝑘 POD modes is larger than a specified tolerance of 𝜖
as given by ∑𝑘

𝑖=1 𝜎
2
𝑖∑𝑁

𝑖=1 𝜎
2
𝑖

> 𝜖, (2)

where 𝜎𝑖 is the 𝑖-th singular value.

B. Multifidelity Linear Regression Using an Additive Structure
In this method, we use the Kennedy-O’Hagan approach [22] to build the additive multifidelity linear regression.

This method assumes that the relationship between the LF and the HF data can be well modeled linearly. We begin
by training the LF surrogate model, 𝒇 LF, that fits the reduced state of the LF outputs (𝑼LF

𝑘
)⊤ (𝒀LF − 𝒀LF) using OLS,

where 𝑼LF
𝑘

is the LF reduced basis and 𝒀LF is the mean of the LF training data (see Eqn. (1)). Then, we use the LF
surrogate to predict data at the same input locations as the HF data. We reconstruct the LF surrogate predictions in
the full-dimensional space as (𝑼LF

𝑘
𝒇 LF (𝑿HF) + 𝒀LF). We use the predicted data at the same locations to estimate the

discrepancy as
𝜹(𝑿HF) = 𝒀HF − (𝑼LF

𝑘 𝒇 LF (𝑿HF) + 𝒀LF). (3)

We fit a linear regression for discrepancy, 𝒇 𝛿 , to the projected states of the discrepancy data via similar steps as for 𝒇 LF.
We can then use the discrepancy surrogate along with the LF surrogate to construct our MF linear regression surrogate as

𝒇MF (𝒙) = 𝑼𝛿
𝑘 𝒇 𝛿 (𝒙) + 𝜹 +𝑼LF

𝑘 𝒇 LF (𝒙) + 𝒀LF (4)

where 𝑼𝛿
𝑘

is reduced basis obtained from the SVD on the discrepancy data and 𝜹 is the mean of the discrepancy data.
We summarize the additive multifidelity linear regression approach in Alg. 1.

Algorithm 1 Multifidelity linear regression via additive method (with output dimensionality reduction)
Input: HF and LF training data (𝑿LF, 𝒀LF) and (𝑿HF, 𝒀HF), new input locations for prediction 𝑿∗

Output: Output predictions 𝒀MF at inputs 𝑿∗ from MF surrogate
1: Use 𝑼LF

𝑘
from the SVD of 𝒀LF (Eqn. 1) to obtain the reduced states 𝑪LF ∈ R𝑘×𝑁LF :

𝑪LF =

(
𝑼LF

𝑘

)⊤ (
𝒀LF − 𝒀LF

)
2: Train LF linear regression surrogate model 𝒇 LF on (𝑿LF,𝑪LF) using OLS linear regression
3: Predict and reconstruct LF outputs at the HF input locations (𝑼LF

𝑘
𝒇 LF (𝑿HF) + 𝒀LF)

4: Estimate discrepancy data 𝜹 using Eqn. (3)
5: Use 𝑼𝛿

𝑘
from the SVD of 𝜹 to project the discrepancy to the reduced state: 𝑪 𝛿 = (𝑼𝛿

𝑘
)⊤ (𝜹 − 𝜹)

6: Train discrepancy linear regression 𝒇 𝛿 on (𝑿HF, 𝑪 𝛿) using OLS linear regression
7: Set 𝒇MF (𝑿HF) as the linear combination of 𝒇 𝛿 (𝑿HF), 𝒇 LF (𝑿HF), and the known bias terms using Eqn. (4)
8: Predict outputs 𝒀MF at new input locations 𝑿∗:

𝒀MF = 𝒇MF (𝑿∗)
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C. Multifidelity Linear Regression Through Data Augmentation
In the data augmentation method, we generate synthetic data from LF model evaluations and augment the HF training

set with the synthetic data. Synthetic data in this context refers to data which comes from a different source or fidelity
level than the HF model. We describe two approaches for obtaining synthetic data in Section III.C.1 and the general
data augmentation method for multifidelity linear regression using the generated synthetic data in Section III.C.2.

