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Multifidelity Preconditioning of the Cross-Entropy Method for Rare Event
Simulation and Failure Probability Estimation∗
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Abstract. Accurately estimating rare event probabilities with Monte Carlo can become costly if for each sample
a computationally expensive high-fidelity model evaluation is necessary to approximate the system
response. Variance reduction with importance sampling significantly reduces the number of required
samples if a suitable biasing density is used. This work introduces a multifidelity approach that lever-
ages a hierarchy of low-cost surrogate models to efficiently construct biasing densities for importance
sampling. Our multifidelity approach is based on the cross-entropy method that derives a biasing
density via an optimization problem. We approximate the solution of the optimization problem at
each level of the surrogate-model hierarchy, reusing the densities found on the previous levels to pre-
condition the optimization problem on the subsequent levels. With the preconditioning, an accurate
approximation of the solution of the optimization problem at each level can be obtained from a few
model evaluations only. In particular, at the highest level, only a few evaluations of the compu-
tationally expensive high-fidelity model are necessary. Our numerical results demonstrate that our
multifidelity approach achieves speedups of several orders of magnitude in a thermal and a reacting-
flow example compared to the single-fidelity cross-entropy method that uses a single model alone.
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1. Introduction. Rare event simulation with standard Monte Carlo typically requires
a large number of samples to derive accurate estimates of rare event probabilities, which
can become computationally infeasible if for each sample a computationally expensive high-
fidelity model evaluation is necessary to simulate the system response. Importance sampling
is a variance reduction strategy for Monte Carlo estimation that samples from a problem-
dependent biasing distribution. The biasing distribution is chosen such that fewer samples
are necessary to obtain an acceptable estimate of the rare event probability than with standard
Monte Carlo. The bias introduced by the sampling from the biasing distribution is corrected
by reweighing the samples in the importance sampling estimator [16, 31].
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Traditionally, importance sampling consists of two steps. In the first step, the biasing
distribution is constructed, and in the second step, samples are drawn from the biasing distri-
bution and the estimate is derived [6, 38]. The challenge of rare event probability estimation
with importance sampling is the construction of a suitable biasing distribution that leads to
variance reduction. In principle, the optimal biasing distribution that leads to an estima-
tor with zero variance is known, but evaluating the density of this zero-variance distribution
requires the probability of the rare event, i.e., the quantity that is to be estimated. The
cross-entropy (CE) method [34, 33, 35, 10] provides a practical way to approximate the zero-
variance density. The CE method optimizes for a density that minimizes the Kullback–Leibler
divergence from the zero-variance density in a set of feasible densities. Even though solving for
a biasing density with the CE method typically requires fewer high-fidelity model evaluations
than estimating the rare event probability with a standard Monte Carlo approach, the costs of
the optimization problem in the CE method can still be significant if the high-fidelity model
is expensive to evaluate.

In this paper, we introduce a multifidelity method that leverages a hierarchy of low-cost
surrogate models to reduce the costs of constructing a CE-optimal biasing density. Examples
of surrogate models include projection-based reduced models [32, 2], data-fit interpolation and
regression models [17], machine-learning-based models such as support vector machines [9],
and other simplified models [23]. At each level of the hierarchy, a CE-optimal density is derived
with respect to the surrogate model corresponding to that current level. The optimization is
initialized with the CE-optimal density of the previous level, which leads to preconditioned
optimization problems that can be solved accurately with few model evaluations only. Thus,
at higher levels, where the models are expensive to evaluate, only a few model evaluations are
necessary to obtain an accurate approximation of the solution of the optimization problem,
which can lead to significant runtime savings while obtaining biasing densities that lead to a
similar variance reduction as the biasing densities derived with the single-fidelity CE method
that uses the high-fidelity model alone.

Multifidelity methods have been extensively used to speedup rare event probability esti-
mation [30]. We distinguish here between three categories of multifidelity methods for rare
event simulation. First, there are two-fidelity methods that use a single surrogate model and
combine it with the high-fidelity model. The work [21, 20, 22] introduces a two-fidelity ap-
proach that switches between a single surrogate model and the high-fidelity model depending
on the error of the surrogate model, which can lead to unbiased estimators if the error of the
surrogate model is known. In [8], an error estimator of a reduced-basis model is used to decide
whether to evaluate the reduced or the high-fidelity model. In [12], the zero-variance biasing
density is approximated with a Kriging model. Unbiasedness of the estimator is guaranteed
by using the Kriging model as a proxy in the biasing density only. Similarly, in [26], unbiased
estimators of rare event probabilities are obtained by using a surrogate model to construct
biasing densities and the high-fidelity model to derive the actual estimates.

Second, there are methods that use a multilevel hierarchy of models of a single type to
speedup the estimation. Typically, these methods are developed for high-fidelity models that
stem from partial differential equations (PDEs). The model hierarchy then often corresponds
to different discretizations of the underlying PDE. There are extensions [13, 14, 15] of the
multilevel Monte Carlo method [19, 18] for rare event probability estimation, which are based
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on variance reduction with control variates, instead of importance sampling. The subset
method [1, 42] is another approach that has been extended to exploit a hierarchy of coarse-
grid approximations in [40]. The subset method has also been combined with classification
methods of machine learning such as support vector machines and neural networks in, e.g.,
[5, 25].

Third, multifidelity methods have been proposed that use multiple surrogate models of
any type and combine them with the high-fidelity model. The method introduced in [24, 29]
uses a control variate framework based on multiple surrogate models to accelerate the Monte
Carlo estimation of statistics of the outputs of the high-fidelity model; however, the approach
does not target rare event probability estimation. The multifidelity approach presented in
[27] uses multiple surrogate models for speeding up the construction of biasing densities in
importance sampling and guarantees unbiased estimators of the rare event probabilities by
using the high-fidelity model to derive the estimate; however, the approach proposed in [27]
has not been demonstrated on small probabilities below 10−6. The new multifidelity approach
proposed in this paper also falls in this third category of multifidelity methods because we
aim to exploit a hierarchy of surrogate models of any type. In contrast to [24, 29, 27], our
approach explicitly targets rare event probabilities and we show that we successfully estimate
probabilities as low as ≈ 10−9.

Section 2 of this paper provides preliminaries and the problem setup. Section 3 introduces
our multifidelity preconditioner for the CE method, provides an error analysis, and summarizes
our multifidelity approach in Algorithm 1. Section 4 demonstrates that our multifidelity
approach achieves up to two orders of magnitude speedup compared to the single-fidelity CE
method in a thermal and a reacting-flow example. Section 5 gives concluding remarks.

2. Importance sampling with the cross-entropy method. We first introduce the problem
setup and then discuss importance sampling with the classical CE method that uses a single
model alone.

