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Many physical systems of engineering interest exhibit behavior governed by interactions
across various spatial and temporal scales. Accurately capturing these multiscale phenomena
in a digital twin requires models of sufficiently high-resolution, yet such models are often
too computationally expensive for real-time state estimation, uncertainty quantification, and
decision-making. This work addresses this challenge by introducing a multi-resolution digital
twin framework that explicitly represents and manages uncertainty while dynamically alter-
nating between low- and high-resolution model representations. The architecture leverages a
computationally inexpensive single-scale model that is used for frequent data assimilation and
rapid updates, whereas a detailed multiscale finite element model that is invoked selectively to re-
fine predictions when elevated uncertainty or critical events warrant additional resolution. This
selective activation enables the digital twin to preserve predictive accuracy without incurring
the prohibitive cost of running the high-resolution model continuously. As a proof-of-concept,
the proposed framework is demonstrated through a multiscale finite element example for static
analysis of an aircraft structural component, where both model resolutions describe the same
physical asset but encode different levels of mechanistic detail.

I. Introduction

Digital twins are dynamically updated virtual representations of physical assets that maintain two-way interactions
with between the physical assets and their digital counterparts [1H5]. They have emerged as a powerful paradigm for
monitoring, prediction, and decision support across aerospace [6H10]], civil infrastructure [11H13]] and biomedicine
[14H16]. Traditional digital twins typically operate at a single model resolution. While computationally tractable, this
approach can limit the ability to capture localized phenomena or subtle degradation patterns when only coarse models
are available, or conversely, may be prohibitively expensive if only high-fidelity models are used. In general, the physical
systems admit multiple meaningful levels of representation, ranging from simplified phenomenological models to
high-fidelity physical simulations, each offering different tradeoffs between computational cost and predictive accuracy.
Thus, a central challenge is the choice of virtual representation that allows the digital twin to be executed accurately
and within realistic timescales. This work develops a probabilistic multi-resolution digital twin capable of coherently
integrating and dynamically selecting among, models of different resolutions based on uncertainty, computational cost,
and operational needs.

In many engineering contexts, the true modeling need is inherently multi-resolution: the digital twin should be
capable of operating on and transitioning among a spectrum of model forms, fidelities, and computational resolutions.
These may include reduced-order models, simplified structural approximations, subsystem-based models, high-fidelity
finite element (FE) analyses, or full multiscale formulations. A multi-resolution digital twin must therefore reason not
only about the latent physical state of the asset but also about which model resolution is most informative at a given
time, and how information should move consistently across these resolutions. Developing such capabilities pose several
challenges. First, distinct model resolutions do not, in general, share common state spaces or parametrization, which
complicates information exchange and consistency. Second, the computational gap across resolutions can be substantial:
high-fidelity models (such as detailed three-dimensional FE analyses or nested FE? multiscale simulations) may be
orders of magnitude more expensive than their coarse or reduced-order counterparts. Third, the “best” resolution is
context dependent as fine resolutions may be necessary when the asset is degrading or when measurements detect
anomalous behavior, but coarse resolutions often suffice during nominal operation. Existing research provides several
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partial ingredients for addressing these challenges. Multifidelity methods offer principled ways to combine models
of varying accuracy and cost [17]. Reduced-order and surrogate models are widely used in structural dynamics and
SHM to accelerate real-time updating [[18H20]. Probabilistic graphical models and Bayesian filters have been used for
condition assessment, damage diagnosis, and prediction [8} [21H23]]. However, these efforts treat the digital twin as
bound to a fixed resolution. Digital twins based on dynamic Bayesian networks (DBNs) [8], 24-26] offer a natural
probabilistic structure for the multi-resolution setting.

In this work, we propose a general multi-resolution probabilistic digital twin formulation built on a Probabilistic
Graphical Model (PGM) that integrates multiple model resolutions of the same physical asset. The formulation
is resolution-agnostic: resolution levels may represent different fidelities, levels of physical abstraction, surrogate
versus full-order models, or, when available, multiscale FE formulations. As a case study, we instantiate this general
framework with a two-level resolution hierarchy for a composite panel segment under cyclic loading: a fast single-scale
finite element model and a high-fidelity FE? multiscale model [27, 28] in which mesoscale representative volume
elements (RVESs) are solved at macroscale integration points. The choice of resolution is treated as a digital action
within a decision-theoretic component of the digital twin, enabling selective escalation to FE? analysis only when
it materially improves inference. State estimation is performed with an unscented Kalman filter [29], which fuses
SHM measurements with predictions issued at whichever resolution is active. This application demonstrates that the
proposed multi-resolution digital twin achieves accuracy gains relative to a pure single-scale twin while avoiding the
prohibitive cost of continuous multiscale analysis. Sparse multi-resolution updates are sufficient to anchor the digital
state, suppress large deviations from the physical state, and capture sudden degradation events, illustrating the promise
of multi-resolution frameworks that manage the complexity of the models to balance accuracy and computational cost.

The remainder of the paper is organized as follows. Section [[Ij presents the PGM formulation and details how
multiple model resolutions are embedded within a unified probabilistic structure. Section [[II]applies the framework to
the composite panel SHM case study and evaluates the effect of selective resolution escalation. Section [[V]summarizes
the findings and outlines future research directions.

I1. Digital twins for multi-resolution systems

This section describes the multi-resolution problem setup for digital twins followed by a description of the
single-resolution PGM. We then describe the proposed multi-resolution digital twins using PGMs and the details of the
Bayesian calibration and resolution mapping required for the execution of the digital twins.