1. Synthetic data for data augmentation
We explore two ways of using the LF training data to create the synthetic data: (i) augmenting the LF training data

directly, and (ii) using an explicit linear regression mapping of LF data to HF data. In the first approach, the LF training
data is directly fed in as synthetic data to be augmented to the HF training data as (𝑿syn

LF ,𝒀
syn
LF ) = (𝑿LF,𝒀LF). There is

no need to build a LF linear regression to implement the direct data augmentation. In the second approach, an explicit
map between the LF and HF data is created. To create the explicit map, we need HF and LF data at the same input
locations. However, in the general case, we do not assume that LF and HF samples are available at the same locations.
Thus, we construct the LF surrogate model 𝒇 LF and use this to predict LF surrogate outputs at the HF input locations
similar to the process shown for the additive approach in Steps 1-3 in Alg. 1. Note that if LF and HF data were available
at the same locations one can skip the initial step to create a LF surrogate model and directly train the explicit map on
the collocated data. Then, we train the explicit linear regression map 𝒇 LF↦→HF from reduced LF outputs to reduced HF
outputs using data at the same location (𝑪LF,𝑪HF) as detailed in Alg. 2. After constructing the explicit map, we can
generate the synthetic data at all the LF input locations as 𝒀syn

LF = 𝑼HF
𝑘

𝒇 LF↦→HF (𝑪LF) + 𝒀HF to obtain the training set
(𝑿syn

LF = 𝑿LF,𝒀
syn
LF ). We summarize this process in Alg. 2. Once the HF training data is augmented with the synthetic

data, the multifidelity linear regression is trained through the process described in the next section.

Algorithm 2 Synthetic data generation via an explicit mapping using linear regression
Input: HF and LF training data (𝑿LF, 𝒀LF) and (𝑿HF, 𝒀HF)
Output: Synthetic data 𝒀syn

LF at inputs 𝑿LF from the LF to HF surrogate map
1: Reduce 𝒀HF using 𝑼HF

𝑘
from the SVD of 𝒀HF to obtain the reduced states 𝑪HF ∈ R𝑘×𝑁HF :

𝑪HF =

(
𝑼HF

𝑘

)⊤ (
𝒀HF − 𝒀HF

)
2: Obtain (𝑼LF

𝑘
𝒇 LF (𝑿HF) + 𝒀LF) from Alg. 1 (steps 1-3) and project it to obtain the reduced states for explicit map

training:
𝑪LF =

(
𝑼HF

𝑘

)⊤ ((
𝑼LF

𝑘 𝒇 LF (𝑿HF) + 𝒀LF

)
− 𝒀HF

)
3: Train LF ↦→ HF linear regression model 𝒇 LF ↦→HF on (𝑪LF,𝑪HF) using OLS linear regression
4: Use 𝑼LF

𝑘
from the SVD of 𝒀LF to project all the LF data to the reduced state 𝑪LF

5: Generate synthetic data 𝒀syn
LF at 𝑿LF locations and reconstruct the output in the full-dimensional space:

𝒀
syn
LF = 𝑼HF

𝑘 𝒇 LF↦→HF (𝑪LF) + 𝒀HF

2. Data augmentation with weighted least squares
The data augmentation method augments the HF training dataset with the synthetic data generated from the LF

training data and performs weighted least squares (WLS) linear regression to train the MF surrogate model. In this work,
we use the two approaches described in Section III.C.1 for generating the synthetic data, (𝑿syn

LF ,𝒀
syn
LF ). We then augment

our HF training dataset with the transformed LF synthetic data to get the training data of size 𝑁HF +𝑁LF for the MF linear
regression as ( [𝑿HF, 𝑿

syn
LF ], [𝒀HF,𝒀

syn
LF ]) where typically, 𝑁LF > 𝑁HF. While we can train our MF surrogate model

directly with this augmented dataset, we know that the synthetic data is lower-fidelity. OLS has an underlying assumption
of homoscedasticity, or constant variance in the errors. Since we know that 𝒀syn

LF is inherently a LF approximation to the
true HF quantity, we use different sample weights to account for the expected heteroscedasticity when training on data
from different sources. The sample weight matrix 𝑾 = diag(𝑤1, . . . , 𝑤𝑁HF+𝑁LF ) is used in the MF linear regression
training through WLS [5]. For all HF samples we use the sample weight 𝑤𝑖 = 1, 𝑖 = 1, . . . , 𝑁HF and for all synthetic
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data samples generated from LF data we use equal sample weights of 𝑤𝑖 = 𝑤syn < 1, 𝑖 = 𝑁HF + 1, . . . , 𝑁HF + 𝑁LF.
Furthermore, in the results section we note the impact of various sample weighting schemes on the numerical examples
we have applied MF regression to. We summarize the data augmentation method for MF linear regression in Alg. 3. As
we show in the results, using the direct LF data approach is more sensitive to the choice of weight parameter 𝑤syn in
WLS as compared to the explicit linear regression map approach. One way to further improve the performance for both
the approaches would be select an optimal hyperparameter 𝑤syn by minimizing the leave-one-out cross-validation error.

