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This paper develops a multifidelity method to reuse information from optimization history
for adaptively refining surrogates in reliability-based design optimization (RBDO). RBDO
can be computationally prohibitive due to numerous evaluations of the expensive high-fidelity
models to estimate the probability of failure of the system in each optimization iteration. In
this work, the high-fidelity model evaluations are replaced by cheaper-to-evaluate adaptively
refined surrogate evaluations in the probability of failure estimation. The method reuses the
past optimization iterations as an information source for devising an efficient multifidelity
active learning (adaptive sampling) algorithm to refine the surrogates that best locate the
failure boundary. We implement the information-reuse method using a multifidelity extension
of efficient global reliability analysis that combines the expected feasibility function with a
weighted lookahead information gain criterion to pick both the next sample location and
information source used to evaluate the sample.

I. Introduction
Accounting for uncertainties during the design process is key to obtaining engineering systems that satisfy

performance requirements. Traditionally, safety factors have been used to compensate for uncertainties in a deterministic
optimization setup. However, in order to design more efficient and safe systems, deterministic optimization is being
replaced by optimization under uncertainty (OUU). OUU is a two-loop process consisting of the outer-loop optimization
and the inner-loop uncertainty propagation process as shown in Figure 1(a). The focus of this paper is on reliability-based
design optimization (RBDO) [1–4], where the inner-loop uncertainty propagation involves reliability analysis in each
optimization iteration. The reliability analysis requires estimating a probability of failure, which is typically done using
Monte Carlo sampling for nonlinear systems. When the underlying system models are expensive to evaluate, RBDO can
quickly become computationally prohibitive.

Using cheap-to-evaluate approximations (surrogates) of the high-fidelity models in the reliability estimation is
one way of reducing the computational cost as shown in Figure 1(b) [5–9]. We focus on Monte Carlo methods for
reliability analysis because of their wide applicability to nonlinear systems. In order to get efficient and accurate
estimates of probability of failure through Monte Carlo methods, we require accurate predictions from the surrogate in
the neighborhood of the failure boundary, which is defined by a specific contour of the limit state function. This can be
done by adaptively refining the surrogate around the failure boundary. In this paper, we achieve this using a multifidelity
active learning method that reuses existing information.

Adaptive refinement of surrogates around the failure boundary has been addressed in the literature through single-
fidelity adaptive sampling algorithms using only a single high-fidelity model. Such methods fall primarily into two
groups, using either support vector machines (SVM) or Gaussian process (GP) surrogates. Adaptive SVM methods have
been applied to reliability analysis and contour location [10–12]. The GP-based (sometimes referred to as kriging-based)
methods use the GP prediction mean and prediction variance to devise acquisition functions for greedy and lookahead
adaptive sampling methods to refine the surrogates around the target region. Efficient Global Reliability Analysis
(EGRA) adaptively refines GP surrogates around the failure boundary for reliability analysis [13, 14]. EGRA was also
combined with efficient global optimization (a.k.a. Bayesian optimization) for RBDO [9]. Picheny et al. [15] used a
weighted integrated mean square error criterion to adaptively refine the kriging surrogate to accurately approximate
the failure boundary. Bect et al. [16] defined a one-step lookahead strategy for surrogate refinement called stepwise
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(a) Using high-fidelity model
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(b) Using adaptively refined surrogate model

Fig. 1 Optimization under uncertainty using the high-fidelity model, or a cheaper adaptively refined surrogate
model that best predicts the failure boundary.

uncertainty reduction for estimating probability of failure. Dubourg et al. [8] proposed refining kriging surrogates using
a population-based adaptive sampling technique through subset simulation for RBDO. However, the above methods use
only the high-fidelity model evaluations to refine the surrogate and the cost of building these adaptive surrogates can
also become expensive.