2.1. Notation and problem setup. Let the value of the function f : D → R denote the
system response to an input z ∈ D with the input domain D ⊂ Rd in d ∈ N dimensions. For
example, if the system of interest is a cantilever beam, then the input could define material
properties and the system response could be the displacement of the tip of the beam. Let
Z : Ω → D be a random variable with sample space Ω and with probability density function
p. We denote a realization of Z as z ∈ D.

Let t ∈ R with t > 0 be a rare event threshold and define the rare event probability as

Pt = Pp[f ≤ t] =

∫
D
It(z)p(z)dz

with the indicator function It : D → {0, 1} defined as

It(z) =

{
1 , f(z) ≤ t ,
0 , f(z) > t .

Note that Pt = Ep[It], where Ep denotes the expected value with respect to p. Let Varp[It] be
the variance of It with respect to p and assume Varp[It] ∈ R such that Varp[It] = Pt(1− Pt).
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Let ρ ∈ (0, 1) and define the ρ-quantile of Z as γ ∈ D, i.e.,

Pp[Z ≤ γ] = ρ .

Note that t is the Pt-quantile of f(Z).
Consider now models f (`) : D → R of the system of interest, where ` ∈ N is a level

parameter. For example, the models f (`) can be derived via finite-element discretization from
the governing equations of the system of interest; in this case, the level parameter ` determines
the mesh width. Note, however, that we will also consider models where the level parameter
refers to more general concepts than mesh widths, e.g., the number of reduced basis vectors
in reduced models and the number of data points in support vector regression machines. The
costs of evaluating a model f (`) are denoted as 0 < w` ∈ R. For each model f (`), we define

the indicator function I
(`)
t : D → {0, 1} as

I
(`)
t (z) =

{
1 , f (`)(z) ≤ t ,
0 , f (`)(z) > t ,

with the rare event threshold t. The rare event probability with respect to a model f (`) is

P
(`)
t = Pp[f (`) ≤ t]. In the following, we choose a maximal level L ∈ N such that the indicator

function I
(L)
t leads to a rare event probability P

(L)
t that is a sufficiently accurate approximation

of the rare event probability Pt of the system of interest for the current application at hand.

Let P̂
(L)
t be an unbiased estimator of the rare event probability P

(L)
t . We assess the quality

of an estimator with respect to its error and costs. We measure the error of an estimator P̂
(L)
t

with the squared coefficient of variation

(1) e(P̂
(L)
t ) =

Varp[P̂
(L)
t ](

Ep[P̂
(L)
t ]

)2 .
The costs c(P̂

(L)
t ) are quantified with the costs of the model evaluations required by the

estimator.

2.2. Standard Monte Carlo estimators. Let z1, . . . ,zm ∈ D be m ∈ N realizations of the
random variable Z and let

(2) P̂MC
t =

1

m

m∑
i=1

I
(L)
t (zi)

be the standard Monte Carlo estimator of P
(L)
t . The squared coefficient of variation e(P̂MC

t )
of P̂MC

t is

e
(
P̂MC
t

)
=

1− P (L)
t

mP
(L)
t

.

To achieve e(P̂
(L)
t ) < ε for a given tolerance 0 < ε ∈ R, the standard Monte Carlo estimator

requires

m >
1− P (L)

t

εP
(L)
t
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evaluations of I
(L)
t , and thus m evaluations of f (L). Since m depends inverse proportion-

ally on the rare event probability P
(L)
t , the number of evaluations m can become large for

small rare event probabilities, which means that standard Monte Carlo estimators become
computationally infeasible if the costs wL of evaluating f (L) are high.

2.3. Importance sampling with the cross-entropy method. Importance sampling esti-
mators draw samples from a problem-dependent biasing distribution with the aim of reducing
the variance compared to standard Monte Carlo estimators. This section discusses the CE
method that iteratively constructs biasing distributions.

2.3.1. Importance sampling. Let supp(p) = {z ∈ D | p(z) > 0} be the support of the
density p. For a biasing density q with supp(p) ⊆ supp(q), the importance sampling estimator

P̂ IS
t of P

(L)
t is

P̂ IS
t =

1

m

m∑
i=1

I
(L)
t (z′i)

p(z′i)

q(z′i)

with m realizations z′1, . . . ,z
′
m of the random variable Zq with the biasing density q. Because

supp(p) ⊆ supp(q), and if the variance of the importance sampling estimator

Varq

[
P̂ IS
t

]
=

1

m
Varq

[
I
(L)
t

p

q

]
is finite, then the importance sampling estimator P̂ IS

t is an unbiased estimator of P
(L)
t . The

biasing density q∗ that minimizes the variance Varq[P̂
IS
t ] is

q∗(z) =
I
(L)
t (z)p(z)

P
(L)
t

,

which leads to an importance sampling estimator with variance 0. The density q∗, however,

depends on P
(L)
t , which is the quantity we want to estimate.

2.3.2. CE-optimal biasing density. The CE method [34, 33, 35, 10] provides a practical
way of approximating the zero-variance density q∗. Consider a set of parametrized densities
Q = {qv |v ∈ P}, where v ∈ P is a parameter in the set P. For example, Q could be the
set of normal distributions with the parameter v corresponding to the mean and covariance
matrix. To ease the presentation, we assume in the following without loss of generality that
the nominal density p of the random variable Z is in the set Q. The CE method optimizes for a
parameter v∗ ∈ P such that the corresponding density qv∗ ∈ Qminimizes the Kullback–Leibler
divergence (also called the cross entropy) from the zero-variance density q∗. Transformations
show that a solution of the problem

(3) v∗ = arg max
v∈P

Ep[I
(L)
t log(qv)]

is a parameter v∗ that corresponds to a CE-optimal density qv∗ ; see, e.g., [10]. Solving the
stochastic counterpart of (3)

(4) max
v̂∈Q

1

m

m∑
i=1

I
(L)
t (zi) log(qv̂(zi))
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with realizations z1, . . . ,zm of Z typically fails because the stochastic counterpart (4) is af-

fected by the rareness of I
(L)
t (Z), just as the standard Monte Carlo estimator (2).

