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Multifidelity models and 
multifidelity methods
What are they and why use them?



Multifidelity 
models

covering a range of 
different resolutions, 
scales, modeling 
assumptions, etc.

simplified physics, 
loosened tolerance, 
coarse grid, data-fit, 
projection-based ROM, 
etc. 

• high-fidelity model (“truth”)

mapping input 𝑧 to output 𝑦

𝑓(1): 𝒵 → 𝒴

• k – 1 lower-fidelity models

mapping input 𝑧 to output 𝑦

𝑓(2), … , 𝑓 𝑘 : 𝒵 → 𝒴

• model 𝑓 𝑖 has cost 𝑤𝑖

• model 𝑓 𝑖 has fidelity 𝑓𝑖

• models do not necessarily form a hierarchy

𝑓(1) 𝑦𝑧

𝑓(2) 𝑦𝑧

𝑓(𝑘) 𝑦𝑧

⋮

𝑓(3) 𝑦𝑧



Multifidelity 
methods

for outer-loop 
problems

• Outer-loop: computational applications 

that form outer loops around a model

– overall outer-loop result is obtained at 

the termination of the outer loop

– examples: optimization, uncertainty 

propagation, inverse problems, data 

assimilation, control, sensitivity analysis

• Multifidelity methods: goal is to solve 

the outer-loop problem at high fidelity

– invoke multiple models to reduce 

computational cost

– maintains guarantees on outer-loop 

result

• Key questions

– how to combine model estimates?

– how to balance evaluations among 

models?

– how to guarantee outer-loop result?

𝑓(1) 𝑦𝑧

𝑓(2) 𝑦𝑧

𝑓(𝑘) 𝑦𝑧

⋮



Multifidelity 
strategies

examples of 
multifidelity 
strategies for the 
outer loop

• optimization
Alexandrov & Lewis, 1999; Eldred et al., 2004

• forward propagation of uncertainty 
Giles, 2008, Ng & Eldred, 2012, Ng & W., 2012, 2014; Peherstorfer et al., 2016

• failure probability estimation
Bichon et al, 2008; Li & Xiu, 2010; Peherstorfer et al., 2016, Peherstorfer et al., 

2017

• optimization under uncertainty
Ng, Huynh, W., 2012; Ng & W., 2014, 2016

• statistical inverse problems
Fox & Christensen, 2008; Efendiev & Hou, 2009; Cui et al., 2014



Why use multifidelity modeling?
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Why use a multifidelity formulation?

Full model

(“truth”)

Reduced model

(approximate)
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Why use a multifidelity formulation?

Computationally 

expensive

Computationally 

cheap(er)

Full model

(“truth”)

Reduced model

(approximate)
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Why use a multifidelity formulation?

• Replace full model with 
reduced model and solve
{opt, UQ, inverse}

• Propagate error estimates 
on forward predictions to 
determine error in
{opt, UQ, inverse} solutions
(may be non-trivial)

Full model

(“truth”)

Reduced model

(approximate)

Certified?

yes
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Why use a multifidelity formulation?

• Replace full model with 
reduced model and solve
{opt, UQ, inverse}

• Hope for the best

Full model

(“truth”)

Reduced model

(approximate)

Certified?

no
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Why use a multifidelity formulation?

Full model

(“truth”)

Reduced model

(approximate)

Certified?

• Use a multifidelity formulation that invokes both 
the reduced model and the full model

• Trade computational cost for the ability to place 
guarantees on the solution of {opt, UQ, inverse}

no
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Why use a multifidelity formulation?

Full model

(“truth”)

Reduced model

(approximate)

Certified?

• Use a multifidelity formulation that invokes both 
the reduced model and the full model

• Trade computational cost for the ability to place 
guarantees on the solution of {opt, UQ, inverse}

• Certify the solution of {opt, UQ, inverse} even in 
the absence of guarantees on the reduced 
model itself

no



Multifidelity Monte Carlo
(MFMC)
Efficient uncertainty propagation leveraging multiple models

Ng & W., Multifidelity approaches for optimization under uncertainty, IJNME, 2014

Peherstorfer, W. & Gunzburger, Optimal model management for multifidelity Monte 
Carlo estimation, SISC, 2016



Estimating 
QoI statistics

via Monte Carlo 
sampling

• uncertain input 𝑧 ∈ 𝒵

• output quantity of interest 𝑦 ∈ 𝒴

• high-fidelity model

𝑓(1): 𝒵 → 𝒴
with cost 𝑤1 > 0 (“truth”)