Using multiple cheaper sources of information along with the high-fidelity model to build and refine the surrogates
can further reduce the computational effort. The surrogates from all the past RBDO iterations are a natural source of
readily available information and tend to be considerably cheaper to evaluate than the high-fidelity model. In this work,
we develop a method to reuse that information along with the high-fidelity model to further reduce the cost of refining
the surrogates around the failure boundary. Since we have multiple fidelities available through the information-reuse
method, we require a multifidelity active learning method to utilize the different sources. There is limited literature on
multifidelity active learning methods for refining a surrogate around the failure boundary. A hierarchical bi-fidelity
adaptive SVM construction for locating limit state function contours was proposed by Dribusch et al. [17]. The recently
proposed CLoVER (Contour Location Via Entropy Reduction) method is a multifidelity active learning algorithm
that uses a one-step lookahead entropy-reduction-based adaptive sampling criterion [18]. In this work, we apply the
information-reuse method for locating the failure boundary using a multifidelity extension of EGRA. The adaptive
sampling method picks the next location using the expected feasibility function and the next information source using a
lookahead information gain criterion. We use a multifidelity GP [19] as the surrogate for the limit state function that
combines information from the available information sources. The adaptively refined surrogates can then be used for
computationally efficient reliability analysis in each RBDO iteration and stored for future reuse. Any multifidelity
active learning method for locating the failure boundary can be used for information reuse in RBDO and we will pursue
comparing the information-reuse method for other available sampling criterion in our future work.

The remainder of this paper is organized as follows. Section II describes the RBDO problem formulation. Section III
describes the method of defining an additional information source using the RBDO history. Section IV presents the
multifidelity active learning method used to leverage RBDO history for efficiently refining surrogates around the failure
boundary. Section V presents the results showing the efficiency of the method followed by conclusions in Section VI.

II. Problem setup
The inputs to the system are Nd design variables d ∈ D ⊆ RNd and Nz uncertain random variables Z ∈ Ω ⊆ RNz

with the probability density function π. Here, D denotes the design space and Ω denotes the random sample space. The
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vector of a realization of the random variables Z is denoted by z. The RBDO formulation used in this work is given by

min
d∈D

Eπ[ f (d, Z )]

subject to P(g(d, Z ) > 0) ≤ pT,
(1)

where f : D ×Ω 7→ R is the objective function quantity of interest, g : D ×Ω 7→ R is the limit state function, and pT is
the acceptable threshold on the probability of failure. In this work, without loss of generality, the failure of the system is
defined as g(d, z) > 0, which defines the reliability of the system in RBDO. We note that the failure boundary is defined
as the zero contour of the limit state function, g(d, z) = 0, and any other failure boundary can be reformulated into this
form.

One way to estimate the probability of failure pF(d) = P(g(d, Z ) > 0) for nonlinear systems is Monte Carlo
simulation. At the current outer-loop optimization iteration t, the Monte Carlo estimator of the probability of failure
p̂F(dt ) for design dt is given by

p̂F(dt ) =
1
m

m∑
i=1
IGt (dt, zi), (2)

where zi, i = 1, . . . ,m are m samples from probability density π, Gt = {z |z ∈ Ω, g(dt, z) > 0} is the failure set, and
IGt : D ×Ω→ {0, 1} is the indicator function defined as

IGt (dt, z) =



1, z ∈ Gt

0, else.
(3)

The probability of failure estimation, repeated at every optimization iteration t, requires many evaluations of the
expensive-to-evaluate high-fidelity model g, which can make RBDO computationally prohibitive. The computational
cost can be reduced by replacing the high-fidelity evaluations by evaluations from a cheap-to-evaluate surrogate. In
this work, we build surrogates adaptively refined around the failure boundary in the random variable space for a given
design at each outer-loop optimization iteration.

The goal of this work is to reuse the available surrogates from past RBDO iterations as an extra information source
instead of only the high-fidelity model to efficiently build the adaptive surrogates. We use a multifidelity active learning
criterion that utilizes the multiple information sources to refine the surrogate to accurately locate the failure boundary. A
multifidelity surrogate model ĝt (l, Z ) approximates observations from each information source l in the random variable
space. The subscript t denotes that the surrogate is built for a given design dt at every optimization iteration t. The
multifidelity surrogate model can provide predictions for any information source l and random variable realization
z. The multifidelity surrogate model simultaneously approximates all the information sources while encoding the
correlations between the different information sources. The high-fidelity information source is corresponds to the index
l = 0. The high-fidelity surrogate model prediction is given by ĝt (0, Z ), which is used for the prediction of failure.
Next we describe the different information sources and the multifidelity active learning method used for refining the
surrogates around the failure boundary.