A. Multi-resolution digital twin problem formulation

We consider a digital asset represented by a computational model that monitors the physical states of its real-world
counterpart for structural systems. Many structural systems exhibit behavior governed by phenomena operating
across multiple spatial and temporal scales. To represent these systems within a digital twin, we consider a family of
computational models that describe the same asset at different resolutions. Each model emphasizes a distinct balance
between physical detail and computational tractability. High-resolution multiscale models can resolve microscale
degradation or nonlinear mechanisms, while reduced single-scale models provide simplified dynamics suitable for
rapid computation. In this setting, the real-world system is described by physical state variables S, at time 7. Let
m =1,...,k, denote the specific model resolutions used in the digital twins that can represent the physical twin to the
desired level. Then the digital state is the parameterization of the k computational models denoted by D, at time .
Each model m predicts the same class of observable quantities but is characterized by different internal state variables
and different computational cost; below we will particularize D, to each model m and address mappings between levels.
The digital twin receives observations O, from the physical asset at discrete times ¢ and must assimilate them to infer the
latent structural state. These observations may originate from strain sensors, accelerometers, or other structural-health
monitoring systems. The digital twin analyzes the performance of the system using quantities of interest (Qols), denoted
by Q,, which are computational estimates of often unobservable physical asset characteristics, such as stress and strain
fields.

Since no single-resolution is uniformly optimal for balancing accuracy and cost, the digital twin must determine
not only the appropriate physical action U, (e.g., maintenance, inspection) but also a digital action Z, € {1, ..., k}
indicating which model resolution to use at time 7. Resolution selection is driven by the digital twin’s objective to
maintain predictive accuracy while respecting real-time computational constraints. The need for multi-resolution
operation introduces an additional requirement: when the chosen resolution changes, the underlying state representation



changes as well. Although all models describe the same physical asset, they employ different digital state representations
denoted by D,(m) at the specific resolution m. To maintain coherence in the digital twin’s current estimate of the
structural state, transitions between resolutions are handled through mappings that translate latent digital states from one
model’s representation to another. These mappings allow the digital twin to switch models without losing accumulated
information or introducing inconsistencies. The resolution-agnostic reference digital state obtained after mapping is
denoted by D;, which is shared across all models. There is considerable flexibility in choosing the reference digital
state D;. The optimal form of D; is problem dependent, and it is ultimately the modeler’s decision. For example, if D}
is intended to be used in many-query analyses (e.g., uncertainty propagation), it is generally more practical to define the
reference state in the low-resolution space. The augmented digital state representation maintained by a multi-resolution
digital twin at time ¢ is given by

.
D, =|p:, D", .. .DP| . (1)

In this paper, we develop the multi-resolution digital twin within a multiscale paradigm consisting of k = 2 model
resolutions, noting that the ideas extend to more than two levels. Multiscale engineering systems admit multiple
computational representations, each resolving the underlying physics at a different level of detail. The coarse resolution
(m = 1), represented by a single-scale model, provides rapid evaluations based on simplified constitutive behavior. In
contrast, the high-resolution (m = 2), represented by a multiscale model, resolves additional physics, such as local
microstructural phenomena or mesoscale interactions, at a higher computational cost. The single-scale resolution digital
state D E D) contains effective macroscale descriptors that parameterize the coarse constitutive behavior of the structure.
These descriptors offer a computationally inexpensive prediction model by summarizing the system’s response through
a small set of effective properties, but they do not encode microscale physics. The multiscale resolution digital state
D t(2) contains micromechanical descriptors, such as local damage measures, evolving microstructural parameters, and
internal variables associated with fine-scale constitutive behavior. The multiscale resolution can represent a significantly
richer range of physical phenomena and therefore exhibits stronger predictive capabilities. Since the single-scale
resolution is decoupled from microstructural behavior, the reference state D; must be defined at the macroscopic
structural scale. Consequently, after obtaining D} one can directly run the cheap-to-evaluate macroscale simulation as
an approximation for the forward uncertainty propagation. A natural choice in the multiscale structural analysis context
is the macroscopic stiffness tensor C, as both resolutions can be directly related to it, but other forms of the reference
state can be straightforwardly applied.

B. Background: Digital twins using probabilistic graphical models

The multi-resolution digital twin developed in this work builds on the probabilistic graphical model (PGM)
formulation established for single-resolution digital twins [§]]. In the PGM formulation, the digital twin is represented as
a structured probabilistic model in which the digital state, the observed structural response, and the chosen actions are
combined into a coherent Bayesian update-and-evaluate cycle. Conditional independencies encoded in the graph enable
scalable inference and principled uncertainty quantification, which are essential for real-time structural monitoring. The
joint probability distribution that describes the digital twin conditioned on observed data O, = o, from the physical
asset and physical control actions selected by the decision maker U; = u,, for all time till the current time, = 0, .. ., ¢,
is formulated as [8]]
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where the two factors, ¢""** and ¢!

update factor, ¢;lpdate, encodes the assimilation of new data through Bayesian inference. This term couples the process
model governing how the digital state evolves with the likelihood model that evaluates the compatibility of observations
with predicted responses. The update stage absorbs model-form uncertainty, measurement noise, and nonlinearities
present in the state evolution. The factor, ¢?°I, involves forward uncertainty propagation through the computational

model to estimate the distribution of the Qols.

, capture the distinct roles of estimating the states and Qols, respectively. The



C. Multi-resolution digital twins using probabilistic graphical models

The PGM architecture provides two properties that are essential for extending digital twins to multi-resolution
settings. First, the explicit factorization into update and Qol terms clearly separates the data assimilation and Qols
characterizing the physical asset for decision-making. Second, the PGM formulation is modular, such that additional
variables, alternative observation models, or different action types can be inserted without restructuring the entire
graph. These features make the PGM an ideal foundation for introducing resolution selection as a digital action and for
incorporating multiple modeling resolutions within a unified probabilistic framework. To accommodate multi-resolution
modeling, we will retain the update—Qol factorization from the graph but condition both factors on the resolution
selected at each time step. The resulting hierarchical structure as shown in Figure[T]allows the digital twin to choose
between model resolutions as part of its decision process while maintaining probabilistic consistency across model
transitions. Figure[I]illustrates the PGM for a specific instance of a multi-resolution digital twin using two resolutions.
As shown in Figure[Ta] two decisions are made at each timestep, both influencing the digital state D,. The physical
action U, governs real-world interventions, such as maintenance and repairs, that modify the physical and digital states.
The digital action Z, determines the model resolution used for data assimilation and Qol prediction, and thus directly
affects the fidelity of the updated digital state. Figure [Tb] presents a representative multi-resolution workflow that
integrates a single-scale model with a multiscale alternative within a unified digital twin framework to map to the
multi-resolution augmented digital state given by Eq. (I).
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Fig. 1 (a) The probabilistic graphical model (PGM) underlying the multi-resolution digital twin. The digital
twin operates across multiple model resolutions, with the digital action Z; selecting the active resolution and
thereby activating its corresponding digital state representation D t(Z’) . (b) The multi-resolution digital twin
explored here spans from a single-scale FE model at its low resolution to a full multiscale FE> model at its
high-resolution. When the digital action Z, picks a certain resolution, the corresponding resolution-specific
digital state D ;Z’) is activated and then mapped onto a common reference state D;. The augmented digital state
representation of the multi-resolution system is denoted by D;.