In [34, 33, 35], the CE method is proposed. The CE method iteratively derives an estimate
v̂∗ of the solution of the optimization problem (3). Our description of the CE method follows
[10]. Consider the first iteration k = 1. In the first iteration, the CE method is initialized
with the nominal random variable Z and the nominal density p ∈ Q. Define the rare event
threshold for the first iteration t1 ∈ R to be the ρ-quantile of the distribution of f (L)(Z),
where ρ ∈ (0, 1) is a parameter that is typically in the range [10−2, 10−1]. Note that typically
t1 > t. Then, a solution v̂1 ∈ Q of the optimization problem

(5) max
v̂∈Q

1

m

m∑
i=1

I
(L)
t1

(zi) log(qv̂(zi)) , z1, . . . ,zm ∼ Z ,

is obtained, where z1, . . . ,zm ∼ Z denotes that z1, . . . ,zm are realizations of Z. The optimiza-

tion problem (5) uses the indicator function I
(L)
t1

with threshold t1 instead of t, and therefore
(5) avoids the rare event induced by the original threshold t. Note that the gradient of log(qv̂)
with respect to the parameter v̂ is known analytically for certain sets of distributions Q; see
section 3.5. In the second iteration k = 2, the threshold t2 is selected with respect to the
distribution of f (L)(Z1), where Z1 is the random variable with density qv̂1 derived in the first
iteration. To guarantee termination of the CE method, the threshold t2 is set to the minimum
of the ρ-quantile of f (L)(Z1) and t1 − δ, where 0 < δ ∈ R is a small constant [11, 10]. Then,
the parameter v̂2 is derived from the optimization problem

max
v̂∈Q

1

m

m∑
i=1

I
(L)
t2

(zi)
p(zi)

qv̂1(zi)
log(qv̂(zi)) , z1, . . . ,zm ∼ Z1 ,

which is formulated with respect to the indicator function I
(L)
t2

that depends on the threshold
t2. This process is continued until step K ∈ N, where tK ≤ t, and where an estimate v̂∗ of
the CE-optimal parameter v∗ is obtained.

The CE method depends on two parameters: the quantile parameter ρ that determines the
ρ-quantile for selecting the thresholds t1, t2, t3, . . . , tK , and the minimal-step-size parameter δ
that defines the minimal reduction of the threshold in each iteration. With the parameter δ,
the CE method terminates after at most

(6) K =
t1 − t
δ

iterations with an estimate v̂∗ of v∗. Thus, K is an upper bound on the number of CE
iterations. Note that we sometimes use K but implicitly mean dKe to get an integer number.
Details on the CE method, including a convergence analysis, are given in [10, 11]. A cross-
entropy method that optimizes for nonparametric densities, i.e., where it is unnecessary to
specify a family Q of parametrized distributions, is introduced in [36] and further extended
in [3, 4].

In each iteration k = 1, . . . ,K of the CE method, the model f (L) is evaluated at m
realizations. Therefore, a bound on the costs of deriving an importance-sampling estimate
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P̂ IS
t of P

(L)
t with the CE method from m samples is

c
(
P̂ IS
t

)
≤ KmwL .

The squared coefficient of variation of the importance sampling estimator P̂ IS
t depends on the

variance reduction achieved by the biasing density

(7) e
(
P̂ IS
t

)
=

Varv̂∗

[
I
(L)
t

p
qv̂∗

]
(
Ev̂∗

[
P̂ IS
t

])2
m
.

Note that we abbreviate Eqv̂∗ and Varqv̂∗ with Ev̂∗ and Varv̂∗ , respectively, in (7) and in the
following.

3. A multifidelity preconditioner for the cross-entropy method. We propose a multi-
fidelity-preconditioned CE (MFCE) method that exploits a hierarchy of models f (1), . . . , f (L)

to reduce the runtime of constructing a biasing density compared to the classical, single-fidelity
CE method that uses f (L) only. Section 3.1 introduces our MFCE approach. Sections 3.2 and
3.3 formalize our MFCE method and present an analysis of the savings obtained with our
MFCE method compared to the classical, single-fidelity CE method in terms of the bounds
on the number of CE iterations. Section 3.4 summarizes the MFCE method in Algorithm 1,
and section 3.5 provides practical considerations.

3.1. The MFCE method. Let p be the nominal density and let q ∈ Q be a density in Q.
Consider the classical, single-fidelity CE method that uses model f (L) alone, as discussed in
section 2.3.2. Let the CE method be initialized with density p and let tp be the ρ-quantile of
f (L)(Z). Then, the bound Kp = (tp − t)/δ on the number of CE iterations is obtained from
(6). Similarly, the bound on the number of CE iterations is Kq = (tq − t)/δ if the CE method
is initialized with q, where tq is the ρ-quantile of f (L)(Zq) and where Zq is a random variable
with density q. This shows that the bound on the number of iterations of the CE method
depends on the density with which the CE method is initialized. If tq ≤ tp, then the bound
on the number of iterations of the CE method initialized with q is lower or equal than the
bound on the number of iterations of the CE method initialized with p.

We propose to exploit that the bound on the number of CE iterations can be reduced by
a suitable choice of the density with which the CE method is initialized. Our MFCE method
iterates through the levels ` = 1, . . . , L. At level ` = 1, our MFCE method constructs a

biasing density q
v̂
(1)
∗

with parameter v̂
(1)
∗ ∈ P with the classical CE method, initialized with

the nominal density p and using model f (1). At level ` = 2, our MFCE method uses the CE
method to derive a density q

v̂
(2)
∗

with model f (2); however, the CE method on level ` = 2

is initialized with the density q
v̂
(1)
∗

of the previous level, instead of the nominal density p as

in the classical CE method. This hierarchical process is continued until level ` = L, where
density q

v̂
(L−1)
∗

and model f (L) are used to derive density q
v̂
(L)
∗

.

3.2. Effect of the MFCE preconditioning. Consider now our MFCE method on level `,

where we have obtained an estimate v̂
(`)
∗ and the corresponding biasing density q

v̂
(`)
∗

. Using
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q
v̂
(`)
∗

on level `+ 1 to obtain an estimate of the solution of the stochastic counterpart of

max
v∈Q

E
v̂
(`)
∗

[
I
(`+1)
t

p

q
v̂
(`)
∗

log(qv)

]

means that in the first CE iteration on level ` + 1 the threshold parameter t
(`+1)
1 is set to

the ρ-quantile of f (`+1)(Z`), where Z` is a random variable with density q
v̂
(`)
∗

. In contrast,

the classical CE method uses the ρ-quantile of f (`+1)(Z) instead, where Z corresponds to

the nominal density. If the ρ-quantile t
(`+1)
1 of f (`+1)(Z`) is smaller than the ρ-quantile of

f (`+1)(Z), then the bound on the iterations of the CE method on level ` + 1 is smaller if
the CE method is initialized with q

v̂
(`)
∗

than if the CE method is initialized with the nominal

density p. The following proposition formalizes this notion.

Proposition 1. Let ` ∈ N and let q
v̂
(`)
∗
∈ Q be the biasing density obtained with the CE

method on level ` of our MFCE approach. Let further t
(`+1)
1 be the ρ-quantile of f (`+1)(Z`)

with respect to the random variable Z` with density q
v̂
(`)
∗

. If

(8) P
v̂
(`)
∗

[
f (`+1) ≤ t(`+1)

1

]
≥ Pp

[
f (`+1) ≤ t(`+1)

1

]
,

then the bound on the number of iterations of the CE method initialized with q
v̂
(`)
∗

on level

` + 1 of our MFCE approach is less than or equal to the bound of the classical CE method
initialized with the nominal density p.