III. RBDO history as an information source
The designs visited in past RBDO iterations already have corresponding adaptively refined surrogates available

and these can be stored in a database. The nearest design dnear from past iterations {1, . . . , t − 1} will likely have
similar failure boundaries as the current design dt . We propose reusing the surrogate ĝnear corresponding to dnear as an
additional information source to supplement the information from the high-fidelity model during the multifidelity active
learning process described in Section IV.

However, the information from the nearest past design is only meaningful if the designs are close to each other.
Thus, the information from a past design is only reused if dnear is within a specified hypersphere (defined by radius
r) around the current design as shown in Figure 2(a). If dnear is not inside the specified hypersphere (Figure 2(b)) at
iteration t, the past RBDO history is not reused and only the high-fidelity model is used to run a single-fidelity adaptive
sampling method (in this work, EGRA [13]).

When dnear lies inside the specified hypesphere, the two information sources used for building the surrogate for
design dt through the multifidelity active learning algorithm are:

• information source 0 (IS0): high-fidelity model g(dt, Z )
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Fig. 2 Illustration in a two-dimensional design space that shows when the RBDO history is reused as an
additional information source. The blue dots represent designs visited in past optimization iterations and the
red star represents the current design.

• information source 1 (IS1): reuse surrogate model ĝnear(0, Z ) from a past RBDO iteration
The associated cost for each information source is given by cl,t (Z ), where in the subscript l ∈ {0, 1} denotes the
information source and t denotes the optimization iteration. Note that the information sources are specific to the design
dt and change in every RBDO iteration. In this case, we consider that the information sources are noise-free. For
simplicity, we limit the discussion in this work to two information sources but the method can be easily extended to
more than two information sources.

IV. Multifidelity active learning reusing RBDO history for locating failure boundary
When information is reused, we have two information sources available as described in Section III. In this section, we

describe an active learning method that can leverage the multiple information sources to efficiently build an adaptively
refined multifidelity surrogate ĝt for locating the failure boundary at each RBDO iteration t. A general overview of
the proposed approach is shown in Figure 3. We briefly describe the multifidelity GP surrogate used in this work to
combine the different information sources in Section IV.A. Section IV.B describes the multifidelity extension of EGRA
(mfEGRA) used in this work to refine the surrogate around the failure boundary.

A. Multifidelity Gaussian process surrogate
We use a multifidelity GP surrogate introduced by Poloczek et al. [19] to fuse the different information sources (in

this case, IS0 and IS1) into a single GP surrogate ĝt for given design dt that can simultaneously approximate all the
available information sources.

The multifidelity GP surrogate is built by making two modeling choices: (1) a GP approximation to IS0 (high-fidelity
information source) denoted by ĝt (0, Z ) ∼ GP(µ0, Σ0), and (2) a GP approximation to the model discrepancy between
the high-fidelity model and the low-fidelity reused surrogate model as given by δ1 ∼ GP(µ1, Σ1). µl denotes the mean
function and Σl denotes the covariance kernel for l ∈ {0, 1}.

As shown in Ref. [19], for the surrogate model ĝt (l, Z ) with l = 1 is given by GP(µ, Σ) with

µ(l, z) = µ0(z) + µl (z), (4)
Σ((l, z), (l ′, z ′)) = Σ0(z, z ′) + 1l,l′Σl (z, z ′), (5)

where 1l,l′ denotes the Kronecker’s delta. Once the mean function and the covariance kernels are defined using
Equations 4 and 5, we can compute the posterior using standard rules of GP regression. A more detailed description
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Fig. 3 Overview of the information reuse in multifidelity active learning for RBDO method.

about the assumptions and the implementation of the multifidelity GP surrogate can be found in Ref. [19].
At any given z, the surrogate model posterior distribution of ĝt (l, z) is defined by the normal distribution with mean

µt (l, z) and variance σ2
t (l, z) = Σt ((l, z), (l, z)). The subscript t denotes that the surrogate is built for the given design

dt . Consider that n samples {[li, zi]}n
i=1 have been evaluated for design dt and these samples are used to fit the present

multifidelity GP surrogate. Note that [l, z] is the augmented vector of inputs to the multifidelity GP. The next sample
zn+1 and the next information source ln+1 used to refine the surrogate are found using the two-stage adaptive sampling
method described below.

