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This paper presents a block-structured formulation of Operator Inference as a way to learn

structured reduced-order models for multiphysics systems. The approach specifies the governing

equation structure for each physics component and the structure of the coupling terms. Once

the multiphysics structure is specified, the reduced-order model is learned from snapshot data

following the nonintrusive Operator Inference methodology. In addition to preserving physical

system structure, which in turn permits preservation of system properties such as stability

and second-order structure, the block-structured approach has the advantages of reducing

the overall dimensionality of the learning problem and admitting tailored regularization for

each physics component. The numerical advantages of the block-structured formulation over a

monolithic Operator Inference formulation are demonstrated for aeroelastic analysis, which

couples aerodynamic and structural models. For the benchmark test case of the AGARD 445.6

wing, block-structured Operator Inference provides an average 20% online prediction speedup

over monolithic Operator Inference across subsonic and supersonic flow conditions in both the

stable and fluttering parameter regimes while preserving the accuracy achieved with monolithic

Operator Inference.

I. Introduction
Building reduced-order models (ROMs) for coupled multiphysics systems requires addressing additional challenges

beyond those posed by a single-physics model reduction problem. For example, we often wish to preserve certain

features and properties of a single physics regime’s physical or numerical model, but model reduction methods that

view the system monolithically tend to ignore this type of information. In this paper, we show how block-structured

Operator Inference exploits knowledge of the block structure of coupled multiphysics systems to improve the ROM
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while preserving the advantages of standard, monolithic Operator Inference.

Model reduction aims to represent high-dimensional dynamics with a lower-dimensional system while maintaining a

sufficient level of predictive accuracy. The ROMs can be run at orders of magnitude lower computational cost compared

to the full-order models. Projection-based approaches like the proper orthogonal decomposition (POD) [1–4] use

the trajectory data from a full-order model to derive a reduced basis, then the full-order operators of the governing

equations are projected onto the reduced basis and the dynamics are integrated forward in time [5, 6]. Another technique,

dynamic mode decomposition (DMD) [7, 8], uses the full-order trajectory data to construct a linear reduced operator to

approximate the system, thus enabling analysis of eigenmodes and eigenvalues that often can reasonably characterize

even nonlinear full-order dynamics. However, in the case of multiphysics systems such as aeroelasticity, these types of

model reduction methods are often too general to fully embed the knowledge of the nature of the coupling between

systems into the ROM, and thus gains in accuracy, robustness, and speed can be missed.

Coupled model reduction methods directly incorporate knowledge of the multiphysics setting into the ROM

construction process. For example, it is common practice in structural dynamics to use component mode synthesis via

the Hurty/Craig-Bampton method to break up a system of interacting structural components into separate submodels

that only interact along specific sets of boundary degrees of freedom [9, 10]. A review of model reduction methods

for coupled systems that focuses on linear, time-invariant systems represented via transfer functions is given in [11],

focusing on application of balanced truncation and moment matching methods. Another review of coupled model

reduction methods in [12] separates different approaches based on whether the dynamics are coupled through internal

states or through inputs and outputs. In the nonintrusive setting, the authors in [13] learn boundary response maps

from data to couple models without requiring direct access to the governing equations. Another nonintrusive approach

exploits knowledge of the grid adjacency of a fluid-structure interaction problem to efficiently infer a sparse full-order

model, after which POD is used to project the operators to a reduced subspace to construct a ROM [14]. From the

block-structured perspective, the inherent structure of the governing equations that arises due to coupling is identified in

the full-order model structure and then deliberately preserved during construction of the ROM.

Methods for structure-preserving model reduction and coupled model reduction often overlap due to their many

shared characteristics. For example, it is common for the governing ODEs of a coupled ROM to possess a particular

block structure that can be preserved through the design of a targeted model reduction approach [11, 12, 15–17]. Block

structure preservation can be seen as a type of physics-informed modeling because the block structure directly represents

the form of each single-physics governing equation and also represents the form of the coupling between the physics

regimes. In this paper, we use another physics-informed method, Operator Inference, to replace the intrusive Galerkin

projection step with a nonintrusive linear least squares problem which still targets a ROM form dictated by the full-order

model’s physics, thus combining the benefits of data-driven learning and physics-informed modeling [18, 19]. Another

form of structure preservation for the special case of systems governed by nonlinear Lagrangian dynamics appears in [20],
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where the authors separate the system into linear components learned via Operator Inference and nonlinear components

learned via polynomial-augmented multilayer perceptrons, thus utilizing the power of structure-preserving ROMs to

embed knowledge of the nonlinear Lagrangian setting into the model. In [21], the block structure of the governing

PDEs for a batch chromatography system is preserved in a similar manner to this paper by creating a block-structured

projection matrix with each block corresponding to the basis for a single subsystem. The authors then infer the linear

operators and intrusively impose the known nonlinear terms.

In this paper, we propose a block-structured, coupled multiphysics Operator Inference ROM obtained via a

combination of imposition of known structure and nonintrusive inference of unknown operators. We formulate this

approach in the context of a high-dimensional aeroelastic problem where we do not assume the nonlinear terms to

be known, and therefore we infer the nonlinear operators nonintrusively as well, which also requires the inclusion

of regularization in the inference subproblems. Incorporating knowledge of a system’s block structure into Operator

Inference permits greater flexibility than standard, monolithic Operator Inference and enables coupling of multiple

physics regimes into a single, multiphysics ROM, while preserving the benefits of Operator Inference’s nonintrusive

approach. We leverage the added modularity of the block-structured operators to specify the governing equation structure

of each physics regime separately, which reduces computational expense by reducing the number of operator terms to be

learned.

We demonstrate our approach using the Advisory Group for Aerospace Research and Development (AGARD) 445.6

Wing [22] as a high-dimensional coupled multiphysics example application in the aeroelastic setting. The AGARD wing

has been studied frequently in the model reduction context in the literature. In [23], the author uses Walsh functions to

simultaneously excite multiple impulse responses in a computational fluid dynamics (CFD) model. The eigensystem

realization algorithm (ERA) [24] and nonlinear aeroelastic system identification via Volterra theory [25] are then used

to convert these impulses into an unsteady aerodynamic ROM that can be coupled to a structural model to create a

coupled aeroelastic ROM [26, 27]. This Walsh function technique also is used in the POD methodology in [28], where

the authors build the reduced basis via an incremental approach to avoid handling the full snapshot matrix all at once. In

this work, we take a somewhat different approach and build nonintrusive ROMs for coupled multi-physics problems

like the AGARD 445.6 wing via our block-structured Operator Inference method. Reduced-order modeling has long

been identified as an effective way to reduce the cost of aeroelastic analyses and flutter boundary calculations. Past

seminal work has shown the effectiveness of POD-based ROMs for fluid-structure interaction [29, 30] and aeroelastic

assessments of full aircraft configurations [31–33], vortex lattice models with structural modal decompositions for

flutter prediction [34], Kriging partial least squares models for aerodynamic design [35], and the frequency-domain

Karhunen-Loeve method for fluid dynamics ROMs [36]. In this paper, our target is to achieve similar computational

cost reductions for aeroelastic analysis, but to do so with nonintrusive methodology, meaning that our approach can be

easily applied to legacy and commercial high-fidelity solvers where the user may not have access to the code at the level
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required for intrusive model reduction approaches.

We generate high-dimensional simulation data using NASA’s FUN3D software [37], where the full-order model

consists of a fluid dynamics finite volume model coupled with a structural dynamics finite element modal decomposition

model. FUN3D’s aeroelasticity capability couples the structural and fluid dynamics and generates high-fidelity snapshot

training data for the AGARD wing. The main contributions of this paper are:

(i) A formulation and algorithm for block-structured Operator Inference with regularization: We exploit the

block structure of the governing equations to specify distinct structure and separately tailor the regularization

for each regime of the dynamical system.

(ii) Computational speedups due to block-structuring. Block-structured Operator Inference provides reduced

computational complexity during both inference and prediction. This reduced complexity leads to lower

computational costs that improve the efficiency of Operator Inference ROMs.

(iii) Application of block-structured Operator Inference to multiphysics problems. Block-structured Operator

Inference adapts the Operator Inference method to the multiphysics setting by embedding knowledge of the

coupling between physics regimes into the learning problem.

The remainder of this paper is organized as follows. Section II describes the Operator Inference method, first as

initially presented in [18] and then with the block-structured formulation that is the main contribution of this paper.

Section III presents the AGARD 445.6 wing aeroelastic modeling problem. Section IV compares the performance of

the block-structured and monolithic Operator Inference methods in the context of the AGARD wing. Section V provides

concluding remarks.