The joint probability of the digital states and the Qols can be represented by the same factorization as in Eq. (Z). The
update and Qol factors are now conditioned on the digital action Z, to account for the switching between the various
resolution models as given by

;lpdme =p (D:sDt(ZH) )Dt—l’ot =0, Uiy =ur 1,21 = Zt—l) s ©)
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with the computational model taken from the resolution indicated by Z;. We provide details on the different escalation
strategies used to define Z; for the multiscale system in this work in Section [[L.D] Lower-cost resolutions may use
simplified operators, while higher-cost resolutions may employ refined discretizations, richer constitutive laws, or
multiscale couplings. Data assimilation (e.g., filtering) proceeds exactly as in the single-resolution case, with Z;

D, 7,1 = 7)), (©)



determining which model is evaluated inside the Bayesian inference step. In this work, we use the unscented Kalman
filter (UKF), which performs Bayesian filtering for nonlinear systems using a deterministic set of sigma points that
capture the first two moments of the probability distribution [29]]. The Qol estimation requires a forward uncertainty
propagation through the model selected through Z,. However, estimating the Qol factor in Eq. (6)) can be computationally
prohibitive when the active resolution is an expensive-to-evaluate high-resolution model. We define a computationally
efficient approximate estimator of the Qol factor, A?(’I, by fixing the model resolution used to run the forward uncertainty
propagation for Qol estimation to utilize the lower-resolution model capable of using the reference digital state D;.
Note that D; is selected to be shared across all models as described in Section and maintains a correction mapping
from the higher-resolution models as described in Section[[LE]

To maintain coherence while switching between various resolution models through the digital action Z; in the
multi-resolution digital twin, we require a mapping function to transform the resolution-specific digital state to the
resolution-agnostic reference digital state D;. We introduce a generic mapping operator

M: D).z, v D,

which transfers the current digital state D,(Z’) from the active resolution defined by Z; at time ¢ to the reference digital
state D;. This operator can represent, for example, homogenization, projection, compression to low-order features, or
identity if the reference digital state equals a specific resolution state. The specific choice of M is application-dependent.
The PGM structure treats it as a modular component making it easy to define and embed application-specific mapping
operators. A detailed definition of the mapping operator for our multiscale problem setup is provided in Section [[.LE

D. Multi-resolution escalation strategies for multiscale systems
The multi-resolution character of the digital twin arises from its ability to switch between a low-fidelity single-scale
model and a high-fidelity multiscale model. This choice is determined by a digital action Z,, which governs whether the
digital twin operates with only the latent macroscale stiffness parameters or swaps them with multiscale resolution-
specific degradation variables by escalating to an FE?> computation. In this work, Z, follows a simple predetermined
cadence (e.g., a high-resolution update every five timesteps) chosen to clearly illustrate the effect of switching between
resolutions. Extensions toward uncertainty-driven or value-of-information policies are natural within this framework
and are currently under investigation. We compare the following three escalation strategies:
1) a purely single-scale baseline, in which the multiscale model is never used and the filtering algorithm relies
exclusively on the macroscale stiffness factors to explain the observations;
2) an always-multiscale configuration, in which the multiscale model is used at every timestep and the macroscale
response is purely determined by the evolving micromechanical material parameters;
3) ahybrid configuration, in which the multiscale model is activated every five timesteps and the single-scale model
is used at all other times.
The first case corresponds to a single-resolution digital twin with no micro-structural resolution. The second case
provides a reference solution in which the microscopic damage state is tightly coupled to the observed response but
incurs the highest computational cost. The third case aims to approximate the accuracy of the full multiscale solution at
significantly reduced cost by using the multiscale corrections sparsely in time.

E. Multi-resolution mapping between digital states for multiscale systems

In the multi-resolution setup for multiscale systems with two model resolutions, we choose the macroscopic stiffness
tensor C, as the resolution-agnostic reference digital state D;. The constitutive stiffness tensor C, has the following
general form:

[Cii; Ciy Cisr O 0 0
Cyn: Cyu; O 0 0
C, = Cs3t 0 0 0 ’ )
Caay O 0
Cssy O
] Ces,1 |
where each non-zero component C;; ;, for i, j = 1,...,6, is assumed to evolve independently of the others. The

constitutive tensor C; is the linear operator that maps strain to stress in a material. At a certain timestep ¢, each



component C;;, fori,j = 1,...,6, represents a specific stiffness contribution, capturing normal stiffness (C, C22,
C33), shear stiffness (Cy4, Css, Cee) or the coupling between different deformation directions (Ci3, C13, Ca3).
Each resolution provides a predicted macroscopic stiffness through a resolution-specific mapping operator as

MM, z, =1

8)
My(DP), z,=2.

D; =MD"z, = {

For the single-scale resolution, the operator M; maps a set of effective macroscale descriptors to the macroscopic
stiffness tensor. This operator typically represents reduced-order stiffness parametrizations, parametric constitutive
relations, or closed-form effective-medium approximations. It defines a low-cost operation and does not resolve
microscale physics. The operator M; has the following form:

Ml (Dt(l)) = A;—ChealthyAt + AC[, (9)

where the matrix Chealtny is the fully healthy macroscopic stiffness tensor. In this work, the matrix A applies a transversely
isotropic stiffness reduction on Cheaiihy and is defined, at timestep ¢, as:

A, = diag (\/GL,t, VaL,t>\aAT,t,\aAS,t,\AS, 15 \/aS,t) . (10)

where ay. s, ar; and ag;, at timestep ¢, denote the longitudinal, transverse and shear stiffness reduction factors that
scale the fully healthy stiffness tensor Cheaithy. The term AC; is a stiffness correction matrix, whose precise form is
defined below in Eq. (T2).