Proof. Let tp be the ρ-quantile of f (`+1)(Z), and then we obtain with the monotonicity

of the cumulative distribution function of f (`+1)(Z) and (8) that tp ≥ t(`+1)
1 . The proposition

follows with (6).

3.3. Error analysis of multifidelity approach. Proposition 1 states under which condition
the bound on the number of iterations of our MFCE approach is lower than the bound on the
number of iterations of the classical CE method. In this section, we analyze which properties
of the models f (1), . . . , f (L) are required such that the condition (8) of Proposition 1 is met.
The following analysis is based on the framework introduced in [13, 14]. We first make similar
assumptions on the models as in [13, 14].

Assumption 1. Let 0 < α < 1 and let t be a threshold parameter. The models f (`) satisfy∣∣∣f (`)(z)− f (`+1)(z)
∣∣∣ ≤ α` or

∣∣∣f (`)(z)− f (`+1)(z)
∣∣∣ ≤ |f (`)(z)− t| , z ∈ D ,

for ` = 1, . . . , L− 1.

Assumption 2. Consider a density q ∈ Q and the corresponding random variable Zq.

Let further F
(`)
q be the cumulative distribution function of f (`)(Zq) for ` = 1, . . . , L. The

cumulative distribution function F
(`)
q is Lipschitz continuous with Lipschitz constant C

(`)
q .

Furthermore, there exists a constant C ∈ R that bounds C
(`)
q ≤ C for all ` = 1, . . . , L and

q ∈ Q. We therefore have
|F (`)
q (t)− F (`)

q (t′)| ≤ C|t− t′| ,
where t, t′ ∈ R.
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Assumption 1 is an assumption on the accuracy of the models f (1), . . . , f (L). In many
settings in numerical analysis, accuracy assumptions of the form |f (`)(z) − f (`+1)(z)| ≤ α`

need to hold for all z ∈ D. Such a uniform assumption over D is too restrictive for our problem
setup. We can tolerate large model errors at inputs z ∈ D that lead to model outputs far away
from our threshold t and need a high accuracy only at inputs that lead to model outputs that
are close to t. Assumption 1 allows a large deviation of f (`+1) from f (`) in regions of D for
which f (`) is far from t; see the right inequality in Assumption 1. The error |f (`)(z)−f (`+1)(z)|
has to be low only in regions of D that lead to model outputs near t. We refer to [13, 14],
where Assumption 1 is discussed in detail and further motivated. In particular, the work
[13, 14] presents a selective refinement algorithm to establish Assumption 1, which can be
applied in our setting as well.

Consider now Assumption 2 and note that F `q (t′) − F
(`)
q (t) = P[t ≤ f (`)(Zq) ≤ t′] for

t ≤ t′. With the monotonicity of the cumulative distribution function, we obtain that the
probability P[t ≤ f (`)(Zq) ≤ t′] decreases with |t − t′|. Assumption 2 relates the decrease
of P[t ≤ f (`)(Zq) ≤ t′] to the decrease in |t − t′|. To gain intuition for the constant C in
Assumption 2, assume the cumulative distribution functions in Assumption 2 are absolutely

continuous and let g
(`)
q be the density of the random variable f (`)(Zq). If there exists a bound

ḡ(`) ∈ R with g
(`)
q (ξ) ≤ ḡ(`) for all ξ ∈ R and all q ∈ Q, then we obtain

|F `q (t)− F (`)
q (t′)| = P[t ≤ f (`)(Zq) ≤ t′] =

∫ t′

t
g(`)q (ξ)dξ ≤ ḡ`|t− t′|

with t ≤ t′. Thus, in this case, Assumption 2 is satisfied by setting the constant C to the
maximum of the bounds ḡ(1), . . . , ḡ(L). The mean value theorem shows that there exists
t̄ ∈ [t, t′] such that

F
(`)
q (t′)− F (`)

q (t)

t′ − t
= g(`)q (t̄) ,

which gives further intuition for the constant ḡ(`). Assumption 2 is used in [14] in a similar
context.

Under Assumptions 1 and 2 we obtain the following proposition.

Proposition 2. Let ` ∈ {1, . . . , L − 1} and let v̂
(`)
∗ be the parameter of the biasing density

estimated on level `. Let further t
(`+1)
1 be the ρ-quantile with P

v̂
(`)
∗

[f (`+1) ≤ t(`+1)
1 ] = ρ and let

P
v̂
(`)
∗

[f (`) ≤ t(`+1)
1 ] ≥ Pp[f (`) ≤ t(`+1)

1 ], and then

(9) P
v̂
(`)
∗

[
f (`+1) ≤ t(`+1)

1

]
≥ Pp

[
f (`+1) ≤ t(`+1)

1

]
− 8Cα` ,

where α and C are the constants of Assumptions 1–2.

Before we prove Proposition 2, we first show Lemmas 3 and 4.

Lemma 3. Define γ = t
(`+1)
1 and the set B = {z ∈ D : |f (`)(z) − γ| ≤ α`}. With

Assumption 1 it follows that I
(`)
γ (z) = I

(`+1)
γ (z) for z ∈ D \ B.
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Proof. This proof follows similar arguments as the proof of Lemma 3.3 in [14]. We show

that f (`)(z) ≤ γ ⇐⇒ f (`+1)(z) ≤ γ holds for z ∈ D \ B, which is equivalent to I
(`)
γ (z) =

I
(`+1)
γ (z) for z ∈ D \ B. Consider first f (`)(z) ≤ γ ⇒ f (`+1)(z) ≤ γ. We obtain

(10) 0 ≤ γ − f (`)(z) ≤ γ − f (`+1)(z) +
∣∣∣f (`+1)(z)− f (`)(z)

∣∣∣ ≤ γ − f (`+1)(z) + |f (`)(z)− γ| ,

because for all z ∈ D\B we have |f (`)(z)−γ| > α` by definition of B and therefore |f (`+1)(z)−
f (`)(z)| ≤ |f (`)(z)− γ| because of Assumption 1. Since 0 ≤ γ− f (`)(z), we have γ− f (`)(z) =
|γ − f (`)(z)|, and therefore it follows from (10) that

(11) |γ − f (`)(z)| ≤ γ − f (`+1)(z) + |f (`)(z)− γ| .

Subtracting |γ − f (`)(z)| on both sides of (11) leads to

0 ≤ γ − f (`+1)(z) ,

which shows f (`)(z) ≤ γ ⇒ f (`+1)(z) ≤ γ. For f (`+1)(z) ≤ γ ⇒ f (`)(z) ≤ γ, we show
f (`)(z) ≥ γ ⇒ f (`+1)(z) ≥ γ with similar arguments. We obtain

(12) 0 ≤ f (`)(z)− γ ≤
∣∣∣f (`)(z)− f (`+1)(z)

∣∣∣+ f (`+1)(z)− γ ≤ |f (`)(z)− γ|+ f (`+1)(z)− γ .