II. Block-structured Operator Inference for multiphysics ROMs
This section develops the block-structured Operator Inference method which is the main methodological contribution

of this paper. Sec. II.A establishes the aeroelastic modeling problem as a representative multiphysics system. Sec. II.B

reviews the standard, monolithic Operator Inference method. Finally, Sec. II.C presents the block-structured Operator

Inference approach.

A. Coupled multiphysics system structure

We present the aeroelastic modeling problem as a representative example of a block-structured multiphysics system.

The block-structured Operator Inference method is applicable to any multiphysics system that contains coupling

in an analogous block-structured sense, but the aeroelastic setting will be used throughout the paper for clarity of

notation. Aeroelastic models couple the governing equations of structural dynamics and fluid dynamics together into a

single multiphysics dynamical system. The evolution of the state of this system over time is dependent both on the

single-physics governing equations and on the manner in which the single-physics governing equations are coupled
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together. In this paper, the structural dynamics system, fluid dynamics system, and the form of the coupling between the

two systems are all permitted to be at most polynomially nonlinear. For cases with non-polynomial nonlinear terms, one

could employ lifting transformations to introduce auxiliary variables that transform the system to polynomial form

(see [38, 39]).

1. Structural dynamics

Structural dynamics are often modeled via linear methods, most notably an eigenvalue decomposition of the

governing semi-discrete differential equations (typically derived via a finite element spatial discretization). However, to

keep our initial notation general for other systems and methods, we also allow for a constant term and polynomial (here,

quadratic) nonlinearities in our structural dynamics governing equations. This leads us to write the general semi-discrete

system governing the structural dynamics as

¤qs = cs + Asqs +Hs (qs ⊗ qs) + Fs, (1)

where qs (𝑡) ∈ R𝑛s is the structural state and 𝑛s is the dimension of the structural semi-discrete first-order system of

ODEs. The operators cs ∈ R𝑛s , As ∈ R𝑛s×𝑛s , and Hs ∈ R𝑛s×𝑛2
s are the constant, linear, and quadratic structural dynamics

operators, respectively, Fs (𝑡) ∈ R𝑛s is the external forcing term, and ⊗ denotes the Kronecker product. Note that we

employ the compact version of the Kronecker product in the implementation, to avoid computing redundant terms.

2. Fluid dynamics

We similarly employ a quadratic form for the fluid dynamics semi-discrete governing equations:

¤qf = cf + Afqf +Hf (qf ⊗ qf) + Ff, (2)

where qf (𝑡) ∈ R𝑛f is the fluid state and 𝑛f is the dimension of the fluid dynamics semi-discrete system of ODEs. The

operators cf ∈ R𝑛f , Af ∈ R𝑛f×𝑛f , and Hf ∈ R𝑛f×𝑛2
f are the constant, linear, and quadratic fluid dynamics operators,

respectively, and Ff (𝑡) ∈ R𝑛f is the external forcing term. As shown in [39], a variety of fluid dynamics models can be

written in this quadratic form, particularly with an appropriate choice of fluid state variables. Even for the nonlinear

Navier-Stokes equations, there are many situations in which a spatial discretization that yields primarily quadratic

nonlinearities can be achieved (one such strategy will be employed in the practical application in Sec. III).

3. Aeroelastic dynamics

In keeping with the form established for (1) and (2), we express the coupling via the external forcing terms, Fs (𝑡)

and Ff (𝑡). We can assume various forms for these terms, and thus model linear, bilinear, and quadratic coupling. We
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could also model higher-order polynomial coupling, but for clarity of presentation here we stop at second-order coupling.

Thus we write the explicit form of the coupling-specific forcing terms as

Fs = Esqf + Ls (qs ⊗ qf) +Gs (qf ⊗ qf) (3)

Ff = Efqs + Lf (qs ⊗ qf) +Gf (qs ⊗ qs), (4)

where Es and Ef are the linear coupling operators, Ls and Lf are the bilinear coupling operators, and Gs and Gf are the

quadratic coupling operators. Each of these operators acts on quantities that are computed using the state from the other

physics component, thus providing the coupling.

Substituting the definitions in (3) and (4) into the single-physics governing equations (1) and (2), we can combine the

equations into a single block-structured multiphysics system of ODEs. This yields the full-order system of multiphysics

(aeroelastic) semi-discrete governing equations,


¤qs

¤qf

 =

cs

cf

 +

As Es

Ef Af



qs

qf

 +

Hs Ls Gs

Gf Lf Hf




(qs ⊗ qs)

(qs ⊗ qf)

(qf ⊗ qf)


. (5)

For use in later comparisons to standard Operator Inference, note that (5) can be written compactly in monolithic form as

¤q = c + Aq +H(q ⊗ q), (6)

where q =

[
q⊤s q⊤f

]⊤
∈ R𝑛 is the coupled state vector, 𝑛 = 𝑛s + 𝑛f is the full order state dimension, and c ∈ R𝑛,

A ∈ R𝑛×𝑛, and H ∈ R𝑛×𝑛2 are respectively the constant, linear, and quadratic monolithic operators.

B. Monolithic Operator Inference

Operator Inference is a nonintrusive, physics-informed reduced-order modeling method that takes advantage of

the structure-preserving properties of projection-based model reduction. However, instead of intrusively projecting

the semi-discrete operators to the reduced subspace, Operator Inference formulates and solves a linear least squares

problem to nonintrusively infer the reduced operators from training data consisting of snapshots of the full-order system

state as it is evolved in time [18]. Here we present an overview of the standard (monolithic) Operator Inference method,

applicable to monolithic (single-physics) model-reduction applications (i.e., to systems governed by dynamics of the

form of (6) that ignore any internal block structure).

The snapshot matrix is assembled by concatenating 𝑘 train full-order training snapshot vectors into a matrix

Q = [q1 q2 · · · q𝑘train ] ∈ R𝑛×𝑘train , where each snapshot q𝑖 with 𝑖 = 1, 2, . . . , 𝑘 train corresponds to a single column
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and 𝑘 train refers to the number of training snapshots. To reduce the dimensionality of the problem, we use the proper

orthogonal decomposition (POD) of the full-order snapshot matrix Q to identify a basis which spans the desired reduced

subspace. POD proceeds by computing the thin singular value decomposition as Q = V𝚺W⊤, where V ∈ R𝑛×𝑘train ,

𝚺 ∈ R𝑘train×𝑘train , and W ∈ R𝑘train×𝑘train . We then select the first 𝑟 left singular vectors v 𝑗 with 𝑗 = 1, 2, . . . , 𝑟 which

correspond to the first 𝑟 columns of V, to give the basis matrix V𝑟 = [v1 v2 · · · v𝑟 ] ∈ R𝑛×𝑟 , where 𝑟 is the desired

reduced state dimension.

The full-order state is approximated in the reduced basis as q ≈ V𝑟 q̂, where q̂ ∈ R𝑟 is the reduced state vector. We

now seek a ROM that governs the dynamics of the reduced state q̂(𝑡). Projection-based model reduction theory defines

the form of the ROM to be

¤̂q = ĉ + Âq̂ + Ĥ
(
q̂ ⊗ q̂

)
(7)

where ĉ ∈ R𝑟 , Â ∈ R𝑟×𝑟 , and Ĥ ∈ R𝑟×𝑟2 are the constant, linear, and quadratic monolithic reduced operators. Note that

the ROM (7) has the same structure as the full-order model (6), due to the properties of approximation by projection

(see [18, 19]).

We project the snapshot matrix to the reduced space defined by the POD basis, Q̂ = V⊤𝑟 Q ∈ R𝑟×𝑘train . We then

nonintrusively infer the reduced operators by solving the linear least squares problem:

Ô = arg min
Ô




D̂Ô⊤ − R̂⊤



2

𝐹
(8)

where 𝐹 denotes the Frobenius norm and we define

D̂ =

[
1⊤
𝑘train

Q̂⊤
(
Q̂ ⊗ Q̂

)⊤] data matrix

Ô =

[̂
c Â Ĥ

]
operator matrix

R̂ =

[
¤̂Q
]

right-hand-side matrix

where 1𝑘train ∈ R1×𝑘train is a 𝑘 train-dimensional unity row vector. If the time derivatives from the solver are available,

then we populate the right-hand-side matrix, R̂, directly from the reduced time derivative snapshot matrix provided by

the flow solver, ¤̂Q = V⊤𝑟 ¤Q. However, these values are often not available when working with commercial or restricted

solvers (such as FUN3D, which we use for the numerical example beginning in Sec. III). Thus, our recourse in this work

is to compute ¤̂Q via a sixth-order centered finite difference approximation. Note that we compute the finite differences

in the reduced subspace, not the full space, to avoid the additional computational cost of a second projection operation.