For the multiscale resolution, the operator M, maps micromechanical descriptors to the macroscopic stiffness tensor.
This mapping is generally referred to as homogenization. Depending on the chosen homogenization strategy, M, may
range from analytical formulations to the numerical solution of a discretized boundary-value problem. In this work, we
focus on a computational homogenization operator [30], which takes the generic form,

1 ao’ﬁne I(X;D(Z))
M (D(Z)) - ’ L gy, (11)
g ! |Qﬁne | Qfine (98,3

where Qfy denotes the representative volume element (RVE) associated with the fine length scale (e.g. microscale,
mesoscale), x is the spatial coordinate within this domain, O'ﬁne’t(x;Dt(z)) is the fine scale stress field response, at
timestep ¢, driven by the fine-scale digital states, and &; is the corresponding macroscale deformation measure.

In a multiscale setting, the equilibrium problem is solved using the FE method, with constitutive data supplied
by the solution of a FE-based RVE at each integration point. This procedure defines the well-established FE?
algorithm [31]], which operates as follows: the current macroscale deformation measure &; is passed to the RVE, the
corresponding microscale boundary value problem is solved with &, prescribed as the boundary condition, and the
resulting homogenized macroscale Cauchy stress o, and stiffness tensor C; are returned to the macroscale solver.
Whenever the digital twin escalates to the multiscale resolution, this two-way coupled problem is solved directly.
Although the FE? algorithm provides high-fidelity predictions, its computational cost is prohibitive for use in a digital
twin setting.

The mapping operators at both resolutions yield the macroscopic stiffness tensor C; as shown in Eq. (8). However,
discrepancies may arise between these predictions for several reasons. For example, the coarse-resolution parametrization
may impose simplifying assumptions, such as transverse isotropy, while the micromechanical description at the multiscale
level may allow the material to evolve into a non-isotropic way, such as orthotropic, during degradation. To preserve
coherence between resolutions, whenever there is escalation to the multiscale model, we introduce an additive correction
factor:

AC, =C? -V, (12)

where C t( D and € ,(2) represent the macroscopic constitutive stiffness tensor estimated by the single-scale and multiscale
resolutions, respectively. The factor in Eq. [I2]provides a partition-wise stiffness correction that quantifies the discrepancy
between the limited single-scale prediction and the more accurate multiscale prediction. This correction is incorporated
into the shared reference stiffness state D and carried forward through the following low-resolution steps as:

D:=C, =C* +AcC,. (13)



The mechanism ensures that information gained from expensive high-fidelity evaluations is retained, stabilizing the
macroscopic parameters and suppressing artificial discontinuities when switching between models. When all timesteps
use the multiscale model, the corrected latent stiffness coincides with the FE?-based stiffness. When only the single-scale
model is used, the correction remains inactive and the stiffness evolution is governed solely by the macroscale parameters.
For the hybrid case, if the active resolution is single-scale (Z; = 1), the correction injects fine-scale information into the
reference state. If the active resolution is multiscale (Z; = 2), then AC; = 0. Hence, multiscale evaluations provide
persistent refinements to the coarse representation.

II1. Application: Multi-resolution digital twin for a composite panel

The proposed multi-resolution digital-twin framework is demonstrated on a cantilevered composite-panel segment.
The digital twin integrates two modeling resolutions of the same physical asset: a single-scale finite element model
serving as the low-resolution representation, and a multiscale FE?> model providing the high-resolution counterpart.

A. Resolution-dependent model configuration

The macroscale structure represents a typical wing panel and is modeled as a straight cantilever with span of 6 m,
chord length of 1 m, and thickness 0.15 m. The domain is discretized by a structured hexahedral mesh with 18 x 3 x 2
elements along the span, chord and thickness directions, respectively. The mesh is partitioned into eight blocks along
the span, each block representing a monitoring partition for which a separate degradation state is inferred. Only the
partitions 2, 4, and 6 are assumed to have an evolving structural health state, while the rest are taken as fully healthy
throughout the analysis. The boundary conditions correspond to a clamped root plane at the inboard end, where
all displacements are suppressed on the plane normal to the span direction. A uniform pressure load of magnitude
5 x 10* Pa is applied to the upper surface, representing an aerodynamic lift load. Figure [2|illustrates the macroscale
geometry, mesh and the partitioning of the panel. All structural responses in this application are computed under the
assumption of quasi-static equilibrium, as inertial effects are negligible for the loads and degradation rates considered.
At each update step 7, the governing equilibrium equation is:

V.o, +b, =0, (14)

where o; = C; : &, is the Cauchy stress tensor, at timestep ¢, obtained from the constitutive stiffness C;, and b, denotes
the applied body forces at 7. This quasi-static assumption applies uniformly to both the single-scale and the FE?
multiscale evaluations used within the digital-twin framework.
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Fig. 2 Multi-resolution representation of the structural component. The macroscale finite element model
includes three degrading partitions (partitions 2, 4, and 6 shown in red) whose effective stiffness deteriorates
during operation. The single-scale model corresponds to this macroscale level and remains agnostic to meso- and
micro-scale behavior. The multiscale model extends the hierarchy with two additional resolutions: a mesoscale
FE-RVE that resolves the laminate architecture, including stacked plies and imperfect interply interfaces, and
interacts with the macroscale through an FE? scheme; and a microscale Mori-Tanaka model that captures
constituent behavior, fiber distributions, and the evolution of matrix porosity.