Algorithm 3 Multifidelity linear regression via data augmentation
Input: HF and LF training data (𝑿LF, 𝒀LF) and (𝑿HF, 𝒀HF), synthetic sample weight 𝑤syn, new input locations
for prediction 𝑿∗

Output: Output predictions 𝒀MF at inputs 𝑿∗ from MF surrogate
1: Generate synthetic data by transforming the LF data: (𝑿LF, 𝒀LF) ↦→ (𝑿syn

LF ,𝒀
syn
LF ) using Alg. 2

2: Augment the training dataset to contain 𝑁HF + 𝑁LF samples: ( [𝑿HF, 𝑿
syn
LF ], [𝒀HF,𝒀

syn
LF ])

3: Use𝑼HF
𝑘

from the SVD of𝒀HF (Eqn. 1) to obtain the reduced states of MF training data outputs 𝑪MF ∈ R𝑘×(𝑁HF+𝑁LF) :

𝑪MF =

(
𝑼HF

𝑘

)⊤ (
[𝒀HF,𝒀

syn
LF ] − 𝒀HF

)
4: Set up sample weight matrix 𝑾 using 𝑤𝑖 = 1, 𝑖 = 1, . . . , 𝑁HF and 𝑤 𝑗 = 𝑤syn, 𝑗 = 𝑁HF + 1, . . . , 𝑁HF + 𝑁LF
5: Train MF linear regression surrogate model 𝒇MF on ( [𝑿HF, 𝑿

syn
LF ],𝑪MF) with sample weights 𝑾 using WLS linear

regression
6: Predict 𝒀MF at new input locations 𝑿∗ by reconstructing the output of 𝒇MF (𝑿∗) in the full-dimensional space:

𝒀MF = 𝑼HF
𝑘 𝒇MF (𝑿∗) + 𝒀HF

IV. Multifidelity Linear Regression for Adapted IC3X Testbed Problem
In the following sections, we present the results for a testbed problem in the computational fluid dynamics domain

described in Section IV.A. The HF and the LF model used for the MF linear regression are described in Section IV.B.
Then, we present results for the projection-enabled MF linear regression techniques proposed in this work in Section IV.C.

A. IC3X Problem Description
The hypersonic vehicle considered in this work is the Initial Concept 3.X (IC3X). The IC3X was initially proposed

by Pasiliao et al. [27], and a finite element model for the vehicle was developed by Witeof et al. [28]. The distributed
pressure load over the surface of a hypersonic vehicle, which is a primary quantity of interest, varies as a function of
Mach number, angle of attack, and sideslip angle. Based on a nominal mission trajectory for this geometry, we consider
the interval of Mach numbers 𝑀 ∈ [5, 7], angles of attack 𝛼 ∈ [0, 8], and sideslip angles 𝛽 ∈ [0, 8]. The pressure
field is simulated by solving the inviscid Euler equations via a Cartesian volume mesh using the flow solver package
Cart3D [29–31]. The pressure field solution computed by Cart3D is a vector of dimension 𝑚 = 55966. A pressure field
solution at a given operating condition of 𝑀 = 7, 𝛼 = 4, and 𝛽 = 0 is shown in Figure 1.

In order to gain design insights for performance, stability, and reliability of a hypersonic vehicle, CFD simulations
are required over a range of flight conditions. For example, stability analyses for a hypersonic vehicle requires an
understanding of the pressure field surrounding the vehicle over the operating range of Mach number, angle of attack,
and sideslip angle of the vehicle. However, high-fidelity CFD solutions are computationally intensive due to the fine
mesh size required to adequately capture the physics of hypersonic flight. In this work, we address the prohibitive
computational cost through constructing cheaper approximations using MF linear regression techniques that reduce the
number of HF model evaluations required to make accurate predictions of the pressure fields by combining with data
from cheaper LF models.