Since f (`)(z)− γ ≥ 0, we have f (`)(z)− γ = |f (`)(z)− γ|. Subtracting |f (`)(z)− γ| from the
inequality in (12) shows 0 ≤ f (`+1)(z)− γ.

Lemma 4. With Assumptions 1–2, we obtain

(13) P
v̂
(`)
∗

[
f (`) ≤ γ

]
≤ P

v̂
(`)
∗

[
f (`+1) ≤ γ

]
+ 4Cα` ,

where γ = t
(`+1)
1 as in Lemma 3.

Proof. Let B be the set defined in Lemma 3. For z ∈ B, we obtain with Assumption 1
that |f (`+1)(z)− f (`)(z)| ≤ α` and |f (`+1)(z)− γ| ≤ 2α`. Consider now P

v̂
(`)
∗

[f (`) ≤ γ], which

we write as

P
v̂
(`)
∗

[
f (`) ≤ γ

]
=

∫
B
I(`)γ (z)q

v̂
(`)
∗

(z)dz +

∫
D\B

I(`)γ (z)q
v̂
(`)
∗

(z)dz

=

∫
B
I(`)γ (z)q

v̂
(`)
∗

(z)dz +

∫
D\B

I(`+1)
γ (z)q

v̂
(`)
∗

(z)dz(14)

≤
∫
B
I(`)γ (z)q

v̂
(`)
∗

(z)dz + P
v̂
(`)
∗

[
f (`+1) ≤ γ

]
,(15)

where we obtain equality in (14) because I
(`)
γ (z) = I

(`+1)
γ (z) for z ∈ D \ B (see Lemma 3)

and ≤ in (15) because I
(`+1)
γ is nonnegative. Consider now the first term in (15), for which
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we obtain ∫
B
I(`)γ (z)q

v̂
(`)
∗

(z)dz ≤
∫
B
q
v̂
(`)
∗

(z)dz

≤ P
v̂
(`)
∗

[
|f (`+1) − γ| ≤ 2α`

]
= F

(`+1)

v̂
(`)
∗

(
γ − 2α`

)
− F (`+1)

v̂
(`)
∗

(
γ + 2α`

)
≤ 4Cα` ,(16)

where we used Assumption 2 in (16). Combining the bound in (16) with (15) leads to (13).

We now state the proof of Proposition 2.

Proof of Proposition 2. Let γ and B be defined as in Lemma 3. Consider Pp[f (`+1) ≤ γ],
which we write as

Pp
[
f (`+1) ≤ γ

]
=

∫
B
I(`+1)
γ (z)p(z)dz +

∫
D\B

I(`+1)
γ (z)p(z)dz

=

∫
B
I(`+1)
γ (z)p(z)dz +

∫
D\B

I(`)γ (z)p(z)dz(17)

≤
∫
B
I(`+1)
γ (z)p(z)dz + Pp[f (`) ≤ γ]

≤
∫
B
I(`+1)
γ (z)p(z)dz + P

v̂
(`)
∗

[f (`) ≤ γ](18)

≤
∫
B
I(`+1)
γ (z)p(z)dz + 4Cα` + P

v̂
(`)
∗

[
f (`+1) ≤ γ

]
,(19)

where we obtain equality in (17) because of Lemma 3, and ≤ in (18) because Pp[f (`) ≤ γ] ≤
P
v̂
(`)
∗

[f (`) ≤ γ] as assumed in the statement of Proposition 2. The inequality ≤ in (19) is

obtained because of Lemma 4. Consider now the first term in (19), for which we obtain∫
B
I(`+1)
γ (z)p(z)dz ≤

∫
B
p(z)dz

≤ Pp
[
|f (`+1) − γ| ≤ 2α`

]
(20)

= F (`+1)
p

(
γ − 2α`

)
− F (`+1)

p

(
γ + 2α`

)
≤ 4Cα` ,(21)

where we used |f (`+1)−γ| ≤ 2α` for z ∈ B in (20) as in the proof of Lemma 4 and Assumption 2
in (21). Combining the bound in (21) with (19) leads to (9).

Proposition 2 shows that with Assumptions 1–2 we obtain condition (8) of Proposition 1
up to the factor 8Cα`. Note that the factor 8Cα` decays with the level `, because we have

|α| < 1. With the parameter v̂
(L)
∗ derived at level L, we define our MFCE estimator as

P̂MFCE
t =

1

m

m∑
i=1

I
(L)
t (zi)

p(zi)

q
v̂
(L)
∗

(zi)
,
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where z1, . . . ,zm are realizations of the random variable with density q
v̂
(L)
∗

. The MFCE

estimator is unbiased with respect to the rare event probability P
(L)
t if the biasing density

defined by the parameter v̂
(L)
∗ has a support that is a superset of the support of the nominal

density p and the variance of the MFCE estimator is finite. The squared coefficient of variation
of the MFCE estimator is

e
(
P̂MFCE
t

)
=

Var
v̂
(L)
∗

[
I
(L)
t

p
q
v̂
(L)
∗

]
(
E
[
P̂MFCE
t

])2
m

and depends on the parameter v̂
(L)
∗ .

3.4. Computational procedure. Algorithm 1 summarizes our MFCE method. Inputs
are the models f (1), . . . , f (L), the threshold t, the nominal density p, the number of samples
m ∈ N, the quantile parameter ρ, and the minimal step size δ. Note that the parameters ρ
and δ are the same parameters as in the classical, single-fidelity CE method; see section 2.3.2.
The for loop in line 3 iterates through the levels ` = 1, . . . , L. At each level `, the density

with parameter v̂
(`)
∗ with respect to model f (`) is derived. At iteration k = 0, 1, 2, . . . of the

while loop in line 5, realizations z1, . . . ,zm are drawn from the random variable with the
density q

v̂
(`)
k

of the current iteration, the model f (`) is evaluated at the realizations, and the

ρ-quantile is estimated from the model outputs. In line 9, the threshold t
(`)
0 is set to the

ρ-quantile estimate γ̂
(`)
k + δ in the first iteration of the loop. The threshold t

(`)
k+1 is selected in

line 11, where the max{} operation guarantees that the threshold t
(`)
k+1 is greater or equal to

t and the min{} operation guarantees that the threshold parameter is reduced by at least δ
in each iteration of the while loop, except in the first and the last iteration. In line 12, the

parameter v̂
(`)
k+1 is estimated. Line 13 exits the while loop if t

(`)
k+1 is equal to the threshold

t. In line 17, the estimate v̂
(`)
k and the model outputs G(`)k of the last iteration of the while

loop are stored, and the for loop starts a new iteration for the next level `+ 1. After the for

loop iterated through all levels ` = 1, . . . , L, the MFCE estimate P̂MFCE
t is returned using the

density p
v̂
(L)
∗

and the model outputs in G(L)∗ .