The low-resolution model is a single-scale formulation defined solely at the macroscale, with no explicit coupling to
finer length scales. The macroscopic response is characterized through a digital state comprising three multiplicative
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= [{a? Lo A7 ag e 1], where p = 1,2,3 correspond to the three degrading partitions,

namely partitions 2, 4, and 6. For each degrading partition, af p ai . and a® g.¢> are the stiffness reduction factors defined

in Eq. [T0} These parameters evolve continuously and constitute the low- ﬁdehty resolution-specific state. This model
preserves computational efficiency by enforcing transverse isotropy while still allowing directional softening as defined
in Eq. (@). This model can be used for rapid data assimilation during the digital twin operation; however, its limited
predictive capabilities naturally impact the quality of the digital twin.

The high-resolution representation is defined by a multiscale model comprised of three distinct length scales:
the microscale, the mesoscale, and the macroscale. At the microscale, the material is modeled as a unidirectional
carbon-fiber-reinforced polymer with epoxy matrix, carbon fibers, and voids as distinct phases. Baseline elastic moduli
are such that the matrix stiffness is 3.5 GPa, the fiber stiffness 240 GPa, and the fiber volume fraction 60%. Voids are
treated as compliant inclusions to preserve positive definiteness of the effective stiffness. A Mori—Tanaka homogenization
law [32]] provides a closed-form estimate of the composite stiffness (see Appendix [A)) with a fixed volume fraction
of fiber inclusions and an evolving volume fraction of voids, whose evolution is defined by the digital state y,. This
estimate ultimately defines the porosity dependent effective stiffness of the individual plies on the mesoscale level. At
the mesoscale, individual plies and interply layers are resolved through a finite element RVE that captures interlaminar
deterioration, which is described by the digital state diy ;, and, inherited from the microscale, the influence of porosity on

ply stiffness. The degradation variables form the multiscale digital state as D 52) = [{y?, dmt T e 3 _,1, which is active only

stiffness-scaling factors, D,

when the high-resolution model is invoked. The FE? formulation computes homogenized stresses and tangent moduli
from these variables at every macroscale integration point of degrading partitions, providing partition-wise effective
stiffnesses that directly link these micromechanical parameters to macroscopic behavior. Although this multiscale
model has the ability to provide very accurate and more interpretable predictions, the need to perform a computationally
intensive FE? simulation within the downstream tasks of data assimilation and forward uncertainty propagation makes it
prohibitively expensive.

Across resolutions, the digital twin maintains a persistent latent representation of the nine independent components
of the macroscopic stiffness tensor defined in Eq. (/) for each of the three monitored partitions. Resolution-specific
digital states are activated only when their corresponding fidelity is in use, and each employs a distinct mapping to and
from the shared latent space as described in Section [[I.E] through Eqs. (9) and (TT) for the low- and high-resolution
models, respectively. The augmented digital state vector for the multi-resolution twin, D, gathers all resolution-specific
and resolution-agnostic state variables and is defined as

—lqa? a2 a? p p p P p p P p
D, = {aL,t’ Ar As,y p U7 dmtt p=1 > {Cll r 22 0 C0 Clap Cis Cos 0 Cla o Css r C66t p=1
bV b D;

This vector persists throughout the simulation; however, at each timestep only the subset corresponding to the currently
active resolution undergoes updating, while the remaining components are carried forward unchanged.

B. Synthetic data generation with degradation dynamics

Synthetic “ground truth” health-state histories are generated by evolving the micromechanical degradation variables
contained in the fine-resolution digital state vector D,(Q). These histories are produced under a prescribed sequence
of equivalent load cycles applied over a finite time horizon consisting of 50 discrete update steps. Each update step
corresponds to an increment in the accumulated number of equivalent load cycles, denoted AN,. This increment is
obtained from a usage-mapping that converts operational flight data into cycle accumulation.

The total number of equivalent cycles accrued over A hours of operation is defined in continuous time by

h
N(h):/O r(t)s(t)dr (15)

where £ is the elapsed flight time in hours, and 7 is the continuous time variable taking values in the interval [0, &].
The function r (1) denotes the instantaneous cycles-per-hour usage rate, and s(7) is the corresponding normalized
load-severity measure taking values in [0, 1]. The parameter c is a prescribed load-sensitivity exponent that controls the
influence of the severity level on cycle accumulation.

In the discrete form of Eq. [T5]used for generating synthetic health histories, the time horizon is partitioned
into segments indexed by j = 1,...,¢, where ¢ denotes the current discrete timestep. Each segment has duration



Ahj, satisfying 25:1 Ahj = h. Evaluating the usage rate and severity at each segment midpoint yields the discrete

accumulation rule:
t

t
N; = ZAN- = ersﬁAhj, (16)
j=1 j=1
where r; and s represent the cycles-per-hour rate and normalized severity associated with the j-th flight segment.
The porosity variable ¥, in each degrading partition is modeled as a bounded, saturating quantity. Following
standard microdamage phenomenological laws [33]], its evolution as a function of accumulated cycles N, is taken as

. B>0, (17)
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where i is the initial porosity, Y¥max 1S its asymptotic upper bound, while Ny, and S are empirical parameters governing
the curvature and rate of the saturation response.

The interply degradation variable din,, is defined through an interfacial effectiveness parameter ¢ ,, which represents
the fraction of the original interfacial stiffness retained at timestep ¢. Under cyclic loading, ¢ ; decays according to a
cohesive-fatigue (Paris-like) law [34] in the normalized energy-release range AG, /G, where AG, denotes the cycle
energy-release range, at timestep ¢, in the current block and G, is the interfacial fracture-toughness parameter. The
evolution law is given by

AG N\ 1-1/4
’) Nt] ’ (18)

nee = [1+C]fAf( G
c

where A, my and g ¢ are material parameters that define how fast and how nonlinearly 77 ; decays. Since 77, € [0, 1]
acts as an interfacial stiffness-retention factor, the interply damage variable is defined as

dint,; = max {(1 - 77f,t) > dmax} s (19)

with dnax describing the limiting interfacial degradation as N, increases.