B. Model Specifications and Data Generation
We can construct different levels of fidelity for the pressure field solution by leveraging Cart3D’s inherent mesh

adaptation over multiple adaptation cycles. We control the number of adaptations and the error tolerance. In this work,
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Fig. 1 Cart3D pressure solution at 𝑀 = 7, 𝛼 = 4, and 𝛽 = 0

we define two levels of fidelity for simulating the pressure field: (i) the HF model with a finer volume mesh after more
mesh adaptations and (ii) the LF model with a coarser volume mesh after fewer mesh adaptations and with a lower
error tolerance. We control the maximum number of mesh refinements ("Max Refinement"), the maximum number
of adaptation processes ("Max Adaptations"), error tolerance, and the number of iterations per adaptation process
("Cycles/Adaptation") to generate the different fidelity levels. The specifications for the HF model and the LF model
used in this work are described in Table 1. We also provide the relative computational cost in terms of one HF model
evaluation.

While the choice of HF and LF sample sizes is problem- and resource-dependent, in this case we use a very limited
number of HF samples, 𝑁HF ∈ {3, 5, 10}, a LF training sample size of 𝑁LF = 80, and a HF testing sample size of
𝑁 test

HF = 50 to analyze the algorithms’ effectiveness in the ultra low-data regime. We present the results while accounting
for the computational cost of using the additional 80 LF samples given by 80/127 = 0.63 equivalent HF samples. In all
of our results, we bootstrap the available dataset to provide a measure of robustness of each method over 50 repetitions
of the training and the testing samples.

Table 1 Model specifications

Model Type Max Refinement Max Adaptations Error Tolerance Cycles/Adaptation Cost (# HF)

HF 7 12 1e-3 175 1
LF 5 2 5e-3 50 1/127

C. Results for Projection-Enabled Multifidelity Linear Regression
We first analyze the dimensionality reduction on our training datasets of 𝑁HF = 10 and 𝑁LF = 80 to select an

appropriate lower-dimensional subspace size. Figures 2 and 3 show the singular value decay and the cumulative energy
plots for the LF and HF data, respectively. We show the median of 50 repetitions of SVD computations and the 25th and
75th percentile shaded around the median curve. There is not much variability in the singular values as seen from the
plots. We use a tolerance of 𝜖 = 0.995 for the cumulative energy to decide the size of the low-dimensional subspace
using Eqn. (2), which leads to 𝑘 = 7 for most LF training datasets and 𝑘 = 4 for most HF training data sets. This
facilitates the use of lower dimensional representations of the data for the surrogate models to be trained on, without
significant loss of information.

We apply the three MF linear regression methods described in Section III to the prediction of the pressure field on
the IC3X testbed hypersonic vehicle. We evaluate the performance of a surrogate model through the normalized L2
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(a) Singular Values (b) Cumulative energy

Fig. 2 SVD on 80 LF training data

(a) Singular Values (b) Cumulative energy

Fig. 3 SVD on 10 HF training data

accuracy metric given by (1 − 𝜖L2 ), where the normalized L2 error 𝜖L2 is defined by

𝜖L2 =
1

𝑁 test
HF

𝑁 test
HF∑︁

𝑖=1

∥𝒚𝑖 − 𝒚̂𝑖 ∥2

∥𝒚𝑖 ∥2
, (5)

where ∥.∥2 is the L2 vector norm, 𝒚𝑖 is the HF model solution at 𝑖th test sample, and 𝒚̂𝑖 is the surrogate prediction at 𝑖th
test sample. Note that the results for the single-fidelity (SF) surrogate model refer to the linear regression which was
trained on the HF pressure field data only. Since the surrogate models were trained on 50 repetitions of the training and
test dataset, we present the median, 25th, and 75th percentiles of the test accuracies. For the SF model, the order of the
polynomial was limited by the number of samples available – limiting the choice to a linear equation in all cases. The
MF linear regression with the additive structure also used a linear polynomial since it is trained on the same amount of
HF data albeit with the discrepancy added. Lastly, both the MF surrogate models using the data augmentation methods
were able to be trained using a polynomial of order two since the number of samples available to train was larger by the
nature of the algorithms.

