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Abstract

Nonlocal models feature a finite length scale, referred to as the horizon, such that points sepa-
rated by a distance smaller than the horizon interact with each other. Such models have proven
to be useful in a variety of settings. However, due to the reduced sparsity of discretizations, they
are also generally computationally more expensive compared to their local differential equation
counterparts. We introduce a multifidelity Monte Carlo method that combines the high-fidelity
nonlocal model of interest with surrogate models that use coarser grids and/or smaller horizons
and thus have lower fidelities and lower costs. Using the multifidelity method, the overall compu-
tational cost of uncertainty quantification is reduced without compromising accuracy. It is shown
for a one-dimensional nonlocal diffusion example that speedups of up to two orders of magni-
tude can be achieved using the multifidelity method to estimate the expectation of an output of
interest.
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1. A Nonlocal Diffusion Model

We consider a derivative-free integral equation model for diffusion that allows for pairs of
points separated by a finite distance to interact with each other, in contrast to partial differential
equation (PDE) models for which pairs of points interact only within the infinitesimal neighbor-
hoods needed to define derivatives. Such nonlocal models allow for the nucleation and propa-5

gation of discontinuities in their solutions as well as other phenomena that cannot be adequately
modeled by PDEs. As a result, nonlocal models have been used in many diverse settings such as
subsurface flows, diffusion processes, fracture mechanics, and image processing, just to name a
few. Detailed consideration on nonlocal models and of their use in applications can be found in,
e.g., [1, 3, 4, 5] and the references cited therein. It is important to note that the nonlocal mod-10

els we consider are not integral equation reformulation of PDEs, e.g., defined by using Green
functions, but are instead based on a different modeling paradigm.

The main impediment preventing the even more widespread use of nonlocal models is caused
by the reduced sparsity of discretizations compared to that for PDEs. Of course, that reduction
is due to nonlocality, i.e., due to points being separated by a finite distance interacting with15

each other. As a result, both the assembly and solution costs of discrete approximations can be
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substantially greater compared to that for related PDEs. In multi-query applications (e.g., un-
certainty quantification, optimization, and control) the increased computational costs can render
nonlocal modeling to be infeasible.

Here, we show how lower-cost, lower-fidelity surrogate models can be used to obtain, at20

a much lower total cost and without compromising accuracy, a high-fidelity approximation.
Specifically, we do so for the uncertainty quantification of an output of interest that depends
on the solution of a nonlocal diffusion model. Our approach generalizes to the nonlocal set-
ting the multifidelity methods introduced in [6, 7] for the local PDE setting. We emphasize that
due to the reduced sparsity of nonlocal models compared to that of PDE models, the need for25

approaches such as the one we introduce in this paper is much greater and thus multifidelity
methods have potential for greater impact for nonlocal models compared to local models.

A nonlocal diffusion model. In the remainder of this section we provide a brief review
of the nonlocal model we consider; detailed presentations are given in, e.g., [1, 3, 4, 5]. To
simplify the exposition, we confine ourselves to a one-dimensional setting (as a proof of concept);30

generalization to higher dimensions is a straightforward, albeit tedious, exercise.
Given a domain Ω = (0, L) ⊂ R and a length scale δ (referred to as the interaction radius or

horizon), we define the interaction domain ΩI = {y ∈ R \ Ω : |y − x| ≤ δ for some x ∈ Ω} =

[−δ, 0] ∪ [L, L + δ], i.e., ΩI consists of all points in R \ Ω that interact with points in Ω. For
given functions b(x), g(x), and γ(x, x′) defined on Ω, ΩI, and (Ω∪ΩI)× (Ω∪ΩI), respectively,
the one-dimensional, steady-state nonlocal diffusion model we consider is given by−2

∫ x+δ

x−δ

(
uδ(x′) − uδ(x)

)
γ(x, x′) dx′ = b(x) ∀x ∈ Ω = (0, L) (a)

uδ(x) = g(x) ∀x ∈ ΩI = [−δ, 0] ∪ [L, L + δ] . (b)
(1)

We refer to (1b) as a Dirichlet volume constraint because it is applied on a domain having nonzero
volume and refer to (1) as a volume-constrained problem, with the qualifier Dirichlet indicating
that the constraint (1b) involves the specification of function values. The authors refer the reader
to [2, 3] for detailed discussion on the well-posedness of the nonlocal diffusion problem.35

The function γ(x, x′) in (1) is referred to as the kernel; the choice made for γ(x, x′) de-
termines the properties of solutions including their smoothness properties. As a result of the
flexibility available in the choice of γ (x, x′), nonlocal models can model a wide variety of ob-
served behaviors. For example, for bounded kernels, the nonlocal problem admits solutions
having jump discontinuities; of course, such solutions are not obtainable from second-order el-40

liptic PDEs. Note that (1) is a nonlocal analog of the PDE Dirichlet boundary-value problem
−∇ · (a(x)∇u) = b(x) in Ω and u = g(x) on the boundary of Ω. Indeed, as the horizon δ→ 0, the
nonlocal model, when properly formulated (i.e. scaling γ appropriately), reduces to such a PDE
problem; see [2, 3, 4].