B. Multifidelity extension of EGRA
In this section, we present the active learning strategy mfEGRA, which is a multifidelity extension of EGRA. This

strategy enables us to reuse the information from past optimization iterations as an additional information source.
mfEGRA picks the location of the next sample and the information source to use for evaluating that sample using a
two-stage method that combines the expected feasibility function with an information gain criterion.

1. Location: expected feasibility function
The first stage ofmfEGRA involves picking the next location zn+1 to be sampled using the expected feasibility function

to refine the surrogate in RBDO iteration t. The expected feasibility function, which was used in EGRA [13], defines the
expectation of the sample lying within a band around the failure boundary (in this case, ±ε (z) around the zero contour
of the limit state function). For any z, µt (0, z) is the prediction mean and σ2

t (0, z) = Σt ((0, z), (0, z)) is the prediction
variance provided by the multifidelity GP for the high-fidelity surrogate model. Let Yz ∼ N (µt (0, z), σ2

t (0, z)) be a
normal random variable. Then the feasibility function at any z is defined as being positive within the ε-band around the
failure boundary and zero otherwise as given by F (dt, z) = ε (z) −min( |Yz |, ε (z)). The expected feasibility function
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within an ε-band around the failure boundary is given by [13]

E[F (dt, z)] =µt (0, z)
[
2Φ

(
−µt (0, z)
σt (0, z)

)
− Φ

(
−ε (z) − µt (0, z)

σt (0, z)

)
− Φ

(
ε (z) − µt (0, z)

σt (0, z)

)]
− σt (0, z)

[
2φ

(
−µt (0, z)
σt (0, z)

)
− φ

(
−ε (z) − µt (0, z)

σt (0, z)

)
− φ

(
ε (z) − µt (0, z)

σt (0, z)

)]
+ ε (z)

[
Φ

(
ε (z) − µt (0, z)

σt (0, z)

)
− Φ

(
−ε (z) − µt (0, z)

σt (0, z)

)]
,

(6)

where Φ is the cumulative distribution function and φ is the probability density function of the standard normal
distribution. Similar to EGRA [13], we define ε (z) = 2σt (0, z) to achieve a balance between exploration and
exploitation. As mentioned before, we describe the method considering the zero contour as the failure boundary for
convenience but the proposed method can be used for any failure boundary by reformulating it as the zero contour.

The location of the next sample is picked by maximizing the expected feasibility function as given by

zn+1 = arg max
z∈Ω

E[F (dt, z)]. (7)

2. Information source: weighted lookahead information gain
The second stage of mfEGRA involves picking the next information source ln+1 to be used for simulating the next

sample obtained using Equation (7). This is done through a weighted one-step lookahead information gain criterion.
This adaptive sampling strategy selects the information source that maximizes the information gain, quantified by the
Kullback-Leibler (KL) divergence, in the GP surrogate prediction. We measure the KL divergence between the present
surrogate predicted GP and a hypothetical future surrogate predicted GP when a particular information source is used to
evaluate the sample at zn+1.

For brevity, we represent the present GP surrogate built using the n available training data by the subscript P as
given by ĝP (l, z) = ĝt (l, z | {li, zi }ni=1). The present surrogate predicted Gaussian distribution at any z is given by

GP(z) ∼ N (µP(0, z), σ2
P(0, z)),

where µP(0, z) is the posterior mean and σ2
P(0, z) is the posterior variance of the present GP surrogate built using the n

available training data.
A hypothetical future GP surrogate (denoted by the subscript F) is defined by using a possible future information

source lF ∈ {0, 1} to simulate hypothetical data at the sample zn+1 as given by

GF(z |zn+1, lF, yF) ∼ N (µF(0, z |zn+1, lF, yF), σ2
F(0, z |zn+1, lF)),

where yF ∼ N (µP(lF, zn+1), σ2
P(lF, zn+1)) is a possible future simulated data at zn+1. The posterior mean of

the hypothetical future GP surrogate is µF(0, z |zn+1, lF, yF) ∼ N (µP(0, z), σ̄2(z |zn+1, lF)), where σ̄2(z |zn+1, lF) =
(ΣP((0, z), (lF, zn+1)))2/ΣP((lF, zn+1), (lF, zn+1)) [19]. The posterior variance of the hypothetical future GP surrogate
is σ2

F(0, z |zn+1, lF) that depends only on the location zn+1 and the source lF. Note that no new evaluations of the
information sources are required for the future GP and the total lookahead information gain is obtained by integrating
over all possible value of yF as described below.