• Goal: given random input variable Z,

estimate statistics s of 𝑓 1 𝑍

• Example: expected value

𝑠 = 𝐸 𝑓 1 𝑍

• Monte Carlo estimator for 𝑠 using
𝑛 realizations 𝑧1, … , 𝑧𝑛 of Z has costs 𝑛𝑤1:

 𝑠 =  𝑦𝑛
(1)

=
1

𝑛
 

𝑖=1

𝑛

𝑓 1 (𝑧𝑖)

𝑓(1)
𝑦𝑧

𝑓(1)



Multifidelity 
Monte Carlo

leveraging multiple 
approximate models to 
estimate statistics of 
the high-fidelity model

• high-fidelity model

𝑓(1): 𝒵 → 𝒴(“truth”)

• k – 1 surrogate models

𝑓(2), … , 𝑓 𝑘 : 𝒵 → 𝒴

• model 𝑓 𝑖 has cost 𝑤𝑖

• 𝑚𝑖 evaluations for model 𝑖, with

𝑚1 ≤ 𝑚2 ≤ … ≤ 𝑚𝑘

• Models do not necessarily form a hierarchy

(cf. multi-level Monte Carlo)

– How to combine models?

– How to balance evaluations among them?

𝑓(1) 𝑦𝑧

𝑓(2) 𝑦𝑧

𝑓(𝑘) 𝑦𝑧

⋮



Multifidelity 
Monte Carlo

leveraging multiple 
approximate models to 
estimate statistics of 
the high-fidelity model

• Draw 𝑚𝑘 realizations 𝑧1, … , 𝑧𝑚𝑘
of Z and evaluate 𝑓(𝑖):

𝑓 𝑖 𝑧1 , … , 𝑓 𝑖 (𝑧𝑚𝑖
)

• Compute mean estimators

 𝑦𝑚1

(1)
, … ,  𝑦𝑚𝑘

(𝑘)
and    𝑦𝑚1

(2)
, … ,  𝑦𝑚𝑘 −1

(𝑘)

• MFMC estimator: 

• MFMC estimator is unbiased, even with no

error bounds for surrogates: 𝐸  𝑠 = 𝑠

𝑓(1)

𝑓(2)

𝑓(𝑘)

⋮

 𝑠 =  𝑦𝑚1

(1)
+  

𝑖=2

𝑘

𝛼𝑖  𝑦𝑚𝑖

(𝑖)
−  𝑦𝑚𝑖 −1

(𝑖)

MFMC 
estimate for 

the mean

mean estimate using 
𝑚1 evaluations of 

truth model

mean estimate 
using 𝑚𝑖

evaluations of 
model 𝑖

mean estimate 
using 𝑚𝑖−1

evaluations of 
model 𝑖



Multifidelity 
Monte Carlo

General case with
k models

Peherstorfer, W., Gunzburger, 
SISC, 2015

• MFMC estimator

• The costs of the MFMC estimator are

𝑐  𝑠 =  

𝑖=1

𝑘

𝑤𝑖𝑚𝑖

• Distinguishing features of MFMC method:

– optimal selection of the number of model evaluations 
𝑚1 ≤ 𝑚2 ≤ … ≤ 𝑚𝑘 and of coefficients 𝛼2, … , 𝛼𝑘

– applicable to general information sources (e.g., any type of 
surrogate model, database curve fits, etc.)

 𝑠 =  𝑦𝑚1

(1)
+  

𝑖=2

𝑘

𝛼𝑖  𝑦𝑚𝑖

(𝑖)
−  𝑦𝑚𝑖 −1

(𝑖)

MFMC 
estimate for 

the mean

mean estimate using 
𝑚1 evaluations of 

truth model

mean estimate 
using 𝑚𝑖

evaluations of 
model 𝑖

mean estimate 
using 𝑚𝑖−1

evaluations of 
model 𝑖



A broad view 
of multifidelity 
models

in many outer-loop 
applications, can 
exploit past 
evaluations as a
low-fidelity model

Ng & W., J. Aircraft, 2015

• in optimization under uncertainty, can exploit model 
correlation over design space

• at current design point 𝑥𝑘

– Define 𝐴 = 𝑓(1) 𝑥𝑘 , 𝑧

– Want to compute  𝑠 as estimator of s = 𝔼 𝐴

• previously visited design point 𝑥ℓ where ℓ < 𝑘

– Define surrogate as 𝐶 = 𝑓(1) 𝑥ℓ, 𝑧

– Reuse available data:  𝑠𝐶 as estimator of
𝑠𝐶 = 𝔼 𝐶 with error Var  𝑠𝐶

Simulation𝑥𝑘  𝑠 𝑥𝑘

Simulation𝑥𝑘−1  𝑠 𝑥𝑘−1

Simulation𝑥ℓ  𝑠 𝑥ℓ

⋮
optimization

progress

design variables estimators
⋮

– use 𝑓(1) 𝑥 + Δ𝑥, 𝑧 as surrogate for 𝑓(1) 𝑥, 𝑧

Information 
Reuse 

Estimator



Multifidelity Importance Sampling
(MFIS)
Efficient estimation of low probability events, leveraging multiple 
models