Typically, the computationally most expensive step of Algorithm 1 is the computation
of the model outputs on line 7, which scales linearly with the number of realizations m.
Solving the optimization problem (22) on line 12 typically incurs small costs if the gradients
of the objective can be computed analytically. If the gradients of the objective have to be
approximated numerically, then solving the optimization on line 12 can become expensive.

We use in Algorithm 1 the same number of realizations m for all models in the model
hierarchy, i.e., in each iteration of the for loop in line 3 of Algorithm 1 the same number of
realizations m are used. An adaptive selection of m might help to further reduce the costs
of our MFCE approach. There are several options for selecting the number of realizations
m adaptively. For example, the number of realizations within the ρ-quantile in line 8 of
Algorithm 1 can be used to guide the selection of m. If only a few realizations are within the
ρ-quantile, then the estimation of the parameters in (22) can become inaccurate. Increasing
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Algorithm 1 Cross-entropy method with multifidelity preconditioning.

1: procedure MFCE(f (1), . . . , f (L), t, p, m, ρ, δ)

2: Initialize v̂
(0)
∗ ∈ P such that q

v̂
(0)
∗

= p; redefine Q = Q∪ {p} if necessary

3: for ` = 1, . . . , L do

4: Initialize v̂
(`)
0 = v̂

(`−1)
∗ and set k = 0

5: while 1 do
6: Draw realizations z1, . . . ,zm from random variable with density q

v̂
(`)
k

7: Compute model outputs G(`)k = {f (`)(z1), . . . , f (`)(zm)}
8: Estimate ρ-quantile γ̂

(`)
k from G(`)k

9: if k == 0 then t
(`)
0 = γ̂

(`)
k + δ

10: end if
11: Set t

(`)
k+1 = max{t,min{t(`)k − δ, γ̂

(`)
k }}

12: Estimate parameter v̂
(`)
k+1 ∈ P by solving

(22) max
v̂∈P

1

m

m∑
i=1

I
(`)

t
(`)
k+1

(zi)
p(zi)

q
v̂
(`)
k

(zi)
log (qv̂(zi))

13: if t
(`)
k+1 == t then break

14: end if
15: Set k = k + 1
16: end while
17: Set v̂

(`)
∗ = v̂

(`)
k and G(`)∗ = G(`)k

18: end for
19: Return estimate P̂MFCE

t with G(L)∗ = {f (L)(z1), . . . , f (L)(zm)} and v̂
(L)
∗ as

P̂MFCE
t =

1

m

m∑
i=1

I
(L)
t (zi)

p(zi)

q
v̂
(L)
∗

(zi)

20: end procedure

the number of realizations m in such a situation can help to improve the estimation of the
parameters and so lead to a more suitable biasing density. If many samples are within the
ρ-quantile, then reducing m is unlikely to have a significant effect on the accuracy of the
estimated parameter in (22) while the reduction of m saves costs. We also refer to [26], where
similar strategies are discussed in the context of importance sampling.

3.5. Practical considerations. The gradient of the objective of the stochastic counterpart
(22) can be derived analytically in many situations. In particular, if Q corresponds to distri-
butions that belong to the natural exponential family, the gradient can be derived analytically
[10, 37]. In the following, we will use Gaussian, log-normal, and Gamma distributions, for
which we derive the gradients here.
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Let the parameter v ∈ P describe the mean µ ∈ Rd and the covariance matrix Σ ∈ Rd×d
of a d-dimensional Gaussian distribution. The corresponding density is

qv(z) =
1√
|2πΣ|

exp

(
−1

2
(z − µ)T Σ−1 (z − µ)

)
,

where |2πΣ| denotes the determinant of the matrix 2πΣ. We obtain the gradient of log(qv(z))
with respect to µ as

∇µ log(qv(z)) = Σ−1 (z − µ) ,

and the gradient with respect to Σ as

∇Σ log(qv(z)) = −1

2

(
Σ−1 −Σ−1 (z − µ) (z − µ)T Σ−1

)
.

We use the gradients of log(qv(z)) and plug them into the gradient of the objective of the
stochastic counterpart (22). Then, setting the gradient of the objective of (22) to zero leads
to a system of equations that is linear in µ and Σ. Therefore, in the case where Q is the set of
Gaussian distributions of dimension d, solving the optimization problem (22) means solving
a system of linear equations. To find the parameters of a log-normal distribution, we fit a
Gaussian to log(z). Consider now a one-dimensional Gamma distribution with density

qv(z) =
1

Γ(α)βα
zα−1e−z/β ,

where Γ is the Gamma function, v = [α, β]T , and α and β are the shape and scaling parameter,
respectively. When we fit a Gamma distribution to data in the following, we keep the shape
parameter α fixed and modify the scaling parameter β only. The gradient of log(qv(z)) with
respect to β can be obtained analytically and is

∇β log(qv(z)) =
−αβ + z

β2
.

As in the Gaussian and the log-normal case, setting the gradient ∇β log(qv(z)) = 0 and solving
for the scaling parameter β leads to a system of linear equations.

4. Numerical results. We demonstrate the efficiency of our MFCE method on a heat
transfer and a reacting flow example. In all of the following experiments, the quantile pa-
rameter is set to ρ = 0.1 and the minimal step size is δ = 10−2, which are similar to the
parameters chosen in, e.g., [10]. Furthermore, we set Q to the set of Gaussian distributions of
the respective dimensions, except if noted otherwise. We constrain the optimization problem
(22) in Algorithm 1 to covariance matrices Σ with a minimal absolute value of 10−3, which
avoids convergence of the biasing distributions to outliers and single points; see [39] for a
similar technique. All runtime measurements were performed on compute nodes with an Intel
Xeon E5-1620 and 32GB RAM on a single core using a MATLAB implementation.

4.1. Heat transfer. We consider rare event probability estimation with a one-dimensional
heat problem with two inputs.
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4.1.1. Problem setup. Let X = (0, 1) ∈ R be a domain with boundary ∂X = {0, 1}.
Consider the linear elliptic PDE with random coefficients

−∇ · (a(ω, x)∇u(ω, x)) = 1 , x ∈ X ,(23)

u(ω, 0) = 0 ,(24)

∂nu(ω, 1) = 0 ,(25)

where u : Ω × X̄ → R is the solution function defined on the set of outcomes Ω and where
X̄ is the closure of X . We impose an homogeneous Dirichlet boundary condition on the left
boundary x = 0 of the domain X and homogeneous Neumann boundary conditions on the
right boundary x = 1. The coefficient a is given as

a(ω, x) =
n∑
i=1

exp (zi(ω)) exp

(
−0.5

(x− vi)2

0.0225

)
,

where n = 2 and where Z = [z1, z2]
T is a random vector with components that are normally

distributed with mean µ = [1, 1]T and covariance matrix

Σ =

[
0.1 0
0 0.1

]
∈ R2×2 .