For many real-world Operator Inference applications with high-dimensional full-order models and complex dynamics,

the stability of the inferred ROMs can be a challenge. This is due to the use of sparse and noisy training data, which,

© 2025 Joint copyright of Lockheed Martin Corporation and the University of Texas at Austin, all rights reserved

7



when compounded with ill-conditioned least squares problems, can lead to overfitting of the operators. Therefore,

adding a regularizer R to (8) is typically needed to improve the robustness of the learning step at the expense of the

possible loss of some accuracy [40]. Using a Tikhonov regularization function R(Ô) = 𝛾𝑐


̂c

2

𝐹
+ 𝛾𝐴




Â


2

𝐹
+ 𝛾𝐻




Ĥ


2

𝐹
,

the least squares problem then becomes

Ô = arg min
Ô

(


D̂Ô⊤ − R̂⊤



2

𝐹
+ 𝛾𝑐



̂c

2
𝐹
+ 𝛾𝐴




Â


2

𝐹
+ 𝛾𝐻




Ĥ


2

𝐹

)
, (9)

where 𝛾𝑐, 𝛾𝐴, and 𝛾𝐻 are scalar regularization hyperparameters that we choose to separately weight the penalization of

each operator. In practice, for Operator Inference these regularization hyperparameters are identified by performing a

grid search to identify the combination of regularization levels that leads to ROM operators which most accurately

predict the true training snapshot trajectory [40]. One may also incorporate a bounded growth constraint [40] to further

encourage the stability of the resulting ROMs as described in Appendix A of [41]. This constraint requires that the

deviations of each reduced state do not exceed the training regime deviations by more than a user-determined factor, 𝛼,

which becomes another hyperparameter for the learning problem that can be identified via a similar grid search.

C. Block-structured Operator Inference

Block-structured Operator Inference uses multiple instances of the monolithic Operator Inference approach presented

in Sec. II.B to decompose a block-structured model reduction problem into multiple smaller subproblems. These

subproblems are related to each other via the coupling mechanisms discussed in Sec. II.A. The single-physics operators

corresponding to each physics regime (e.g., structural dynamics and fluid dynamics) are inferred via separate least

squares subproblems. This separation allows for added flexibility in regularizing the operators, nonintrusively imposing

structure, and intrusively imposing any known operators for each physics regime.

To define the decomposition of the system into subproblems, consider the multiphysics governing equations with

block structure given by (5). Separate bases Vs ∈ R𝑟s×𝑛s and Vf ∈ R𝑟f×𝑛f must be chosen for each subproblem (e.g., via

POD), where 𝑟s and 𝑟f are respectively the dimensions of the reduced systems of ODEs for the structural dynamics and

fluid dynamics. These bases are combined in block-diagonal form into a coupled basis

V𝑟 =


Vs

Vf

 (10)

in order to maintain the desired structure-preserving behavior [42]. This form of the coupled basis leads to an analogous

structure-preserving projection property to that discussed in Sec. II.B, which in turn means that the resulting multiphysics
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ROM structure is 
¤̂qs

¤̂qf

 =

ĉs

ĉf

 +

Âs Ês

Êf Âf



q̂s

q̂f

 +

Ĥs L̂s Ĝs

Ĝf L̂f Ĥf




(
q̂s ⊗ q̂s

)
(
q̂s ⊗ q̂f

)
(
q̂f ⊗ q̂f

)

, (11)

which matches the structure of the full-order block-structured governing ODEs in (5). In other words, our block-structured

Operator Inference approach yields a ROM that retains the block structure of the original multiphysics full-order system.

To determine the ROM operators, we observe that the operators for each physics component can be inferred via a

separate least squares process of an analogous form to (9). This is due to the separability of each column of a matrix

least squares problem into an independent vector least squares problem (see [18] for details). Therefore, for the structural

dynamics subproblem, we solve

Ôs = arg min
Ôs




D̂sÔ⊤s − R̂⊤s



2

𝐹
+ R(Ôs), (12)

where we define

D̂s =

[
1⊤
𝑘

Q̂⊤s Q̂⊤f
(
Q̂s ⊗ Q̂s

)⊤ (
Q̂s ⊗ Q̂f

)⊤ (
Q̂f ⊗ Q̂f

)⊤] data matrix

Ôs =

[̂
cs Âs Ês Ĥs L̂s Ĝs

]
operator matrix

R̂s =

[
¤̂Qs

]
right-hand-side matrix

For the fluid dynamics subproblem, we have

Ôf = arg min
Ôf




D̂fÔ⊤f − R̂⊤f



2

𝐹
+ R(Ôf), (13)

where we define

D̂f =

[
1⊤
𝑘

Q̂⊤s Q̂⊤f
(
Q̂s ⊗ Q̂s

)⊤ (
Q̂s ⊗ Q̂f

)⊤ (
Q̂f ⊗ Q̂f

)⊤] data matrix

Ôf =

[̂
cf Êf Âf Ĝf L̂f Ĥf

]
operator matrix

R̂f =

[
¤̂Qf

]
right-hand-side matrix

Note that in this general formulation, D̂s = D̂f, and the structural and fluid Operator Inference problems differ only

in the right-hand side matrices since R̂s ≠ R̂f. However, for specific problems, the multiphysics ROM (11) may not have

all blocks populated, which would lead to D̂s ≠ D̂f. As we will show in Sec. III, introducing problem-specific structure

into the form of the ROM is part of the utility and desirability of the block-structured approach.
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Regularization for each least squares subproblem can be achieved in the same manner as for the monolithic case in

Sec. II.B. The scales of the regularization values may differ for each subproblem. This gives an opportunity to better tune

the regularization strategy, but also provides a potential computational challenge, since the increasing dimensionality of

the regularization parameters leads to increased computational complexity in determining optimal regularization levels.

III. Aeroelastic model of the AGARD 445.6 wing
The AGARD 445.6 wing [22] is a commonly used aeroelastic modeling validation case. Experimental flutter testing

was conducted on the AGARD wing at NASA’s Transonic Dynamics Tunnel [22] and the results of those tests have

become a canonical flutter modeling validation dataset. This section describes the full-order numerical model that will

generate train and test data sets to be used to study the Operator Inference ROMs. Section III.A describes the geometry

and spatial discretizations of the AGARD 445.6 wing, and Sec. III.B presents the full-order aeroelastic modeling

approach as implemented in FUN3D to couple the fluid dynamics and structural dynamics.

A. Geometry and discretization

The AGARD wing is a half-span swept and tapered wing with a root chord of 22 inches, a tip chord of 14.5 inches, a

taper ratio of 0.6576, an aspect ratio of 1.6525, a span of 30 inches, and a quarter-chord sweepback angle of 45 deg. It

has a symmetric NACA65A004 airfoil and is made of laminated mahogany that was deliberately weakened by drilling

holes and filling them with foam, inducing heightened flexibility during wind tunnel testing [22].

The CFD grid used in this paper∗ was designed for a viscous, turbulent finite volume CFD model and has

𝑔 𝑓 = 3, 613, 171 grid points. The structural dynamics grid† uses two-dimensional plate finite elements and has 𝑔𝑠 = 121

grid points.

B. Numerical model

We use NASA’s FUN3D solver as the full-order model. FUN3D is a fully-unstructured Navier-Stokes finite volume

solver for CFD [37]. It has an integrated aeroelasticity capability that couples the high-fidelity nonlinear fluid dynamics

solution to a linear structural dynamics solver based on an eigenvalue modal decomposition [43]. Note that we refer to

this setup as our full-order model, even though the structural dynamics model is already a reduced-order modal model.

This eigenvalue modal decomposition approach, which will be described in detail in Sec. III.B.2, uses the eigenvectors

of the finite element model to span the structural reduced basis Vs from (10) and thus provide us with a structural

dynamics ROM. This is acceptable in the context of aeroelastic modeling because the fluid dynamics solution typically

requires a significant majority of the computational resources and is therefore the component of the solution that is

of most interest in a model reduction context. Here we first present the fluid dynamics model (Sec. III.B.1), then the
∗Provided by Pawel Chwalowski of the NASA Langley Research Center.
†FUN3D v13.4 Training - Session 16: Aeroelastic Simulations: https://fun3d.larc.nasa.gov/session16_2018.pdf

© 2025 Joint copyright of Lockheed Martin Corporation and the University of Texas at Austin, all rights reserved

10

https://fun3d.larc.nasa.gov/session16_2018.pdf


structural dynamics model (Sec. III.B.2), and finally the coupling between the two models (Sec. III.B.3).