We first study the impact of different sample weighting schemes on the results of the two data augmentation
methods as shown in Figure 4. To illustrate the effect of sample weighting schemes, a weighting scheme of
𝑤HF = 1, 𝑤syn = {0.9, 0.5, 0.1, 0.01} is tested. We find that the direct data augmentation method is sensitive to the
choice of 𝑤syn, with a variation of up to 10% in median accuracy. On the contrary, the explicit map data augmentation
method is less sensitive to changes in the sample weight, with a variation of up to 2% in median accuracy. In both cases,
optimal selection of the synthetic sample weight could improve the accuracy of the MF linear regression using data
augmentation.
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(a) Direct Augmentation (b) Explicit Map

Fig. 4 Comparison of sample weighting schemes for MF linear regression using data augmentation

Figure 5 shows the comparison of the three different MF linear regression methods proposed in this work with the
SF surrogate model. The additive MF method performs similar to the SF linear regression and does not offer significant
increase in accuracy for this application. The additive approach shows modest improvements for 𝑁HF ≥ 5 samples. In
contrast, both the data augmentation techniques (using 𝑤syn = 0.01) perform better than the additive approach and show
significant improvement in accuracy over the SF linear regression for equivalent computational cost. Furthermore, the
robustness of both the MF linear regression models with data augmentation is markedly better than the SF surrogate
model. This is to be expected as the MF surrogate model sees more data when training the linear regression model.
The extra LF samples in data augmentation methods are of course not fully representative of the HF model, so we use
sample weights of 1 for the HF samples and 𝑤syn = 0.01 for the synthetic data generated from the LF samples. The MF
method with explicit map for data augmentation performs the best of the three presented here, specifically in the fewer
data regime of 𝑁HF ∈ [3, 5] HF samples. Table 2 provides the median accuracies of each regression method for 𝑁HF =

3, 5, and 10 HF samples. We can see that the data augmentation technique using explicit map leads to an improvement
of approximately 12% compared to the SF model for 𝑁HF = 3 HF samples and 3.6% compared to the SF model for
𝑁HF = 10 HF samples.

Table 2 Multifidelity linear regression results

Model Type # LF Samples # HF Samples Median Normalized L2 Test Accuracy

SF
- 3 0.769
- 5 0.870
- 10 0.898

MF - Additive 80
3 0.765
5 0.892
10 0.919

MF - Direct data augmentation 80
3 0.854
5 0.903
10 0.935

MF - Explicit map data augmentation 80
3 0.890
5 0.919
10 0.934
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(a) Comparison of all MF methods (b) Additive Method

(c) Data augmentation: direct augmentation (d) Data augmentation: explicit mapping

Fig. 5 Comparison of MF linear regression methods to baseline SF linear regression (DA denotes data
augmentation in the legends)

Finally, we look at a comparison of the absolute errors in pressure prediction between the SF surrogate and the
MF surrogate using the direct data augmentation method with explicit map. For a random test sample, we predict the
pressure field using the surrogates and show the absolute error compared to the HF model simulation. We show a
contour plot of the errors on the vehicle body in Figure 6, providing some context for the gains the MF surrogate model
nets.

V. Conclusion
This work presents and contrasts multifidelity linear regression methods for problems in the ultra low-data regime

with two overarching ideas: (i) using discrepancy/additive structure and (ii) using data augmentation. In the additive
structure for MF linear regression, we use a linear regression model to calibrate the LF data and better align it to the HF
data based on the Kennedy O’Hagan approach. In the MF linear regression using data augmentation, we transform
the LF data in two different ways and augment the transformed data to the HF dataset to perform a weighted least
squares linear regression. In all these methods we embed dimensionality reduction through the proper orthogonal
decomposition to tackle high-dimensional outputs. A numerical example on the prediction of the pressure load upon a
hypersonic vehicle in-flight is used to compare and contrast the various MF approaches. For this application and HF
samples in the range of 3 to 10, we find that the additive approach does not substantially improve the accuracy compared
to the baseline SF surrogate model. The data augmentation techniques produce robust and accurate surrogate models,

9



(a) SF Surrogate Model Errors (b) MF Surrogate Model Errors

Fig. 6 Comparison of errors in pressure field prediction

with up to approximately 3 − 12% in median accuracy gain in the low-data regime as compared to the SF surrogate. The
direct data augmentation method had comparable accuracy to the explicit mapping method, but showed more sensitivity
to the selection of the synthetic data weight in the weighted least squares regression. One possible future direction is
to explore improvements in the performance of the data augmentation methods through an optimal hyperparameter
selection strategy for the weight associated with the synthetic data in the weighted least squares regression.
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