The vector v = [v1, v2]
T ∈ R2 is v = [0.5, 0.8]T . The quantity of interest is the value of the

solution function at the right boundary and given by the output of the function f : D → R
defined as

f(Z(ω)) = u(ω, 1) .

We discretize (23)–(25) with linear finite elements on an equidistant grid with mesh width
h(`) = 2−` on level ` ∈ N. The solution of the discretized problem on level ` leads to models
f (`). We set the maximal level to L = 8.

4.1.2. Rare event probability estimation. Our goal is to estimate the rare event prob-

abilities P
(L)
t for t ∈ {0.75, 0.95, 1.14}. We derive reference rare event probabilities with the

classical, single-fidelity CE method with 107 realizations. To obtain these reference probabil-
ities, we run Algorithm 1 with the model f (L) only. We average over 30 runs and obtain the
reference probability P̂ IS

0.75 ≈ 3×10−9 for t = 0.75, the reference probability P̂ IS
0.95 ≈ 2×10−7 for

t = 0.95, and the reference probability P̂ IS
1.14 ≈ 4× 10−6 for t = 1.14. For our MFCE method,

we consider the levels ` = 3, . . . , 8 and run Algorithm 1 with m ∈ {103, 104, 105, 106} realiza-
tions. We repeat the estimation with MFCE 30 times and estimate the squared coefficient of
variation (1) with respect to the reference probabilities.

Figures 1(a) and (c) compare the runtime of constructing the biasing density with our
MFCE method to the runtime of the single-fidelity CE method that uses model f (L) alone.
Our MFCE approach achieves a speedup of up to two orders of magnitude. Figure 1(b) and
(d) show similar speedups for the total runtime, which includes the runtime of constructing the
biasing density and the final estimation step. In this example, the total runtime is dominated
by the runtime of constructing the biasing densities.
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Figure 1. Heat transfer: Our MFCE approach achieves up to two orders of magnitude speedup compared
to using the single-fidelity CE method with the model f (L) for t ∈ {0.75, 0.95}.

Figure 2 shows the speedup of our MFCE method for the threshold t = 1.14, which
is smaller than the speedup obtained with the thresholds t = 0.75 and t = 0.95 shown in
Figure 1. The threshold t = 1.14 corresponds to a reference probability of ≈ 10−6, which
is significantly higher than the reference probabilities ≈ 10−7 and ≈ 10−9 corresponding to
t = 0.95 and t = 0.75, respectively. Typically fewer CE iterations are sufficient to construct
a biasing density to estimate a rare event probability of ≈ 10−6 than of ≈ 10−9. Thus, the
results in Figure 2 confirm that our MFCE approach is particularly beneficial in cases where
the CE method requires many iterations to obtain a biasing density, which typically is the
case for small rare event probabilities. Overall, the results reported in Figures 1 and 2 show
that our MFCE method successfully leverages the hierarchy of models to estimate rare event
probabilities that vary by about three orders of magnitude (i.e., from ≈ 10−6 to ≈ 10−9).

4.1.3. Number of model evaluations. Figure 3 compares the number of iterations spent
at each level ` = 3, . . . , 8 of our MFCE method to the number of iterations of the single-fidelity
CE method on level L = 8. The reported numbers of iterations are averaged over 30 runs.
First, note that our MFCE approach and the single-fidelity CE method require most iterations
for t = 0.75, which corresponds to the smallest rare event probability ≈ 10−9 of the three cases
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Figure 2. Heat transfer: Our MFCE approach achieves a speedup of about one order of magnitude for rare
event probabilities of ≈ 10−6 with t = 1.14 in this example.
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Figure 3. Heat transfer: Our MFCE approach achieves runtime speedups by shifting most of the iterations
onto the models with coarse grids.

t ∈ {0.75, 0.95, 1.14}. Second, the results confirm that our multifidelity approach spends most
of the iterations with models on the coarse grids, where model evaluations are cheap compared
to the model f (L) on the finest grid. Consider now Figure 4, which reports the intermediate
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Figure 4. Heat transfer: The plot shows the intermediate thresholds selected by Algorithm 1. Our multifi-
delity approach achieves speedups because only a single iteration is required with the computationally expensive
models on the fine grids (high level) to correct estimates obtained with the cheap models on the coarse grids
(low levels).

thresholds that are selected by Algorithm 1. Figure 4(a) shows that the single-fidelity CE
method requires about 10 iterations on level L = 8 to obtain an intermediate threshold that
is equal to or below t = 0.75. Our MFCE approach requires six iterations on the lowest level

` = 3; however, the parameter v̂
(3)
∗ estimated on level ` = 3 is then further corrected on level

` = 4 in three iterations. On levels ` = 5, 6, 7, 8 only a single iteration is necessary to slightly
correct the estimated parameter. Similar results are obtained for t ∈ {0.95, 1.14} shown in
Figure 4(b) and (c).

4.2. Reacting flow problem. This section demonstrates the MFCE approach on a reacting-
flow problem.

4.2.1. Problem setup. We consider the simplified combustor model described in [7], which
is based on the one-step reaction

2H2 + O2 → 2H2O

with the fuel H2, the oxidizer O2, and the product H2O. The governing equations are nonlinear
advection-diffusion-reaction equations with an Arrhenius-type reaction term [7]. The geometry
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Figure 5. Reacting flow: The geometry of the combustor is shown in (a). The plots in (b) and (c) show
the temperature of the reaction for two different inputs.

of the combustor is shown in Figure 5. Dirichlet boundary conditions are imposed on Γ1,Γ2,
and Γ3. On Γ4,Γ5, and Γ6, homogeneous Neumann boundary conditions are imposed. The
governing equations are discretized with finite differences on a mesh with equidistant grid
points. The problem has two inputs z = [z1, z2]

T that define properties of the reaction. The
input z1 is the normalized preexponential factor of the Arrhenius-type reaction term and z2
is the normalized activation energy. We refer to [7, 28] for details on the problem. The inputs
are realizations of a random variable with normal distribution with mean µ = [1, 1]T and
covariance

Σ =

[
0.0060 0

0 0.0037

]
.

The output of the model is the maximum temperature in the combustion chamber; see Fig-
ure 5.