1. Fluid dynamics

We use FUN3D to solve the unsteady, compressible, turbulent Navier-Stokes equations for flow over the AGARD

445.6 wing, starting from the form
𝜕𝜌

𝜕𝑡
+ ∇ · 𝜌®𝑢 = 0 (14a)

𝜕𝜌®𝑢
𝜕𝑡
+ ∇ · (𝜌®𝑢 ⊗ ®𝑢 − 𝝈) = 0 (14b)

𝜕𝑒

𝜕𝑡
+ ∇ · (𝑒®𝑢 − 𝑘 thermal∇𝑇 − 𝝈 · ®𝑢) = 0 (14c)

where 𝝈 = −𝑝I+ 𝜇
[
− 2

3 (∇ · ®𝑢)I + ∇®𝑢 + (∇®𝑢)⊤
]

is the diffusive flux tensor, 𝑝 is the pressure, 𝜌 is the density, ®𝑢 = [𝑢 𝑣 𝑤]

are the fluid velocity components in each coordinate direction, 𝑒 is the energy per unit volume, and 𝑘 thermal is the thermal

conductivity. One must also specify suitable initial conditions and boundary conditions.

We assume a thermally and calorically perfect gas with equation of state

𝑇 =
𝑝

𝜌𝑅
(15)

where 𝑇 is the temperature and 𝑅 = 1716.49 ft-lbf/slug-◦R is the specific gas constant for air [44]. The speed of sound

is defined by the relation

𝑎2 = 𝛾specific𝑅𝑇 (16)

where 𝛾specific = 1.4 is the specific heat ratio for air. The specific heat relations are

𝛾specific =
𝑐𝑝

𝑐𝑣
(17)

𝑐𝑝 − 𝑐𝑣 = 𝑅 (18)

𝑅

𝑐𝑝
=

𝛾specific − 1
𝛾specific

(19)

where 𝑐𝑝 and 𝑐𝑣 are the specific heat capacities at constant pressure and constant volume. Finally, we define the

relationship between temperature and viscosity via Sutherland’s law

𝜇 = 𝜇ref
𝑇ref + 𝐶
𝑇 + 𝐶

(
𝑇

𝑇ref

)3/2
(20)

where 𝐶 = 198.6 ◦R for air [37], 𝑇ref = 518.69 ◦R (assuming standard atmosphere at sea level), and 𝜇ref = 3.737𝐸 − 7

slug/ft-s (assuming standard atmosphere at sea level) [45].
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11



To close the RANS equations for turbulent (viscous) flow, we use the one equation Spalart-Allmaras turbulence

model [46]. Adding this turbulence model means that 𝜇 = 𝜇𝑙 + 𝜇𝑡 , where 𝜇𝑙 is the laminar viscosity computed via

Sutherland’s law and 𝜇𝑡 is the turbulent eddy viscosity computed via the solution of the Spalart-Allmaras turbulence

equation. In practice, FUN3D solves the nondimensional form of (14). Thus, instead of assuming one of the dimensional

parameters listed above, we close the nondimensional governing equations by assuming a Prandtl number of 𝑃𝑟 = 0.72

for air, where 𝑃𝑟 =
𝑐𝑝𝜇

𝑘thermal
. See [37] for further details about the nondimensionalization.

FUN3D uses the finite volume method to spatially discretize (14) and outputs the discrete solution in terms of

primitive variables: pressure, p, component fluid velocities, u, v, and w, and density 𝝆. We use the 𝑔 𝑓 -dimensional grid

mentioned above, so with five fluid states at each grid point, the full-order CFD model has 𝑛f = 5𝑔 𝑓 = 18, 065, 855 fluid

degrees of freedom for the Navier-Stokes equations plus another 𝑔 𝑓 = 3, 613, 171 degrees of freedom for the turbulence

model. For the purposes of Operator Inference, we target the form of the PDE governing equations rather than their

discretized RANS form, thus we will neglect the turbulence variable’s degrees of freedom in our ROM formulation. See

Sec. IV.B for more details. The effects of the structural motion of the wing enter through boundary conditions, which in

turn introduce the external forcing term Ff (𝑡) on the right-hand-side of the semi-discrete fluid dynamics governing

equation (2).

2. Structural dynamics

The finite element method is used to spatially discretize the AGARD wing geometry and generate a second order,

linear system of governing equations for the structural dynamics of the form

M¥𝜹 + C ¤𝜹 +K𝜹 = F𝛿 (21)

where 𝜹 is the state vector of displacements, M, C, and K are the mass, damping, and stiffness matrices, respectively,

and F𝛿 is the external input forcing term. To identify a reduced basis for the structural dynamics, we compute an

eigenvalue modal decomposition via the generalized eigenvalue problem

K𝝓𝑖 = 𝜔2M𝝓𝑖 (22)

where 𝝓𝑖 is the eigenvector corresponding to the 𝑖th eigenvalue 𝜔𝑖 . Each eigenvector 𝝓𝑖 corresponds to a global structural

mode shape (reduced degree of freedom), of which the first four are shown in Fig. 1 and are taken from [22] (formatted

for FUN3D in the FUN3D tutorial materials ‡).

Concatenating the eigenvectors (i.e., the basis vectors) produces a basis matrix 𝚽 ∈ R𝑛s×𝑛s , which can then be

truncated to the desired reduced-order dimension 𝑟s by keeping only the first 𝑟s columns. We denote this reduced
‡FUN3D v13.4 Training - Session 16: Aeroelastic Simulations: https://fun3d.larc.nasa.gov/session16_2018.pdf
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(a) Mode 1 (9.6 Hz) (b) Mode 2 (38.2 Hz)

(c) Mode 3 (48.3 Hz) (d) Mode 4 (91.5 Hz)

Fig. 1 Structural mode shapes of the AGARD wing, scaled independently for visualization.

basis matrix Vs ∈ R𝑛s×𝑟s to indicate that it spans the reduced subspace for the structural dynamics. Now the structural

dynamics equation is reduced via Galerkin projection by defining the reduced structural state 𝜼 via the projection

𝜹 = Vs𝜼 and left multiplying by V⊤s to get

V⊤s MVs ¥𝜼 + V⊤s CVs ¤𝜼 + V⊤s KVs𝜼 = V⊤s F𝛿 . (23)

Due to the orthogonality properties of the eigenvectors, we have V⊤s MVs = I, V⊤s CVs = 𝜻 , V⊤s KVs = 𝛀, and

F𝜼 = V⊤s F𝛿 , so we simplify to obtain

¥𝜼 + 𝜻 ¤𝜼 +𝛀𝜼 = F𝜼 (24)

where 𝜻 = diag
(
2𝜔1𝜁1, 2𝜔2𝜁2, . . . , 2𝜔𝑛𝑠 𝜁𝑛𝑠

)
and 𝛀 = diag

(
𝜔2

1, 𝜔
2
2, . . . , 𝜔

2
𝑛𝑠

)
are diagonal matrices. Then we

convert the system of uncoupled scalar second-order equations to a system of vector first order equations by redefining

the reduced structural state as q̂s = [𝜼⊤ ¤𝜼⊤]⊤. This produces a first-order, block-structured system of ODEs as desired,

written as 
¤𝜼

¥𝜼

 =


0 I

−𝛀 −𝜻



𝜼

¤𝜼

 +


0

F𝜼

 (25)

where for this work, we assume zero structural damping for all of the modes, 𝜁𝑖 = 0.0. This system of ODEs can be

written compactly as

¤̂qs = Âsq̂s + F̂s. (26)
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3. Aeroelastic coupling

FUN3D’s aeroelasticity capability couples the modal structural dynamics model and the RANS CFD model to

create an aeroelastic multiphysics simulation [43]. The inputs from the fluid dynamics to the structural dynamics enter

via the generalized aerodynamic forces Fs from a given timestep of the CFD solution. Conversely, the inputs from the

structural dynamics to the fluid dynamics enter via specification of fluid velocities at the fluid-solid interfaces, along

with a linear elasticity mesh deformation approach which modifies the spatial discretization before each new timestep

of the CFD solution. We refer the reader to [37] and [43] for further details regarding the FUN3D and aeroelasticity

implementations.

IV. Block-structured Operator Inference for the AGARD 445.6 wing
Section IV.A summarizes the flow conditions used to generate full-order model training data for the Operator

Inference ROM. Section IV.B describes the preprocessing steps performed to prepare the fluid training data for Operator

Inference, in particular the state variable transformation, shifting, and scaling of the snapshots. Section IV.C studies the

singular value decomposition of the fluid dynamics snapshots and selects a reduced dimension 𝑟 𝑓 for the fluid portion of

the ROM. Section IV.D discusses the particular specializations for the AGARD wing that are enabled by the use of

block-structured Operator Inference and describes the regularization grid searches performed to identify the optimal

regularization levels. Finally, Sec. IV.E analyzes the performance of the block-structured Operator Inference ROM and

is the main result of the paper.