Nonlocal models such as (1) have been subject to discretization via the same approaches as
those used for discretizing PDEs. Which of these approaches one selects is not germane to our
goals. For the sake of concreteness, we use a finite difference method. Specifically, for a positive
integer N, we set h = L/N, Nδ = dδ/he (where d·e denotes rounding to the nearest larger integer),
xn = nh for n = −(Nδ − 1), . . . ,N + (Nδ − 1), xn = −δ for n = −Nδ and xn = L + δ for n = N + Nδ
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and let un ≈ uδ(xn). Then, un for n = −Nδ, . . . ,N + Nδ is determined from
− 2

n+Nδ∑
n′=n−Nδ

(un′ − un)γ(xn, xn′ )h = b(xn) for n = 1, . . . ,N − 1

un = g(xn) for n = −Nδ, . . . , 0,N, . . . ,N + Nδ.

(2)

The reduced sparsity of the discretizations is now easily explained. For fixed δ, as h is reduced,45

the number of nodes 2Nδ + 1 that interact with a given node increases and the same occurs if h
is fixed and δ increases. This issue is even more prominent in 2D and 3D problems where the
computational complexity increases more rapidly with δ.

2. Multifidelity Monte Carlo Methods

In this section, we provide a brief account of the multifidelity Monte Carlo (MFMC) method50

of [6] in which a much more detailed presentation is given.
The goal is to determine approximate statistical information about an output of interest (OoI)

f (1)(z) : Z → F , where z is a random input selected from the input domain Z ⊂ Rd and
F ⊂ R denotes the corresponding output domain. For the sake of concreteness, we consider
the (statistical) quantity of interest (QoI) to be the expected value E[ f (1)(z)]; other QoIs such
as higher moments of the OoI can be treated in a similar manner. We approximate the QoI
via Monte Carlo (MC) sampling, i.e., for MMC independent and identically distributed random
samples zm ∈ Z, m = 1, . . . ,MMC , drawn from a given probability density function, we have

f MC
MMC

=
1

MMC

MMC∑
m=1

f (1)(zm) ≈ E
[
f (1)(z)

]
. (3)

If MMC � 1 and f (1)(·) is expensive to evaluate, (3) may be prohibitive in cost.
Suppose we have in hand a set of lower-fidelity OoIs f (2), . . . , f (K) : Z ⊂ F with correspond-

ing costs wk, k = 2, . . . ,K. Then, for a given set of weights α2, . . . , αK and a given set of sample
sizes 0 < M1 ≤ M2 ≤ · · · ≤ Mk, the unbiased MFMC estimator is defined as

f MFMC
MMF

= f (1)
M1

+

K∑
k=2

αk

(
f (k)
Mk
− f (k)

Mk−1

)
≈ E

[
f (1)(z)

]
, (4)

where f (k)
Mk

and f (k)
Mk−1

denote the MC estimators for the OoI f (k)(·), respectively, using Mk and
Mk−1 input samples drawn from the input domainZ, i.e.,

f (k)
Mk

=
1

Mk

Mk∑
m=1

f (k)(zm) and f (k)
Mk−1

=
1

Mk−1

Mk−1∑
m=1

f (k)(zm). (5)

Note that the Mk−1 samples taken in the second sum can be reused in the first sum so that the total
number of evaluations of f (k)(·) for each term in (4) is Mk. Thus, the cost incurred to determine
the MFMC estimator (4) is given by

∑K
k=1 wk Mk.55

For k = 1, . . . ,K, let σ2
k = Var

(
f (k)(z)

)
, ρ1,k = Cov

(
f (k)(z), f (1)(z)

)
/(σkσ1) = Pearson corre-

lation coefficient. Then, the optimal values for the weights αk and the number of samples Mk are
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determined, for a given budget p, by minimizing the variance of f MFMC
MMF

subject to the constraints∑K
k=1 wk Mk = p and 0 < M1 ≤ M2 ≤ · · · ≤ Mk. If one assumes that

|ρ1,1| > · · · > |ρ1,K | and µk =
wk−1

wk
> νk =

ρ2
1,k−1 − ρ

2
1,k

ρ2
1,k − ρ

2
1,k+1

for k = 2, . . . ,K (6)

with ρ1,K+1 = 0 hold, this optimization problem has the unique analytic solution (see [6])