Let DKL(GP(z) ‖ GF(z |zn+1, lF, yF)) be the KL divergence between GP and GF at any z ∈ Ω. The total KL
divergence can then be calculated by integrating DKL(GP(z) ‖ GF(z |zn+1, lF, yF)) over the entire random variable space
Ω as given by∫

Ω

DKL(GP(z) ‖ GF(z |zn+1, lF, yF))dz

=

∫
Ω


log

(
σF(0, z |zn+1, lF)

σP(0, z)

)
+
σ2
P(0, z) + (µP(0, z) − µF(0, z |zn+1, lF, yF))2

2σ2
F(0, z |zn+1, lF)

−
1
2


dz.

(8)
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The total lookahead information gain can then be calculated by taking the expectation of Equation (8) over yF as given by

DIG(z‖ zn+1, lF; dt ) = EyF

[∫
Ω

DKL(GP(z) ‖ GF(z |zn+1, lF, yF))dz
]

=

∫
Ω


log

(
σF(0, z |zn+1, lF)

σP(0, z)

)
+
σ2
P(0, z) + σ̄2(z |zn+1, lF)

2σ2
F(0, z |zn+1, lF)

−
1
2


dz

=

∫
Ω

D(z |zn+1, lF; dt )d z

(9)

where

D(z |zn+1, lF; dt ) = log
(
σF(0, z |zn+1, lF)

σP(0, z)

)
+
σ2
P(0, z) + σ̄2(z |zn+1, lF)

2σ2
F(0, z |zn+1, lF)

−
1
2
.

In practice, we choose a discrete setZ ⊂ Ω via Latin hypercube sampling to numerically integrate the information gain
given by Equation (9).

A weighted version of the lookahead information gain normalized by the cost of the information source is used to
pick the next information source ln+1. The expected feasibility function (Equation (6)) is used to weight the information
gain to give more importance to gaining information around the expected failure boundary. The sampling criterion for
selecting the next information source ln+1 is given by

ln+1 = arg max
l∈{0,1}

∑
z∈Z

1
cl,t (z)

E[F (dt, z)]D(z |zn+1, lF = l; dt ). (10)

Note that the mfEGRA method reduces to single-fidelity EGRA when there are no extra information sources available,
i.e., there are no nearby designs to reuse information from.

The adaptive sampling algorithm continues updating the surrogate for the current design dt until some stopping
criterion is met (in this work, E[F (dt, z)] <= 10−10). The final adaptively refined surrogate ĝt is used for estimating the
probability of failure p̂F(dt ) and stored in the database for future RBDO iterations.

V. Results
We use the acoustic horn problem [20, 21] to demonstrate the effectiveness of reusing surrogates from past

optimization iterations as an extra information source in mfEGRA for efficient refinement of surrogates in RBDO. The
acoustic horn model used in this work has been used in the context of robust optimization by Ng et al. [20] The inputs to
the system are the three random variables listed in Table 1 and the six design variables listed in Table 2. An illustration
of the acoustic horn is shown in Figure 4.

Table 1 Uncertain random variables used in the acoustic horn application.

Random
variable Description Distribution Lower

bound
Upper
bound Mean Standard

deviation
k wave number Truncated Normal 1.3 1.5 1.4 0.025

Zu upper horn wall impedance Normal – – 50 3
Zl lower horn wall impedance Normal – – 50 3

We use a two-dimensional acoustic horn model governed by the non-dimensional Helmholtz equation. In this
case, a finite element model of the Helmholtz equation [21] is the high-fidelity model. The model takes on an
average 0.3 seconds to run and the cost is taken to be constant. A more detailed description of the acoustic horn
model used in this work can be found in Ref. [20]. The output of the model is the reflection coefficient s, which is
a measure of the horn’s efficiency. We define the failure of the system to be s(d, z) > 0.1. The limit state function
is defined as g(d, z) = s(d, z) − 0.1 so that the failure boundary is defined by g(d, z) = 0. In this case, we use a
deterministic objective function defined as the reflection coefficient at the mean of the random variables given by

7



Table 2 Design variables used in the acoustic horn application.