A. Data generation

To generate training data from the AGARD wing aeroelastic model at varying flow conditions, we select Mach

numbers in the setM = {0.901, 0.957, 1.141} and dynamic pressures in the set Q = {50, 70, 90} psf, for a total of nine

flow conditions and thus nine training data sets. The Mach numbers match the canonical experimental test conditions

from [22] and the dynamic pressures provide a uniform grid of values analogous to what might be selected naively

for flutter boundary characterization. We initially included higher dynamic pressures (above 90 psf), but we found

that for some flow conditions FUN3D failed to solve at those higher levels. Thus we have limited ourselves to a range

of dynamic pressures for which we were able to solve for all flow conditions successfully, allowing us to maintain a

uniform grid of training set flow conditions. The training set flow conditions are plotted in Fig. 2 along with some

experimental and computational flutter points to illustrate the expected behavior at various flow conditions.

The FUN3D full-order model is simulated at each flow condition for 1000 total timesteps, corresponding to a

final time of 𝑡 𝑓 = 0.2453 seconds, thus providing the full data set for use across training and testing. Preliminary

testing suggested that this would be a sufficient number of timesteps to provide useful training data and reserve a

significant time period from each response for testing of the learned ROMs. For each flow condition (Mach number and
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dynamic pressure pair), all four structural generalized velocities are perturbed simultaneously by 𝑔𝑣𝑒𝑙𝑖 = 0.1 while the

structural generalized displacements are kept at 𝑔𝑑𝑖𝑠𝑝𝑖 = 0, and then the dynamics are allowed to evolve from that

initial perturbation to assess the aeroelastic response. See Appendix for a detailed description of how the FUN3D input

parameters were computed for each flow condition.

Fig. 2 Flutter boundaries from experiments [22] and modeling [47] in the literature (left) and training set flow
conditions (right) for the AGARD 445.6 wing.

B. Fluid data preprocessing

Operator Inference learns ROMs for dynamics with governing equations that have polynomial form and neglects any

remaining non-polynomial nonlinear behavior. Although the Navier-Stokes equations do not satisfy this requirement in

their primitive state variable form, previous work has shown that transforming the fluid state to specific volume form

induces a quadratic form [39, 48]. We note that this quadratic form applies to the PDE governing equations and not

necessarily their discretized form. In particular, the Spalart-Allmaras turbulence model has fourth-order dynamics,

and so an intrusively-derived projection-based ROM that perfectly mimicked the FUN3D discretization would include

higher order terms. Nonetheless, transforming the snapshots to specific volume variables means that we can target an

Operator Inference ROM with quadratic form. We expect that the error incurred due to model misspecification (i.e.,

ignoring higher order terms) will be less than the approximations introduced by the dimension reduction itself.

FUN3D solves nondimensional governing equations derived from (14) and provides discretized state outputs in

primitive form [p⊤ u⊤ v⊤ w⊤ 𝝆⊤]⊤, so converting to specific volume variables can be accomplished via a simple

postprocessing of the snapshots. This postprocessing replaces the density 𝝆 with the specific volume 𝜻 via the

transformation 𝜻 = 1/𝝆. We emphasize that this variable transformation is applied only to the snapshot data,

and not to FUN3D itself. Thus, as shown in [41], we employ a state vector for Operator Inference of the form

qf = [p⊤ u⊤ v⊤ w⊤ 𝜻⊤]⊤, and we learn a fluid dynamic ROM with quadratic form.

After transforming the fluid state to induce quadratic form, we preprocess the fluid snapshot data via shifting and

scaling to encourage more robust basis identification during POD and inference in the least squares subproblems. We
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shift the states by subtracting the mean (over time) pressure, velocity, or specific volume value from each pressure,

velocity, or specific volume snapshot, respectively. Then we scale the entire fluid snapshot by adjusting each fluid state

variable to have pressure and velocity entries in the range of [-1, 1], and specific volume entries in the range of [0, 1].

The full-order model data is now ready for use in the POD and inference steps of the Operator Inference method. Note

that shifting the fluid snapshots changes the structure of the ROM ODE. The shifting introduces constant operator terms

in addition to the original ROM operators, so the final ROM form consists of constant, linear, and quadratic operators

and thus matches the form of (11).

C. Singular value decomposition of fluid snapshots

Now we use the preprocessed training data to identify an appropriate reduced basis for each ROM via the proper

orthogonal decomposition (POD). We compute the SVD of the training snapshot matrix for each flow condition, where

the fluid training snapshot matrix Qf ∈ R𝑛f×𝑘train has 𝑘 train columns, one for each timestep of training data. Here we study

𝑘 train ∈ {100, 300, 500} to investigate the effects of varying the amount of training data required. This is especially

important for such a high-dimensional problem because generating each additional training snapshot requires significant

computational expense, so we desire that 𝑘 train be as small as possible.

Figure 3 shows the singular value decay for each flow condition and each studied 𝑘 train value. We can see that

for each flow condition, the singular value decay is slower for higher 𝑘 train, indicating that there is more information

contained in the snapshots. The singular values decay at similar rates for the first few indices across all 𝑘 train values,

but then the 𝑘 train = 100 decay rate increases after about five singular values (𝑟f = 5) and the 𝑘 train = 300 decay rate

increases after about 25 singular values (𝑟f = 25). While the figure shows that the snapshot set with 𝑘 train = 500 contains

more information than the set with 𝑘 train = 300, the difference is relatively small. We thus choose to use 𝑘 train = 300 as

the size of our training data set, which provides a good balance between richness of information and magnitude of

training data generation costs and storage.

In contrast to the differences in the decay rates between 𝑘 train levels, we see negligible differences between flow

conditions (changing Mach number and dynamic pressure). This suggests that similarly sized ROM bases should

perform comparably well across the studied space of flow conditions, i.e., we can choose a single 𝑟f size and use it for

all nine ROMs (one ROM per flow condition).

We also plot the cumulative energy captured for each flow condition for 𝑘 train = 300 in Fig. 4 as a function of ROM

basis size 𝑟f. Each subplot calls out the reduced dimension required to capture 99.99% and 99.9995% of the cumulative

energy. We see that to capture 99.99% of the cumulative energy for all nine flow conditions, we require 𝑟f = 8, and to

capture 99.9995% of the cumulative energy for all nine flow conditions, we require 𝑟f = 12; therefore we select these

two 𝑟f levels to generate ROMs for the following ROM performance analyses. These selections will lead to a total

coupled ROM dimension of 𝑟 = 𝑟s + 𝑟f = 8 + 8 = 16 or 𝑟 = 8 + 12 = 20.
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Fig. 3 Singular values for snapshot sets of size 𝑘train = 100, 300 and 500. For each size, a different snapshot set
is analyzed for each of the nine (𝑀∞, 𝑞∞) flow conditions.

Fig. 4 Cumulative energy captured for varying 𝑀∞ and 𝑞∞ where 𝑘train = 300 and thresholds are marked for at
least 99.99% and 99.9995% cumulative energy captured.

We use a single reduced basis across all five fluid state variables, so each POD mode contains information about

the pressure, velocities, and specific volume over the entire spatial domain of the fluid dynamics. In Fig. 5 we plot

the portion of each POD mode that corresponds to the pressure on the surface of the wing for the 𝑀∞ = 0.901 and

𝑞∞ = 50 psf case with 𝑘 train = 300 training snapshots. Mode 1 has negligible surface pressure behavior. This is due to

the chosen shifting and scaling of snapshots before computing the POD modes as described in Sec. IV.B. (Note that,

in this example, with the chosen scaling the first POD mode predominantly represents variation in specific volume.)

Modes 2 and 3 describe localized behavior of the surface pressure near the leading edge and tip of the wing, whereas

Modes 4–12 characterize more global behavior across the wing surface.
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Fig. 5 Centered and scaled nondimensional surface pressure portion of each POD mode for 𝑀∞ = 0.901,
𝑞∞ = 50 psf, and 𝑘train = 300.

D. Specializations enabled by the block structure

Incorporating block structure into Operator Inference provides added flexibility which we exploit to specialize the

learning formulation. We use the fluid dynamics and structural dynamics basis matrices to construct a block-structured

reduced basis matrix of the form in (10). This form has the block-structure-preserving property which permits us to

split the monolithic (coupled) least squares problem in (9) into the single-physics least squares problems in (12) and

(13) and take advantage of the block-structured specializations.