αk =
ρ1,kσ1

σk
and Mk = M1rk for k = 2, . . . ,K with M1 =

p∑K
k=1 wkrk

, (7)

where rk =
(
w1(ρ2

1,k−ρ
2
1,k+1)/wk(1−ρ2

1,2)
)1/2

for k = 1, . . . ,K. We note that the constraint M1 > 0
ensures that the accuracy of the MFMC estimator corresponds to that of the truth model f (1)(·),
i.e., the accuracy is not damaged by the use of surrogate models.

The first requirement in (6) is easily satisfied by re-ordering the OoIs f (k)(·). The second
requirement is violated whenever the decrease in the accuracy of the low-fidelity model k (in60

the order of decreasing correlation coefficient) is more significant that the reduction of its cost
of evaluation. The models that violate the second requirement are then eliminated from the set
of models used in the MFMC estimator. The second requirement is defined by comparing each
model to the preceding one in the order of decreasing correlation coefficient. One then continues
checking the second requirement and eliminating the models that violate this requirement until65

all the remaining models satisfy the second requirement.
Note that (7) does not, in general, yield integer values for the number of samples Mk. In

this study, we have chosen to round up to the nearest integer. Also, the values of σk and ρ1,k
are generally not known a priori, so that in practice they are estimated by computing a very few
realizations of the models f (k)(·) for k = 1, . . . ,K, where “very few” is relative to the very large70

number of samples one would have to use if one were to use a straightforward MC estimator
for E[ f (1)(·)]. Such realizations can even be reused to estimate the costs wk of evaluating f (k)(·)
should those costs not be known.

3. A Numerical Example

Consider the discretized nonlocal diffusion model (2) with L = 1, a random constant source75

term b for x ∈ (0, 1), the volume constraints u(x) = g with g a random constant for x ∈ [−δ, 0], and
u(x) = 0 for x ∈ [1, 1 + δ], and the constant kernel function γ(x, x′) = 1/2δ3 for |x − x′| < δ. The
random inputs are independently, identically, and uniformly distributed realizations of z = (b, g)
within the input domain Z = [−1.1 − 0.9] × [0.9 1.1] ⊂ R2. Note that the dependence of the
kernel on δ is a scaling factor that ensures that as δ→ 0, i.e., as the extent of nonlocal interactions80

vanish, the nonlocal problem reduces to its local differential equation counterpart −d2u/dx2 = b.1

The high-fidelity (or truth) quantity of interest (QoI) is the expected value of the output of
interest (OoI) f (1,1) (z) =

(∫
Ω

u(x, δ1, h1; z)2dx
)1/2

for δ1 = 0.25 and h1 = 1/N1 = 2−10. An
approximation of the truth value of the QoI E[ f (1,1) (z)] is defined as the Monte Carlo (MC)
estimator (4) using MMC = 5 × 108 samples of (b, g) ∈ Z.85

1In this study we have chosen, for validation purposes, the nonlocal model such that it converges to the local model
in the limit of δ→ 0. Yet this is not a requirement for the proposed multifidelity framework.
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We define eight lower-fidelity, lower-cost surrogate estimators by using, in (2), two smaller
horizon values δ2 = 0.25/2 and δ3 = 0.25/22 and/or two larger grid length values h2 = 2−9 and
h3 = 2−8. The models are indexed using a pair of indices (i, j) with the first index representing the
δ-model, and the second index the h-model, e.g., f (i, j) (z) =

(∫
Ω

u(x, δi, h j; z)2dx
)1/2

. Including
the high-fidelity estimator, we specifically solve (2) for samples zm = (bm, gm) ∈ Z to obtain90

f (i, j)(zm) for i, j = 1, . . . , 3. Letting k = j + 3(i−1) for i, j = 1, . . . , 3, the costs wk and correlation
coefficients ρ1,k for the surrogates are approximated by the averages over 50 samples of the
random inputs; cost measurements are defined as wall-clock times. Using 500 or even 1000
samples to estimate costs and correlation coefficients results in similar numbers as given below
for 50 samples. Table 1 summarizes the information on the models used, as well as the correlation95

coefficient of models f (i, j) with the truth model f (1,1), and the cost of each model. Algorithm 1
summarizes the computational procedure for a nonlocal multifidelity Monte Carlo method, given
the high-fidelity horizon δ1 = 0.25 and grid length h1 = 2−10.