Design variable Lower bound Upper bound Initial design Best design
b1 0.679 1.04 0.8595 0.799
b2 1.04 1.39 1.215 1.196
b3 1.39 1.75 1.57 1.611
b4 1.75 2.11 1.93 1.897
b5 2.11 2.46 2.285 2.310
b6 2.46 2.82 2.64 2.668

 

2𝑎 

𝐿 𝐿 

2𝑏𝑖 2𝑏 

Γinlet 

Γwall 

Γradiation 

Fig. 4 Two-dimensional acoustic horn geometry with a = 0.5, b = 3, L = 5 and shape of the horn flare described
by the equally-spaced half-widths bi, i = 1, . . . , 6. [20]

s(d | k = 1.4, Zu = 50, Zl = 50). The acoustic horn RBDO problem formulation is given by

min
d∈D

s(d | k = 1.4, Zu = 50, Zl = 50)

subject to P(g(d, Z ) > 0) ≤ 0.006.
(11)

We use the same initial design of experiment (DOE) of 10 samples for every RBDO iteration. Latin hypercube
sampling [22] is used to create the initial DOE. The mfEGRA algorithm is stopped when the EFF value goes below
10−10. The final GP surrogate in each RBDO iteration is used to estimate the probability of failure and stored for future
reuse.

The convergence of the objective function as a function of computational cost (Figure 5) shows that initially we
obtain a rapid decrease in the objective function value, but feasibility is only achieved after 300 units of computational
cost. This can also be seen from the progress of the optimization from the infeasible to feasible region for the RBDO
problem as shown by the probability of failure value for the design in each optimization iteration in Figure 6. It takes 16
optimization iterations to find the first feasible design. However, the optimizer appropriately balances minimizing the
objective function while trying to find the feasible region in the design space as indicated by the convergence plot in
Figure 5.
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Fig. 5 (a) Objective function value for designs from each optimization iteration, and (b) convergence history
of feasible designs for RBDO of the acoustic horn problem using mfEGRA with information reuse.

0 10 20 30 40 50

10-2

10-1

Fig. 6 Probability of failure history in each RBDO iteration for the acoustic horn problem using mfEGRA
with information reuse.

Figure 7 shows the computational cost for building the adaptive surrogates using the proposed mfEGRA with
information-reuse method as compared to using EGRA with only the high-fidelity model at each optimization iteration.
We observe that the proposed mfEGRAmethod performs as well as or better than single-fidelity EGRA in all optimization
iterations. The computational cost of mfEGRA is equal to single-fidelity EGRA when there is no nearby designs
because mfEGRA reduces to single-fidelity EGRA without any information reuse. Otherwise, information-reuse-based
mfEGRA always performs better. In this case, we reduce the overall computational cost by almost 60% by building the
adaptive surrogates through the proposed information-reuse method.

The computational cost for refining the surrogates through the mfEGRA method is low due to the reuse of extremely
cheap surrogates from previous optimization iterations as an information source. The allocation of evaluations for each
fidelity in the mfEGRA method in each optimization iteration is shown in Figure 8. The allocation of resources to the
cheaper low-fidelity model (reused GP model from RBDO history), which takes around 10−4 seconds/evaluation, in
mfEGRA leads to substantial reduction in computational cost compared to running EGRA that uses only the high-fidelity
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Fig. 7 Comparison of the computational cost for building adaptive surrogates usingmfEGRAwith information
reuse (IR-mfEGRA) vs using single-fidelity EGRA at each optimization iteration.

model, which takes around 0.3 seconds/evaluation.
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Fig. 8 Number of evaluations required by mfEGRA from the high-fidelity model and the reused GP model
(IR-GP) in each RBDO iteration for the acoustic horn problem.

VI. Concluding remarks
This paper introduces a method for reusing information from past RBDO iterations as an additional information

source for efficiently refining surrogates around the failure boundary through multifidelity active learning. The
information reuse is implemented by reusing the surrogate from the closest design from past RBDO iterations. Reusing
the cheap-to-evaluate surrogate as an information source offers substantial reduction in computational cost while refining
the current surrogate around the failure boundary. The different information sources are leveraged for adaptively
refining the surrogate around the failure boundary by using a multifidelity extension of EGRA. The multifidelity
information-reuse method leads to almost 60% reduction in computational cost compared to using EGRA with only the
high-fidelity model for building adaptive surrogates during RBDO of the acoustic horn problem.
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