The high-fidelity model in this experiment is given by the finite-difference model on a mesh
with 54 × 27 equidistant grid points. Furthermore, we derive a reduced model with proper
orthogonal decomposition and the discrete empirical interpolation method as described in
[41]. To construct the reduced model, we derive 100 snapshots with the high-fidelity model
that correspond to inputs on an equidistant 10×10 grid in the domain [0.7, 1.92]× [0.27, 1.72]
and derive proper orthogonal decomposition and empirical interpolation bases with 4 and 8
basis vectors, respectively. Additionally, we derive a piecewise-linear interpolant of the input-
output map given by the high-fidelity model from four data points drawn from the distribution
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Figure 6. Reacting flow: The total runtime is dominated by the estimation step with the high-fidelity model
because a speedup of multiple orders of magnitude is achieved for constructing the biasing density and a speedup
of at most one order of magnitude is obtained in the total runtime.

of the inputs. Thus, we have an interpolant f (1), a reduced model f (2), and a high-fidelity
finite-difference model f (3) = f (L).

Our goal in this experiment is to estimate the probability that the temperature is below
a threshold value, which can indicate a poor mixing in the reaction. We estimate the rare
event probabilities for the thresholds t ∈ {2021.3, 2043}. We first run Algorithm 1 with the
high-fidelity model f (L) alone to obtain the reference probabilities P̂ IS

2021.3 ≈ 2 × 10−6 and
P̂ IS
2043 ≈ 2× 10−5, respectively. The reference probabilities are estimated from 104 realizations

and are averaged over 30 runs. We then run Algorithm 1 with the models f (1), f (2), f (3) 30
times with m ∈ {102, 5×102, 103, 5×103, 104} and estimate the squared coefficient of variation
with respect to the reference probabilities.

4.2.2. Comparison of multi- and single-fidelity approaches. Figure 6 compares the run-
time of our multifidelity approach with the runtime of the single-fidelity CE method that uses
f (L) alone. Our multifidelity approach achieves speedups of more than two orders of magni-
tude in the construction of the biasing densities. The large speedups are obtained because
the data-fit f (1) and the reduced model f (2) are five and two orders of magnitude cheaper
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Figure 8. Reacting flow: The data-fit model f (1) is a poor approximation of the high-fidelity model and
therefore three iterations with the more accurate reduced model f (2) are necessary to correct the intermediate
thresholds. Overall, our multifidelity method leverages the data-fit and the reduced model to reduce the number
of iterations required on the highest level with the high-fidelity model.

to evaluate than the high-fidelity model f (3), respectively. Consider now the total runtime,
which includes the construction of the biasing densities and the final estimation step. The
total runtime in this example is dominated by the costs of the final estimation step, which
means that the speedup of our multifidelity approach obtained in constructing the biasing
densities is smaller when considered with respect to the total runtime. Our method achieves
up to an order of magnitude speedup in the total runtime.

Figure 7 reports the number of iterations per level. In our MFCE method, a single iteration
with the high-fidelity model is sufficient, whereas the single-fidelity CE method requires up
to almost 5 iterations. The intermediate thresholds selected by Algorithm 1 are shown in
Figure 8. The results confirm that model f (1) is a poor approximation of the high-fidelity
model because the intermediate threshold selected on level ` = 1 needs to be corrected with
three iterations on level ` = 2.
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4.3. Reacting flow problem with five inputs. We now extend the reacting flow problem
of section 4.2 with three additional inputs to demonstrate our MFCE approach on a five-
dimensional problem with non-Gaussian input random variables.

4.3.1. Problem setup. Consider the combustor model described in section 4.2. The two
inputs z1 and z2 describe the properties of the Arrhenius-type reaction term. We now addi-
tionally have the input z3, which is the temperature that is imposed on the boundaries Γ1 and
Γ3; see Figure 5. The input z4 is the temperature imposed on Γ2, and the input z5 controls
the fuel content of the inflow on Γ2. The inputs are described in detail in [7].

The inputs z1 and z2 are realizations of a random variable that is distributed as described
in section 4.2. The input z3 is the realization of a random variable with a Gamma distribution
with shape parameter α = 18000 and scaling parameter β = 1/60. The random variable of
input z4 is also a Gamma distribution with parameters α = 180500 and β = 1/190. The mean
of the random variables is 300 and 950, respectively, which are the values used in section 4.2.
The input z5 is the realization of a random variable with a log-normal distribution with mean
−5× 10−7 and standard deviation 0.001. In section 4.2, the input z5 is set to 1.

A finite-difference high-fidelity model f (3) is used as in section 4.2. A reduced model
f (2) is derived similar to section 4.2, except that the snapshots correspond to inputs z =
[z1, z2, . . . , z5] on a 5× 5× 5× 5× 5 grid in the domain

(26) [0.7, 1.92]× [0.27, 1.72]× [280, 320]× [920, 980]× [0.95, 1.05] .

The grid points are logarithmically spaced in the first two dimensions corresponding to z1
and z2 and equidistant on a linear scale in the dimensions corresponding to z3, z4, and z5.
Additionally, we construct a data-fit model f (1) that interpolates the input-output map given
by the high-fidelity model. The data-fit model is a spline interpolant on a 4×4×4×4×4 grid
in the domain (26). The grid points are logarithmically spaced in the first two dimensions
and linearly spaced in dimensions 3, 4, and 5. The spline interpolant is obtained with the
griddedInterpolant method of MATLAB.

4.3.2. Estimation of rare event probability. We estimate the probability that the tem-
perature is below the threshold t = 2021.3. Running Algorithm 1 with the high-fidelity model
f (3) alone gives a reference probability P̂ IS

2021.3 ≈ 2 × 10−6, which is similar to what we ob-
tained in section 4.2. For the parameter estimation step in (22) in Algorithm 1, we use the
formulas obtained in section 3.5. The reference probability is estimated from 105 realizations
and averaged over 30 runs. We run Algorithm 1 with m ∈ {5 × 103, 104, 5 × 104, 105} and
models f (1), f (2), and f (3). Algorithm 1 is run 30 times and the averages of the coefficients of
variations of the single-fidelity CE estimator and our MFCE estimator are reported in Fig-
ure 9. Our MFCE approach achieves a speedup of about two orders of magnitude compared
to the single-fidelity approach that uses the high-fidelity model alone.

5. Conclusions. We presented a multifidelity preconditioner for the CE method to ac-
celerate the estimation of rare event probabilities. Our multifidelity approach leverages a
hierarchy of surrogate models to reduce the costs of constructing biasing densities compared
to the single-fidelity CE method that uses the high-fidelity model alone. Our approach can ex-
ploit multiple surrogate models that include general surrogate models such as projection-based
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Figure 9. Reacting flow with five inputs: Our MFCE approach achieves up to two orders of magnitude
speedup in this example with five inputs. The first two inputs are normally distributed, the third and fourth
input follow a Gamma distribution, and the fifth input is log-normally distributed.

reduced models and data-fit models, which goes beyond the classical setting of multilevel tech-
niques that are often restricted to hierarchies of coarse-grid approximations. In our numerical
examples, our approach achieved speedups of up to two orders of magnitude compared to the
single-fidelity CE method in estimating probabilities on the order of 10−5 to 10−9.
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