The synthetic health-state trajectories obtained using Eqs. and (T8) are used to generate strain histories by
solving the forward multiscale model. We assume a set of 24 virtual strain gauges distributed along the physical asset,
capable of measuring normal strains in the span, chord, and thickness directions within each partition. Specifically, each
partition has a set of 3 strain gauges, each monitoring the strain magnitude in a different direction. At each timestep, the
multiscale model supplies the partition-wise stiffness tensors, which are passed to the macroscale finite element solver
to compute the strain response at the gauge locations under the prescribed pressure loading. The resulting strain signals
are then contaminated with independent, zero-mean additive Gaussian noise with standard deviation set to 2% of the
local strain magnitude.

We consider three representative degradation scenarios by selectively modifying the material parameters in Eqs.
and (T8). First, a slow, nearly linear evolution of both porosity and interply degradation is produced by a low-severity,
smooth configuration for the interfacial law and for the porosity kinetics. Second, a highly nonlinear but still smooth
degradation is generated using a more aggressive cohesive-fatigue response and fast porosity kinetics; this yields rapid
early-stage deterioration followed by a progressively slower approach to the asymptotes. Finally, a regime with sharp
jumps superimposed on a moderately nonlinear smooth evolution, where two interior timesteps are selected for each
variable ¥, and diy; and, at each selected time, the corresponding variable is instantaneously increased by 10.0% in
relation to its asymptotic limit. Partitions designated as healthy remain fixed at their initial undamaged state throughout.
We provide details for all three scenarios in Table[T]

Table 1 Parameter sets for the three representative degradation scenarios.

Scenario AG/G. Ay mg g Neat B dmax  Ymax Jumps
Slow, nearly linear, smooth 0.25 5% 1073 1.0 3.0 10.0 1.0 0.60 020 Disabled
Sharp, highly nonlinear, smooth 0.30 3x107" 25 04 05 3.0 060 020 Disabled

Sudden-jumps, moderately nonlinear 0.30 1.5x10°" 1.5 06 15 1.3 060 020 Enabled




C. Bayesian state estimation implementation details

The Bayesian state estimation employs an Unscented Kalman Filter (UKF) on the augmented multi-resolution digital
state D, = (D}, D t(l), D t(z)), with the active resolution selected by the digital action Z; € {1, 2}. The resolution-specific
digital state evolves as

D, Zf(zt)(Dt—l)"'Wt(Zr), (20)
0, = K% (D,) +v\*), 1)

where Eqs. (20) and (21)) represent the prediction and data assimilation contributions of the stochastic filtering problem,
respectively. The functions (%) and 2(%) are the resolution-specific process and observation models. The observation
operator incorporates the stiffness prediction C I(Z’) into the appropriate solver. At the coarse resolution, f!) governs
effective macroscale properties and 4! evaluates a low-cost model using C ;1) . At the fine resolution, £ updates
micromechanical descriptors and /?) uses the homogenized stiffness C;z) within a higher-fidelity solver. Although the
degradation laws are known from the synthetic data generation, we deliberately avoid prescribing them and instead
implement both (1) and ) as identity mappings with additive Gaussian noise, placing the burden of learning
temporal evolution on the observations while maintaining smooth trajectories. Noise levels match those used in the
synthetic experiments: 2 x 1073 for porosity, 4 x 1073 for inter-ply damage, and 2 x 103 for macroscopic stiffness
parameters. State components of inactive resolutions evolve only under process noise. During prediction, sigma points
from the current posterior are propagated through f (%),

The observation step converts each propagated sigma point into a strain response via the resolution-dependent
operator 7(%). Under the single-scale configuration (Z, = 1), the predicted macroscopic stiffness C,(I) is obtained
from the coarse mapping operator M (D ,(l)) and passed to the macroscale finite element solver, which computes the
corresponding strain predictions. When the multiscale resolution is active (Z; = 2), the micromechanical descriptors
determine the homogenized stiffness through the FE>-based mapping MZ(DI(Z)), requiring an RVE solve for each sigma
point before the macroscale response is evaluated. In both cases, the observation noise used in the UKF update matches
the heteroscedastic noise model of the synthetic measurement process, ensuring a consistent assimilation framework.

Whenever the system escalates to the multiscale resolution, the stiffness mismatch in Eq. (I2) is injected into the
shared reference stiffness state D}, implementing the correction mechanism described in Eq. (T3)). This accumulation
ensures that information learned during multiscale steps persists during subsequent single-scale updates, thereby
preventing discontinuities in the stiffness trajectory when switching between resolutions. When Z; = 2, the correction
vanishes, so repeated multiscale steps recover the FE2-consistent stiffness exactly.

The UKEF is controlled by three parameters, namely @ = 0.7 which controls the spread of the sigma points, S which
incorporates any prior knowledge of the distribution, and « is a secondary scaling parameter. In this study, the parameters
were configured as @ = 0.7, 8 = 2.0, and x = —5 to regulate the spread of sigma points. A small covariance inflation
of 1071 is applied at each iteration to counteract artificial covariance collapse associated with repeated nonlinear
transformations and to maintain numerical robustness. A post-update projection is employed when the high-resolution
model is active to map posterior uncertainty in the micromechanical digital states to an equivalent uncertainty in the
macroscale stiffness states using an unscented transform.

D. Results

We evaluate the three escalation strategies defined in Section [[L.DJunder three representative degradation scenarios
described in Section[[II.B] In all cases, stiffness correction is enabled to stabilize the macroscale parameters between
high-resolution steps. We show the degradation with respect to the flight hours for the degrading partitions (here,
partitions 2, 4, and 6). The degradation is defined as the stiffness ratio %, where ||C;|| and ||Cheainyl| are the
Frobenius norms of the current state of the stiffness matrix and the fully healthy state of the stiffness matrix, respectively.
We present the mean predictions and the uncertainty in the predictions through a +25D interval, where SD is the
standard deviation, to approximately represent the 95% confidence interval.