model f (1,1) f (1,2) f (1,3) f (2,1) f (2,2) f (2,3) f (3,1) f (3,2) f (3,3)

k 1 2 3 4 5 6 7 8 9
δ 0.25 0.25 0.25 0.25/2 0.25/2 0.25/2 0.25/22 0.25/22 0.25/22

h 2−10 2−9 2−8 2−10 2−9 2−8 2−10 2−9 2−8

ρ1,k 1.00000 0.99999 0.99994 0.99520 0.99459 0.99328 0.98882 0.98720 0.98378
wk 0.07555 0.01121 0.00182 0.02497 0.00401 0.00069 0.00819 0.00147 0.00032

wk/w1 1.0000 0.1483 0.0241 0.3305 0.0531 0.0092 0.1084 0.0194 0.0043

Table 1: Summary information about the eight surrogate models and the truth model used in this study. The models
are indexed using a pair of indices (i, j), where the first index corresponds to the δ-model with 1 corresponding to the
truth horizon, and 2 and 3 corresponding to the smaller surrogate horizon, and the second index corresponds to the
mesh refinement where 1 represents the finest (truth) grid, and 2 and 3 represent the coarser surrogates. The costs and
correlation coefficients are approximated using 50 random samples. The index k used in rows 4 – 6 is equivalent to
k = j + 3(i − 1).

We consider four specific cases. The first is simply the MC estimator (3) with the number
of samples MMC limited by a given budget p, i.e., the number of samples MMC is determined by100

dividing budget p by the cost of model f (1,1) in Table 1. The next two cases illustrate the separate
effects due to the use of either h or δ-dependent surrogates for which known hierarchies of costs
and fidelities are known a priori, i.e., we are in the realm of multilevel Monte Carlo methods.
The last case is a multifidelity setting for which such a hierarchy is not known a priori.

Case 1: δ = 0.25 and h = 2−10, i.e., the high-fidelity, high-cost (truth) model, f (1,1).105

Case 2: h = 2−10 is fixed at the truth value and δ1 = 0.25, δ2 = 0.25/2, and δ3 = 0.25/22

so that the first of these gives the truth model f (1,1) and the other two define cheaper and lower-
fidelity surrogates f (2,1) and f (3,1), respectively. These three models satisfy both requirements in
(6) in their current order ( f (1,1), f (2,1), f (3,1)). We refer to this case as the “three-δ case.”

Case 3: δ = 0.25 is fixed at the truth value and h1 = 2−10, h2 = 2−9, and h3 = 2−8 so110

that the first of these gives the truth model f (1,1) and the other two defining cheaper and lower-
fidelity surrogates f (1,2) and f (1,3), respectively. Similar to Case 2, these three models satisfy both
requirements in (6) in their current order ( f (1,1), f (1,2), f (1,3)). We refer to this case as the “three-h
case.”

Case 4: δ1 = 0.25, δ2 = 0.25/2, and δ3 = 0.25/22 and h1 = 2−10, h2 = 2−9, and h3 = 2−8 so115

that the first pair δ1 = 0.25, h1 = 2−10 gives the truth estimator f (1,1) and the other eight δi, h j pairs
give the eight lower-fidelity, lower-cost surrogates f (i, j), which together with the truth choice, are
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Algorithm 1 Nonlocal Multifidelity Monte Carlo method
1: procedure NL-MFMC(high-fidelity model f (1,1) with horizon δ1 and grid length h1, and

budget p)
2: For a given s > 1, generate sequences of models f (i, j) with δi = δ1/si−1, and h j = h1/s j−1

where i = 1, · · · , nδ, and j = 1, · · · , nh.
3: Let 1 ≤ k = j + nh (i − 1) ≤ nδnh, and estimate costs wk, correlation coefficients ρ1,k, and

variances σk with a few realizations of model f (k).
4: Re-order models f (k) to satisfy the first assumption of (6).
5: Check the second assumption of (6), and eliminate models as needed. Repeat this step

until no further elimination is required.
6: For the K ≤ nδnh remaining models from the elimination process, set ρ1,K+1 = 0, and

compute rk for k = 1, . . . ,K

rk =
(
w1(ρ2

1,k − ρ
2
1,k+1)/wk(1 − ρ2

1,2)
)1/2

7: Determine coefficients αk and number of samples Mk from (7).
8: Round up the number of samples to the next integer, and draw dMKe realizations of zm.
9: Evaluate the MFMC estimator f MFMC