Most importantly, we recognize that the structural dynamics governing equation form in (26) is linear while, after

lifting to specific volume form and considering the Navier-Stokes governing equations in their PDE form, the fluid

dynamics governing equation form is quadratic. The imposition of the linear structural dynamics form can alternatively

be seen as intrusively specifying the quadratic structural dynamics operator to be zero, Ĥs = 0. We also represent the

linear coupling behavior in both the structure-to-fluid and fluid-to-structure directions. Referring back to the derivation

of the block structure from Sec. III.B.3, this means that we can take advantage of the block structure of the coupling

terms to impose that the bilinear and quadratic coupling operators should be zero as well, i.e., L̂s = Ĝs = Ĝf = L̂f = 0.

These specializations lead us to update the desired ROM form that we originally specified in (11) by removing the

five zeroed-out blocks of the quadratic operator and replacing them with zero blocks. We can now write our target ROM

© 2025 Joint copyright of Lockheed Martin Corporation and the University of Texas at Austin, all rights reserved

18



dynamics in the form 
¤̂qs

¤̂qf

 =

ĉs

ĉf

 +

Âs Ês

Êf Âf



q̂s

q̂f

 +

0 0 0

0 0 Ĥf




(
q̂s ⊗ q̂s

)
(
q̂s ⊗ q̂f

)
(
q̂f ⊗ q̂f

)

. (27)

Crucially, this new form leads to many simplifications in the least squares subproblems from (12) and (13). We

simplify the least squares input and output matrices D̂s, R̂s, Ôs, D̂f, R̂f, and Ôf from Sec. II.C by removing the intrusively

specified blocks and shifting any known terms to the right-hand-side matrices. However, the intrusively specified blocks

in this problem are all zeros, so we just remove them from the computations. Then the structural dynamics least squares

problem matrices are

D̂s =

[
1⊤
𝑘

Q̂⊤s Q̂⊤f

]
(28)

Ôs =

[̂
cs Âs Ês

]
(29)

R̂s =

[
¤̂Qs

]
(30)

and the fluid dynamics least squares problem matrices are

D̂f =

[
1⊤
𝑘

Q̂⊤s Q̂⊤f
(
Q̂f ⊗ Q̂f

)⊤] (31)

Ôf =

[̂
cf Êf Âf Ĥf

]
(32)

R̂f =

[
¤̂Qf

]
. (33)

Finally, the separation of the learning step into two least squares subproblems permits us to separately regularize each

block in the operator matrices Ôs and Ôf. In principle, we could choose independent regularization parameters for each

operator ĉs, Âs, Ês, ĉf, Âf, Êf, and Ĥf, analogously to the form of the independent regularization parameters in (9), but

it would be computationally challenging to determine optimal values for the resulting seven regularization parameters.

To mitigate this complexity, in our problem setup we choose to regularize the operators ĉs, Âs and Ês together so that

the structural subproblem’s regularization has the form

Rs (Ôs) = 𝛾linear
s

(

̂cs


2
𝐹
+



Âs




2

𝐹
+



Ês




2

𝐹

)
and we choose to regularize the operators ĉf, Âf and Êf together, so that the fluid subproblem’s regularization has the
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form

Rf (Ôf) = 𝛾linear
f

(

̂cf


2
𝐹
+



Âf




2

𝐹
+



Êf




2

𝐹

)
+ 𝛾quadratic

f




Ĥf




2

𝐹
.

This choice leads to a three-dimensional regularization hyperparameter space, where we need to select the three

regularization parameters 𝛾linear
s , 𝛾linear

f , and 𝛾
quadratic
f . We perform a coarse, logarithmically-spaced grid search followed

by a more targeted, linearly-spaced grid search to identify the optimal regularization values for the three hyperparameters.

During these grid searches, we also incorporate the previously mentioned bounded growth constraint, which we specify

to be 𝛼 = 10 after a linear grid search.

E. Performance of block-structured Operator Inference

This section compares the performance of the block-structured and monolithic Operator Inference ROMs for the

AGARD wing by using the full-order model’s predictions and performance as a reference. Section IV.E.1 investigates

the accuracy of each ROM type, and then Section IV.E.2 investigates the computational complexity and associated

prediction costs of each ROM type.

1. Accuracy

After identifying the appropriate regularization levels for each flow condition, we proceed to analyzing the results of

the block-structured Operator Inference ROM. Our quantities of interest for the AGARD wing are the lift coefficient

𝐶𝐿 for the fluid dynamics and the generalized displacements gdisp𝑖 for the structural dynamics. We choose these

quantities because the lift coefficient represents an integrated effect of the fluid dynamics on the structural dynamics

and the generalized displacements can be used to assess the stability of the coupled dynamics for flutter boundary

characterization [49]. We note that the aerodynamic accuracy of the ROMs could be further assessed by analyzing

generalized aerodynamic forces. Such an analysis could give additional insight into the conditions where ROM

predictions deviate from the corresponding high-fidelity CFD result.

We use the ROMs to predict forward in time to the end of the testing regime (𝑡 𝑓 = 0.2453, i.e., 1000 timesteps) and

compare to the full-order model predictions for each flow condition. For each ROM (learned separately for each of the

nine flow conditions), we perturb the aeroelastic system in the same manner as during the training data generation in

Sec. IV.A by setting all four generalized velocities to a nonzero initial value of 𝑔𝑣𝑒𝑙𝑖 = 0.1 and then investigating the

dynamics that occur due to the initial perturbations. Figs. 6-11 show the improved accuracy of the block-structured

Operator Inference predictions compared to monolithic Operator Inference for the lift coefficient, 𝐶𝐿 , and the first two

generalized displacements, gdisp1 and gdisp2 for 𝑟f = 8, 12. We see that the 𝑀∞ = 0.901, 𝑞∞ = 50, 70 flow conditions

are accurately predicted by both methods, which is not surprising because these are the least complex flow conditions.

The higher 𝑞∞ flow conditions, which approach the flutter boundary, are more clearly improved by the block-structured

method for some quantities, but not for all of them. The supersonic 𝑀∞ = 1.141 flow conditions are not perfectly
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predicted by either method, but are clearly more stable when using the block-structured method.

Fig. 6 Lift coefficient (𝐶𝐿) predictions for monolithic and block-structured Operator Inference with 𝑘train = 300
and 𝑟f = 8.

Fig. 7 First generalized displacement (𝑔𝑑𝑖𝑠𝑝1) predictions for monolithic and block-structured Operator
Inference with 𝑘train = 300 and 𝑟f = 8.
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Fig. 8 Second generalized displacement (𝑔𝑑𝑖𝑠𝑝2) predictions for monolithic and block-structured Operator
Inference with 𝑘train = 300 and 𝑟f = 8.

Fig. 9 Lift coefficient (𝐶𝐿) predictions for monolithic and block-structured Operator Inference with 𝑘train = 300
and 𝑟f = 12.
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Fig. 10 First generalized displacement (𝑔𝑑𝑖𝑠𝑝1) predictions for monolithic and block-structured Operator
Inference with 𝑘train = 300 and 𝑟f = 12.

Fig. 11 Second generalized displacement (𝑔𝑑𝑖𝑠𝑝2) predictions for monolithic and block-structured Operator
Inference with 𝑘train = 300 and 𝑟f = 12.

© 2025 Joint copyright of Lockheed Martin Corporation and the University of Texas at Austin, all rights reserved

23



The accuracy of pressure distribution prediction on the surface of the wing provides more insight into the ROM’s

performance, especially because the surface pressure distribution is the source of the lift coefficient calculation.

Figures 12 and 13 illustrate the surface pressure distribution and absolute pressure error on the surface of the AGARD

wing at three different timesteps corresponding to the end of the training period, 𝑡train = 𝑡 (𝑘 train), and at two and three

times the training period, 2𝑡train and 3𝑡train. The magnitude of these errors is small due to the small perturbations that

we use to excite the dynamics of the system. However, for computations like flutter prediction this is acceptable since

we are primarily interested in the stability of the coupled dynamics. We can see that the largest pressure prediction

differences occur across the location where the main shock discontinuity is beginning to form. Additionally, the largest

errors are along the leading edge of the wing and just upstream and downstream of the shock discontinuity. POD modes

are known to struggle with representing discontinuous changes in the state, so this is not surprising.

We compare these error contours to the 𝐶𝐿 time histories in Figs. 6 and 9. We see that the poor performance of

the monolithic ROM for 𝑟f = 12 in the contour plots is because the monolithic 𝐶𝐿 approximation does not track the

full-order model 𝐶𝐿 for that flow condition. Conversely, we see that both ROMs have small 𝐶𝐿 errors for 𝑟f = 8 (Fig. 6),

and the fact that the block-structured ROM has larger error is a function of the specific timesteps at which we plotted the

contours.