Figure [3|shows the trajectories of the stiffness ratio for the slow degradation scenario. The hybrid strategy closely
follows the always-high-resolution reference throughout the time horizon, with only minor deviations between high-
resolution updates. The low-resolution strategy, in contrast, accumulates noticeable bias due to its limited sensitivity to
the evolving degradation variables. Figure |4{shows the corresponding stiffness ratio relative RMSE from the prediction
mean. Both the hybrid and the always-high-resolution strategies maintain a low relative RMSE, demonstrating that
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sparse high-resolution updates are sufficient when degradation evolves smoothly, whereas the low-resolution strategy
exhibits consistently higher error.
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---- true

Degradation
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0 20 40
flight hours

Fig. 3 Estimated stiffness ratios in the slow degradation scenario. The hybrid strategy maintains trajectories
close to the always-high-resolution reference while requiring fewer high-resolution updates. Solid lines represent
the mean and shaded bands denote +25D uncertainty.
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Fig.4 Macroscopic stiffness ratio error in the slow degradation scenario. The root-mean-square error remains
low for both the always-high-resolution and hybrid strategies, demonstrating the effectiveness of sparse high-
resolution updates when degradation evolves smoothly.

The sharp degradation scenario highlights behavior during rapid stiffness loss. Figure[5]shows that the always-
high-resolution strategy most accurately tracks the steep decline, while the hybrid strategy exhibits modest deviations
between escalation points for partitions 4 and 6. Nevertheless, the hybrid strategy preserves the major features of the
stiffness trajectory, whereas the low-resolution strategy underestimates the severity of degradation. The RMSE behavior
in Figure 6] shows the same trend. The always-high-resolution strategy yields the lowest errors, while the hybrid strategy
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achieves an improvement over the low-resolution baseline, with temporary increases occurring only between escalation
steps.

1.0 A

0.8 1

Degradation
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0.6 { partition 6

0 20 40
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Fig. 5 Estimated stiffness ratios in the sharp degradation scenario. Rapid stiffness loss is captured most
accurately by the always-high-resolution strategy; the hybrid strategy tracks this behavior with modest deviations
between high-resolution updates. Solid lines represent the mean and shaded bands denote +25D uncertainty.
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Relative RMSE
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10 20 30 40 50
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0.00
0

Fig. 6 Macroscopic stiffness ratio error in the sharp degradation scenario. Larger excursions occur during
intervals without high-resolution updates, but the hybrid strategy remains significantly more accurate than the
purely low-resolution approach.

The sudden-jump degradation scenario tests the ability of each strategy to handle abrupt changes in stiffness. As
shown in Figure[7] the hybrid strategy effectively locks in each abrupt stiffness drop identified by the high-resolution
model. In contrast, the low-resolution strategy smooths out these jumps and fails to recover their magnitude. The
relative RMSE plot in Figure [8] highlights this effect: high-resolution steps sharply reduce prediction error immediately
following each jump, and the hybrid strategy retains lower relative RMSE than the low-resolution baseline throughout.
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Fig.7 Estimated stiffness ratios in the sudden-jump degradation scenario. Each abrupt degradation event is
locked in by the high-resolution model, and the correction mechanism ensures that the hybrid strategy preserves
these stiffness drops during low-resolution intervals. Solid lines represent the mean and shaded bands denote

+25D uncertainty.

0.06 1 .
no multiscale

0.04+

Relative RMSE

o
=)
]

multiscale every 1 step

0.00 -
0 10 20 30 40 50

flight hours
Fig.8 Macroscopic stiffness ratio error in the sudden-jump degradation scenario. High-resolution steps sharply

reduce the relative RMSE immediately after each jump, while the hybrid strategy maintains lower error than the

low-resolution baseline.
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Next, we examine how the different escalation strategies influence the predicted distribution of a structural QoI at
selected monitoring times. For the sudden-jumps degradation scenario, and for each escalation strategy, we perform
forward uncertainty—propagation by sampling from the reference digital states D; at three representative flight hours
(early: ¢ = 10, mid-life: # = 25, and late: ¢ = 50). For each sampled reference state, we compute the macroscale response
using the corresponding stiffness matrix and record the vertical displacement at several locations along the longitudinal
direction of the panel. Using 500 Monte Carlo samples, we then construct histograms of the tip displacement. “True”
vertical displacements are obtained by solving the forward multiscale problem with the true digital states produced
during the synthetic-data generation. Figure [J] presents the resulting displacement distributions: rows correspond
to flight hours, and columns to positions along the span. Each subplot overlays the results from the low-resolution,
hybrid, and always-high-resolution strategies. The figures show that the modes of the always-high-resolution and
hybrid histograms generally fall closest to the true displacement, with the former distribution being naturally the most
accurate. Conversely, the always-low-resolution histograms indicate a consistent underestimation of the displacement.
The relative RMSE between the mean values of the true and estimated displacement, averaged over spatial positions,
for the high-resolution, hybrid, and low-resolution strategies is: for flight hour = 10, 0.28 x 1073, 1.85 x 1073, and
9.43 x 1073; for flight hour = 25, 0.19 x 1073, 1.75 x 1073, and 9.92 x 1073; and for flight hour = 50, 0.56 x 1073,
1.01 x 1073, and 11.30 x 1073, respectively.

multiscale every 1 step multiscale every 5 steps no multiscale ~ ----- truth

flight hour = 10

1 L & b

—0.044 —0.042 —0.040 —0.14 —0.13 —0.27 —0.26 —0.25 —0.40 —0.38 —0.36
vertical displacement at x = 1.5 vertical displacement at x = 3.0 vertical displacement at x = 4.5  vertical displacement at x = 6.0

flight hour = 25

—0.044 —0.042 —0.040 —0.038 —0.15 —0.14 —0.13 —0.28 —0.26 —0.42 —0.40 —0.38
vertical displacement at x = 1.5 vertical displacement at x = 3.0 vertical displacement at x = 4.5 vertical displacement at x = 6.0

flight hour = 50

—0.046 —0.044 —0.042 —0.040 —0.15 —0.14 —0.28 —0.26 —0.44 —0.42 —0.40 —0.38
vertical displacement at x = 1.5 vertical displacement at x = 3.0 vertical displacement at x = 4.5 vertical displacement at x = 6.0

Fig. 9 Displacement histograms in the sudden-jump degradation scenario. The predicted vertical displacement
is compared for the three different escalation strategies across several longitudinal positions and flight hours.