M from (4).
10: return f MFMC

M
11: end procedure

arranged in the order f (1,1), f (1,2), f (1,3), f (2,1), f (2,2), f (2,3), f (3,1), f (3,2), f (3,3). With this ordering,
the surrogates satisfy the first requirement in (6), so that no re-ordering is required. With the
models in the order of descending correlation coefficient, the second requirement is checked. It120

is observed that in the first round, models f (2,1), and f (3,1) violate the second requirement. After
eliminating these models, the second requirement is checked again, where it is found that models
f (2,2), and f (3,2) violate the second condition. The four remaining surrogates ( f (1,2), f (1,3), f (2,3),
f (3,3)) satisfy both requirements in (6). Therefore, the number of surrogates is whittled down
from 8 to 4. We refer to this case as the “five-δ, h case.”125

Discussion of results. For each surrogate and for the truth model, the number of samples
taken for each model is determined from (7). The number of samples Mk are only approximately
determined because, as already noted, the costs wk and correlation coefficients ρ1,k are themselves
only approximations of the true values. As a result, the actual total costs are not exactly equiva-
lent to the assigned budget. Figure 1 depicts the distribution of the number of samples between130

the different models used in each of the four MFMC cases. From the ρ1,k, wk, and wk/w1 rows
of Table 1, we observe that the pair of three-h surrogates f (1,2) and f (1,3) are better correlated
to the truth model f (1,1) than are the pair of three-δ surrogates f (2,1), and f (3,1). The correlation
coefficients are 0.99999, 0.99994 for the three-h surrogates whereas they are 0.99520, 0.98882
for the three-δ surrogates. The higher correlation between the three-h surrogates and the truth135

model means that a fewer number of samples of the truth model are needed compared to that for
the three-δ surrogates. Of course, correlation is not the only factor that influences the efficiency
of the MFMC method; the costs associated with the surrogates also enter into the fray, i.e., the
total cost for an MFMC method is

∑K
k=1 wk Mk. Once again, in this regard, the three-h surrogates

prove superior to the three-δ surrogates that have costs wk/w1 relative to the truth model given140

by 0.1483, 0.0241 and 0.3305, 0.1084, respectively; see Table 1 and Figure 1.
We now turn to a more transparent comparison of the effectiveness of the three MFMC esti-
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Figure 1: The figure shows the distribution of the total number of samples across different models used in each MFMC
case. Note the logarithmic scale on the vertical axis. The gray boxes indicate surrogates that were not included for
each particular case. The boxes with crosses indicate surrogates that were eliminated because they violated the second
requirement of (6).

mators we have defined. For Figure 2, we consider the eight values log10 p = {0, 0.5, 1, 1.5, 2,
2.5, 3, 3.5, 4, 4.5} for the assigned budget. For each budget value, we determine, for all cases
considered, an approximate mean-squared error (MSE) for the MFMC estimator f MFMC

MMF
given145

in (4), using the true value of the QoI as estimated by the Monte Carlo estimator f MC
MMC

given in
(3) with MMC = 5 × 108 samples. Specifically, we estimate the MSE by averaging the square of
the difference between the MC estimator and the MFMC estimators over ten independent runs of
the latter.

Viewing the plots in Figure 2 vertically, we observe that for the same chosen budget value p,150

all three MFMC estimators, when compared to the use of only the high-fidelity estimator, result in
better accuracy for the same costs, with the 3-δ estimators yielding about one order of magnitude
and the 3-h and five-δ, h estimators yielding two or three orders of magnitude reductions in the
error for the same cost. Viewing the plots horizontally, we observe that for a desired MSE, all
three MFMC estimator result in lower costs, with again the 3-h and five-δ, h estimators yielding155

the largest gains.
We also observe from Figure 2 that the use of surrogate models defined for larger values of h

outperforms the use of surrogate models defined for smaller values of δ. Most of the gain that the
the five-δ, h achieves over the single-model case is due to the inclusion of different h surrogates
relative to the gains affected by instead using different δ surrogates.160

Future studies. Follow-up research take on several avenues. The relation between δ and h will
be investigated, and, in particular, how to determine optimal choices for the sequences of h and
δ so as to increase the gain from the use of multifidelity methods. Future work will also address
higher dimensions in which the reduced sparsity from nonlocality has an even more significant
effect on the computational complexity when compared to that for local PDE models. We note165

that this study is a proof of concept in which we investigate MFMCs in the context of the linear
nonlocal diffusion model; more complex nonlinear nonlocal models such as the nonlocal Cahn-
Hilliard model studied in [8] will also be the subject of the subsequent studies.
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Figure 2: The estimated mean-squared errors vs. the budget p in wall-clock seconds for the three MFMC estimators and
the MC estimator.
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