Fig. 12 Pressure and pressure absolute error wing surface contours for 𝑀∞ = 0.957, 𝑞∞ = 70 psf, 𝑘train = 300,
and 𝑟f = 8.

© 2025 Joint copyright of Lockheed Martin Corporation and the University of Texas at Austin, all rights reserved

24



Fig. 13 Pressure and pressure absolute error wing surface contours for 𝑀∞ = 0.957, 𝑞∞ = 70 psf, 𝑘train = 300,
and 𝑟f = 12.

Inspecting Figs. 6 through 11 reveals tradeoffs between accurately predicting the 𝐶𝐿 response and the generalized

displacement responses, along with related tradeoffs in accuracy from using different reduced fluid dimensions

(𝑟f = 8, 12). We can see that 𝐶𝐿 and 𝑔𝑑𝑖𝑠𝑝1 are predicted more accurately for 𝑟f = 8, but 𝑔𝑑𝑖𝑠𝑝2 is predicted more

accurately for 𝑟f = 12. As is often the case in POD-based ROMs, the lower-dimension ROM (𝑟f = 8) does an excellent

job of capturing the response of lower frequency dynamic behavior (i.e., the first generalized displacement), but does

not fully resolve the higher frequency behavior of the second generalized displacement. Increasing the dimension of the

POD basis guarantees that the training snapshot data can be represented with lower error, but it does not guarantee more

accurate ROM predictions, especially for predictions beyond the end of the training period. For example, we see that the

𝑔𝑑𝑖𝑠𝑝1 predictions for 𝑟f = 8 in Fig. 7 are more accurate than the equivalent predictions for 𝑟f = 12 in Fig. 10. This

is likely because the 𝑟f = 12 ROM overfits to the training data when we increase the reduced dimension, which is a

common tradeoff that is seen across data-driven modeling. This hypothesis is supported by the better (more stable)

predictions of the block-structured ROM compared to the monolithic ROM for 𝑟f = 12, recalling that a benefit of the

block-structured approach is the reduced data requirement due to the lower number of operator entries that must be

learned (see Sec. IV.E.2 for further discussion of this distinction).

To check the accuracy of the ROMs at other 𝑟f levels, we use a relative root-mean-square-error (RMSE) metric
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normalized by the range of the full-order model-predicted quantity of interest over the prediction time period. Here our

quantity of interest is the lift coefficient 𝐶𝐿 that was plotted in Figs. 6 and 9 above.

We define the lift coefficient error metric as

𝜀rel (CL) =

√︃
1

𝑘predict

∑𝑘predict
𝑖=1 (𝐶FOM

𝐿,𝑖
− 𝐶ROM

𝐿,𝑖
)2

max(CL
FOM) −min(CL

FOM)
(34)

where CL
FOM ∈ R𝑘predict and CL

ROM ∈ R𝑘predict are the full-order model-predicted and ROM-predicted lift coefficients

over all timesteps in the prediction regime [𝑡train, 𝑡final] = [0.0736, 0.2453] seconds and where 𝑘predict is the number of

timesteps in the prediction regime. Across the flow conditions, 𝐶𝐿 ranges from 0.005391 to 0.026499, thus providing a

physically meaningful normalization value for each flow condition to assess the magnitude of the ROM prediction errors.

Figure 14 shows the error metric 𝜀rel (CL) in (34) for the lift coefficient under varying reduced fluid dimension and

all nine flow conditions. We see that there is not a clear relationship between increasing reduced fluid dimension and

decreasing relative error. Thus we should focus on choosing a reduced fluid dimension such that the ROM is as stable as

possible, especially since Fig. 14 illustrates that there are some choices of 𝑟f that lead to more unstable (inaccurate)

ROMs. Overall, we see that there is not an especially clear pattern of one method outperforming the other, but the

block-structured method tends to match the monolithic Operator Inference performance, with each method having a

few poor-performing data points, while the block-structured method uses a significantly smaller ROM (with a faster

prediction time), as we discuss in Sec. IV.E.2.

Fig. 14 Time-integrated lift coefficient relative prediction error comparing monolithic and block-structured
Operator Inference with 𝑘train = 300.
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2. Computational complexity

A significant benefit of the block-structured Operator Inference method is the reduced computational expense of the

learning and prediction steps. This savings is due to the smaller number of nonzero operator entries that must be learned

in the least squares step and computed during each temporal propagation step. Figure 15 illustrates these savings for a

constant 𝑟𝑠 = 8 and varying 𝑟 𝑓 . We see that for small 𝑟 𝑓 , the percent reduction in the number of entries to learn is large,

but the actual decrease in the number of entries is small. Conversely, for large 𝑟 𝑓 , the percent reduction gets smaller but

the actual decrease in the number of entries grows with the increase in 𝑟 𝑓 . Of course, this relationship is specific to

the block-structure of the aeroelastic problem studied in this paper, and different savings trends would be observed for

dynamics with different mathematical structure.

For small reduced fluid dimension (𝑟f), the difference in computational complexity between the ROMs is mostly due

to the unnecessary inclusion of the quadratic structural operator Ĥs in the monolithic ROM, since the linear, bilinear, and

quadratic coupling operators have relatively few terms. As 𝑟f increases, the complexity of the fluid dynamics operators

and the coupling operators begins to dominate in both ROMs. However, some of these operators are then set to zero

for the block-structured ROM, thus illustrating the reduced complexity of block-structured Operator Inference. This

appears in Fig. 15a as the increasing gap between the two lines, leading to the behavior in Fig. 15b. To summarize, the

complexity difference is due entirely to the imposition of zero blocks in the block-structured ROM, but the magnitude of

the difference is dependent on the reduced fluid dimension, at least for the AGARD example. In other model reduction

applications, intrusively known operator blocks or other block sparsity will also lead to reduced complexity.

(a) Number of terms to learn (b) Percent change in number of terms to learn

Fig. 15 Computational complexity of the aeroelastic AGARD Operator Inference problem for varying reduced
fluid dimension.

To illustrate the practical benefits of having reduced computational complexity, Fig. 16 illustrates the median and

25th to 75th interpercentile range of the online ROM prediction time across the nine flow conditions. For example, we

see that at 𝑟f = 12, the median prediction time decreases from 0.23 seconds using the monolithic ROM to 0.18 seconds

using the block-structured ROM, approximately a 21% decrease. This trend is consistent across all of the studied 𝑟f

values (reduced fluid dimensions). Unsurprisingly, some flow conditions have more complicated dynamics and thus
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require longer computation times for prediction, but the relative cost between the two ROM methods remains similar

across flow conditions, with the block-structured ROM performing 20.6% faster than the monolithic ROM on average

across flow conditions and reduced fluid dimensions for 𝑘 train = 300.

This prediction speedup helps in two notable ways. First, the many-query setting is commonly where ROMs find

their most practical engineering applications. For example, uncertainty quantification via Monte Carlo estimation

typically requires many thousands of evaluations of a model to obtain a single estimate of a statistical quantity of interest.

In such an application, even though the wall-clock time of the gains achieved by block-structured Operator Inference is

small for a single run, the percentage gain of 20% is high, and over an entire Monte Carlo simulation it would translate

into practically useful wall-clock gains. This is why many-query settings are able to amortize the offline cost of building

a ROM by comparing to the online costs of the many predictions required after the ROM is constructed. Second, during

the regularization grid search we must infer a new Operator Inference ROM for each possible set of regularization levels

and then use that new ROM to make predictions in order to identify the optimal regularization levels. That grid search

can be a significant portion of the offline cost of building the ROM, so speedups can enable faster or more thorough grid

searches.

Fig. 16 Prediction times averaged over flow conditions for varying reduced fluid dimension with median (50th

percentile) line and 25th–75th interpercentile shaded region.

3. Prediction outside of training set

We now investigate the accuracy of the monolithic and block-structured Operator Inference ROMs for perturbations

(initial conditions) that are not included in the training set. We test this capability at the 𝑀∞ = 0.901, 𝑞∞ = 70 psf

flow condition by only perturbing the initial generalized velocity 𝑔𝑣𝑒𝑙𝑖 for a single structural mode per test case, rather

than perturbing all four modes simultaneously. We keep the initial generalized displacements 𝑔𝑑𝑖𝑠𝑝𝑖 equal to zero

for all four cases, but now in case 1, for example, we set 𝑔𝑣𝑒𝑙1 = 0.1 while keeping 𝑔𝑣𝑒𝑙2 = 𝑔𝑣𝑒𝑙3 = 𝑔𝑣𝑒𝑙4 = 0.0. We

repeat this process for each of the four structural modes, resulting in four new test cases with a single perturbation per

case. We investigated the ROMs’ accuracy for both 𝑟f = 8 and 𝑟f = 12, but found that both the block-structured and

monolithic Operator Inference ROMs made similarly accurate predictions for 𝑟f = 12, so we focus on the 𝑟f = 8 ROMs
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here to highlight the differences.