Table 2] summarizes the computational cost over a time horizon of 50 steps. The cost ratio is expressed relative to the
purely low-resolution baseline. The always-high-resolution strategy is approximately three orders of magnitude more
expensive than the low-resolution baseline, reflecting the cost of FE?-based homogenization. The hybrid strategy reduces
this cost by approximately a factor of five while preserving most of the predictive benefit of continuous high-resolution
operation. Across all degradation regimes, the hybrid strategy achieves a near-optimal balance between accuracy and
cost. Sparse high-resolution updates, combined with stiffness correction, preserve fidelity during periods of rapid
degradation while keeping the overall computational burden compatible with online digital twin operation.

IV. Conclusions
This paper presents a probabilistic framework for multi-resolution digital twins capable of operating across multiple
model resolutions within a unified PGM. The approach extends the single-resolution PGM formulation used in
conventional digital twins by introducing a digital action and a resolution-agnostic reference digital state to the PGM.
The digital action allows the multi-resolution digital twin to dynamically switch between coarse- and high-resolution
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Table 2 Computational cost comparison for the three escalation strategies

Strategy High-resolution steps  Low-resolution steps  Cost ratio
Low-resolution only 0 50 1
Always high-resolution 50 0 ~ 1125
Hybrid (every 5 steps) 10 40 ~ 225

models during the execution of the digital twin to balance accuracy and computational cost. The reference digital state
maintains a coherent reference representation across all resolutions and is obtained through a mapping operator that
ensures information gained at one resolution persists when switching to another. The multi-resolution digital state is
obtained by augmenting the reference digital state with the resolution-specific digital states. Conditioning the PGM’s
update and Qol factors on the digital action yields a unified and consistent Bayesian framework for multi-resolution
state estimation and prediction.

The application of the multi-resolution digital twin to a multiscale system shows the computational efficiency and
the accuracy of the proposed method. The multiscale system used a low-resolution static model of a macroscale finite
element representation and a high-resolution static model using a nested FE> homogenization scheme with mesoscale and
microscale descriptions for degrading composite panel. Using an unscented Kalman filter for sequential state estimation,
we examined three multi-resolution strategies: a purely coarse-resolution twin, a fully high-resolution twin, and a hybrid
approach that intermittently activated the high-fidelity model. The results demonstrate that sparse high-resolution
updates improve state estimation accuracy without incurring the prohibitive cost of continuous multiscale analysis. The
hybrid strategy effectively tracked both gradual and abrupt degradation events, preserved predictive accuracy close to
that of the fully high-resolution solution, and significantly reduced computational effort. These findings illustrate that
multi-resolution strategies can offer a favorable balance between fidelity and efficiency in practical monitoring scenarios.

A natural extension of this work is using adaptive resolution policies that rely on uncertainty quantification,
value-of-information metrics, or risk-based criteria, moving beyond the predefined digital action schedule adopted
in the present study. Another direction, within the multiscale multi-resolution context, is the joint inference of
degradation constitutive law parameters alongside degradation states, enabling the digital twin to learn evolving material
behavior; thereby enabling predictive capability to aid in decision-making regarding preventive maintenance as damage
progresses. Lastly, the proposed multi-resolution architecture is also general enough to incorporate reduced-order
models, multifidelity surrogates, or data-driven operators as additional resolutions, expanding the model resolution
space available to the digital twin and is a promising direction for future investigation.

A. Mori-Tanaka formulation of the microscale

The Mori-Tanaka method provides an analytical estimate of the effective elasticity tensor of a composite comprising
a matrix phase and one or more families of inclusion phases [35]. Since this formulation is time-independent, the
timestep index ¢ is omitted for brevity in the expressions that follow. For an inclusion family i with stiffness tensor C;
embedded in a matrix of stiffness Cy, the strain concentration tensor is given by

- -1
Bi=[1+8;:Cpl: (Ci—Crma)| 22)
where S; is the Eshelby tensor of an ellipsoidal inclusion of family i embedded in an infinite matrix.
The effective stiffness estimate is then
-1

Cur = Conat + )0 (Ci = Cinat) : B : (23)

Umat I + Z Uj B j
J
where v; is the volume fraction of inclusion family 7, and va = 1 — 3; v; is the matrix volume fraction.

Prolate ellipsoidal inclusions for aligned fibers
The carbon fibers are modeled as aligned, highly elongated inclusions. Their geometry is represented by a prolate
spheroid with semi-axes @ > ap = a3, aligned with the fiber direction. For such inclusions, the Eshelby tensor S,
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admits a closed-form expression in terms of the aspect ratio & = @) /a;. In the local coordinate system whose first axis
is aligned with the fiber direction, the nonzero components take the form

1 | £ | E+E -1
—_— n .
£-1 WET—1 -+ -1
with the transverse components Sﬁ% = S?b constructed to satisfy the Eshelby trace condition. The remaining components

follow from symmetry. This geometric anisotropy enables Mori—Tanaka to capture the strong longitudinal stiffness
characteristic of unidirectional fiber-reinforced composites.

11 _
Sﬁb_

Spherical inclusions for voids
Void growth is represented by a second inclusion family consisting of nearly spherical cavities. For a spherical
inclusion, the Eshelby tensor simplifies and becomes isotropic:

3 4
S = - K i IVOl + — G Idev ,
void 3 Kot + 4Gmat mat 3 mat

where K,;14; and G, are the bulk and shear moduli of the matrix, and "' and 19 are the volumetric and deviatoric
projection tensors. The spherical geometry leads to an isotropic softening contribution, consistent with experimental
observations of porosity-induced degradation.

Multiple inclusion families

The composite in the present application contains two inclusion families:

1) elongated carbon fibers, modeled as prolate spheroids with a highly anisotropic Eshelby tensor Sgp;

2) voids, modeled as spherical inclusions with isotropic Syoid-

The Mori—Tanaka estimate naturally combines these families through the weighted concentration tensors v; B;
and the denominator (vmyacl + Y; viBi)_l. This multi-family formulation enables the model to represent anisotropic
stiffening due to aligned fibers along with isotropic softening due to void growth.
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