Figures 17–19 show the ability of the monolithic and block-structured Operator Inference ROMs to accurately

predict these new cases that are not present in the training dataset. The lift coefficient predictions in Fig. 17 show that

the block-structured ROM is significantly better than the monolithic ROM at replicating the FUN3D-predicted lift

coefficient behavior, especially as the simulations progress further in time. In contrast, the monolithic ROM struggles to

generalize to the new initial conditions and we see that for all four cases the monolithic ROM incorrectly predicts that

the lift coefficient oscillations will unstably increase over time.

Similar trends can be seen in the ROMs’ predictions of the generalized displacements in Figs. 18–19. Both ROMs

are able to accurately predict the response of 𝑔𝑑𝑖𝑠𝑝1 in Fig. 18, but in Fig. 19 the block-structured ROM is able to

correctly predict the response of 𝑔𝑑𝑖𝑠𝑝2 for each of the four cases while the monolithic ROM is much less accurate

or even unstable. This may be due to the improved ability of the block-structured approach to precisely target the

known governing equations and thus the known physics, while the monolithic ROM experiences overfitting without the

additional information embedded through the coupling and block structure.

We also investigated the performance of a linear Operator Inference ROM (i.e., with no quadratic operator for

either physics regime) due to the popularity of linear methods and the small magnitude of the perturbations we have

imposed. We found that while the linear ROM made accurate predictions for the perturbations within the training

set in Sec. IV.E.1, it struggled to make predictions for these new perturbations that were not in the training set. We

have omitted these predictions from the figures for clarity, but this investigation gives us additional confidence that our

quadratic, block-structured ROM is accurately predicting the nonlinear behavior of the coupled system.

V. Conclusion
Data-driven model reduction is often limited by a lack of physically or mathematically informed structure which can

lead to overfitting and unstable dynamics. Therefore, incorporating structure into ROMs is desirable, especially in the

coupled multiphysics context where problem structure plays a key role in determining the dynamical behavior of the

coupled system. This paper develops the block-structured Operator Inference method to embed structure in the ROM

learning problem. Taking advantage of the block structure of a multiphysics system enables separate specification of the

governing equation form for each physics regime and tailored regularization choices during the least squares inference

step. The application of block-structured Operator Inference to the high-dimensional AGARD 445.6 wing aeroelastic

modeling problem demonstrates the ability to learn ROMs that preserve the accuracy of monolithic Operator Inference

for initial conditions in the training set, while in many cases improving upon that accuracy for initial conditions outside

of the training set. The block-structured ROMs are also shown to reduce the computational expense of online prediction

by an average of 20% across flow conditions and reduced dimensions.

While the problem studied in this paper employs linear coupling, the approach admits bilinear and quadratic coupling
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Fig. 17 Lift coefficient predictions for an initial perturbation of 𝑔𝑣𝑒𝑙𝑖 = 0.1, 𝑖 = 1, . . . , 4 with 𝑘train = 300 and
𝑟f = 8.

where dictated by the underlying physical problem. The approach also enables the specification of known operator

blocks intrusively. An extension of the proposed approach could incorporate parametric ROMs that further exploit the

system structure exposed in the block-structured ROM. For example, flutter prediction could be achieved by interpolation

of primarily the fluid dynamics operators on a manifold, with the structural dynamics operators being parametrically

dependent on the flow condition at most in the constant term, rather than interpolating all of the fluid and structural

operators together. Embedding known block structure into nonintrusive ROMs, especially for the high-dimensional

multiphysics setting, provides an important step in the direction of increasing the flexibility and expressiveness of the

data-driven Operator Inference method.

Appendix: FUN3D implementation of flow condition selection inspired by flutter boundary
characterization

Algorithm 1 describes the process for selecting the FUN3D input parameters, listed in Table 1, that are needed to

run an AGARD 445.6 wing simulation at a specific flow condition within the flutter characterization parameter space
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Fig. 18 First generalized displacement predictions for an initial perturbation of 𝑔𝑣𝑒𝑙𝑖 = 0.1, 𝑖 = 1, . . . , 4 with
𝑘train = 300 and 𝑟f = 8.

(𝑀∞, 𝑞∞). These parameters were chosen to be consistent with the selected freestream mach number 𝑀∞ ∈ M and

freestream dynamic pressure 𝑞∞ ∈ Q. We require the mach number 𝑀∞ and dynamic pressure 𝑞∞ for the particular

flow condition of interest and a series of constant parameters described in Tab. 2. Table 3 lists the FUN3D names for

each of the required input parameters, including those computed by Alg. 1, for ease of identification and entry into the

FUN3D input namelist file.
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Fig. 19 Second generalized displacement predictions for an initial perturbation of 𝑔𝑣𝑒𝑙𝑖 = 0.1, 𝑖 = 1, . . . , 4 with
𝑘train = 300 and 𝑟f = 8.
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Algorithm 1 Selection of input parameters for a FUN3D run (originally for flutter characterization)
Input: 𝑀∞, 𝑞∞, 𝐿, 𝐿nondim, 𝑓char, 𝑁 , 𝛾, 𝑅, 𝐶, 𝑇ref, 𝜇0
Output: 𝑢∞, 𝑇 , 𝑅𝑒𝐿 , Δ𝑡nondim

1: 𝜌 ← 𝜌(𝑀∞) ⊲ Fix density at original experimental flutter value in [22]
2: 𝑢∞ ←

√︁
2𝑞∞/𝜌 ⊲ Compute freestream velocity

3: 𝑎 ← 𝑢∞
𝑀∞

⊲ Compute speed of sound
4: 𝑇 ← 𝑎2/𝛾𝑅 ⊲ Compute temperature
5: 𝜇← 𝜇0

𝑇ref+𝐶
𝑇+𝐶

(
𝑇
𝑇ref

3/2)
⊲ Compute viscosity via Sutherland’s Law

6: 𝑅𝑒 ← 𝜌𝑢∞𝐿
𝜇

⊲ Compute Reynolds number
7: 𝑅𝑒𝐿 ← 𝑅𝑒

𝐿nondim
⊲ Compute Reynolds number per nondimensional unit length

8: Δ𝑡 = 1
𝑓char
/𝑁 ⊲ Compute dimensional timestep size

9: Δ𝑡nondim ← 𝑎
𝐿nondim

𝐿
Δ𝑡 ⊲ Compute nondimensional timestep size

Table 1 Parameter values corresponding to each flow condition in the training data generation set. Note that
the time step size is nondimensional.

Mach number Dynamic pressure Freestream Velocity Temperature Reynolds number Time step size
𝑀∞ [-] 𝑞∞ [lb/ft2] 𝑢∞ [ft/s] 𝑇 [◦R] 𝑅𝑒 [-] Δ𝑡 [-]
0.901 50 728.37 271.95 1.164e6 0.19826
0.901 70 861.82 380.72 1.023e6 0.23458
0.901 90 877.21 489.50 9.453e5 0.26599
0.957 50 916.65 381.78 6.856e5 0.23491
0.957 70 1084.60 534.49 6.186e5 0.27794
0.957 90 1229.82 687.21 5.813e5 0.31516
1.141 50 823.66 216.85 1.276e6 0.17704
1.141 70 974.57 303.59 1.102e6 0.20947
1.141 90 1105.06 390.33 1.005e6 0.23752

Table 2 Constants used for computing flutter flow conditions for FUN3D input in Alg. 1

Variable Symbol Value Units Assumptions
Characteristic length 𝐿 1.833 ft AGARD wing root chord

Nondimensional characteristic length 𝐿nondim 1.833 - -
Frequency of interest 𝑓char 20.39 Hz Highest flutter frequency in [22]

Number of timesteps per period 𝑁 200 - -
Specific heat ratio 𝛾 1.4 - Air, ideal gas

Specific gas constant 𝑅 1716.49 ft-lbf/slug-◦R Air, ideal gas
Sutherland’s constant 𝐶 198.6 ◦R Air
Reference temperature 𝑇ref 518.69 ◦R Standard atmosphere, sea level

Reference viscosity 𝜇0 3.737e-7 slug/ft-s Standard atmosphere, sea level
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Table 3 FUN3D input parameter names

Variable FUN3D parameter name
𝑢∞ uinf
𝑞∞ qinf
𝑇 temperature
𝑅𝑒𝐿 reynolds_number
𝑀∞ mach_number

Δ𝑡nondim time_step_nondim
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