Peherstorfer, Cui, Marzouk, W., Multifidelity importance sampling, CMAME, 2016

Peherstorfer, Kramer, W., Combining multiple surrogate models to accelerate 
failure probability estimation with expensive high-fidelity models, in review



Estimating
a failure 
probability

via Monte Carlo 
sampling

• uncertain input 𝑧 ∈ 𝒵

• output quantity of interest 𝑦 ∈ 𝒴

• high-fidelity model   𝑓(1): 𝒵 → 𝒴
with cost 𝑤1 > 0 (“truth”)

• define indicator function 𝐼(1): 𝒵 → 𝒴 as

𝐼 1 𝑧 =  
1, if 𝑓 1 𝑧 < 0
0, else

• random variable 𝑍 with probability density 𝑝

• goal: estimate failure probability  𝑃𝑓 = 𝔼𝑝[𝐼
(1)(Z)]

• Monte Carlo estimation of 𝑃𝑓 using N realizations 
𝑧1, … , 𝑧𝑁:

𝑓(1)
𝑦𝑧

𝑓(1)𝑃𝑓
MC =

1

𝑁
 

𝑖=1

𝑁

𝐼 1 (𝑧𝑖)

← failure event



Estimating
a failure 
probability

via importance 
sampling

• Importance sampling: create biasing density
𝑞 that puts more weight on failure events

• Let  𝑍 be the corresponding RV

• Introduce the weight function

𝑤 𝑧 =
𝑝(𝑧)

𝑞(𝑧)

• Reformulate failure probability as

• Goal: construct a biasing density 𝑞 such that

• Lower variance means fewer realizations of  𝑍 than of 𝑍 are 
necessary to achieve the same MSE → fewer model 
evaluations

𝑃𝑓 = 𝔼𝑝 𝐼 1 (Z) = 𝔼𝑞 𝐼 1 (  𝑍)𝑤(  𝑍)

Var𝑞 𝐼 1 (  𝑍)𝑤  𝑍 < Var𝑝 𝐼 1 (Z)



Multifidelity 
importance 
sampling 
(MFIS)

with two models

Peherstorfer, Cui, Marzouk, 
W., Computer Methods in 
Applied Mechanics and 
Engineering, 2016

• We derive 𝑞 with surrogate 𝑓(2), and use 𝑓(1) to 
estimate 𝑃𝑓

• Step 1: Construction of biasing distribution (“speedup”)

• Step 2: Estimation of 𝑃𝑓 using 𝑞 (“establish accuracy 
guarantees”)



Multifidelity 
importance 
sampling

Step 1: construction 
of biasing density

• Draw many realizations 𝑧1, … , 𝑧𝑁 of 𝑍 (nominal)

• Evaluate surrogate model to obtain outputs

𝑓 2 𝑧1 , … , 𝑓 2 𝑧𝑁

• Fit normal dist. 𝑞 to realizations that correspond to 
failure

𝑧𝑖 | 𝐼
2 𝑧𝑖 = 1, 𝑖 = 1,… ,𝑁

• Use Expectation-Maximization (EM) algorithm to fit 
density

• Derive random variable  𝑍 with distribution given by 𝑞



Multifidelity 
importance 
sampling

Step 2: estimation of 
failure probability

• Draw 𝑀 ∈ ℕ realizations  𝑧1, … ,  𝑧𝑀 of  𝑍 (biasing)

• Evaluate high-fidelity model to obtain outputs

𝑓 1  𝑧1 , … , 𝑓 1  𝑧𝑀

• typically have 𝑀 ≪ 𝑁, and therefore fewer high-fidelity 
model evaluations

• Derive the multifidelity importance sampling 
(MFIS) estimate

𝑃𝑓
MFIS =

1

𝑀
 

𝑖=1

𝑀

𝐼 1  𝑧𝑖 𝑤(  𝑧𝑖)

• We can show unbiasedness of the MFIS estimator
𝑃𝑓 = 𝔼𝑞[𝑃𝑓

MFIS]



Mixed MFIS

extending MFIS to 
multiple models

• Given are 𝑘 − 1 models

• Approximation qualities of these sources unknown

• Which of these should we use for constructing 𝑞?

• Our approach: Mixed MFIS
• Use each surrogate 𝑓(𝑖) to construct a density 𝑞𝑖, for 𝑖 = 2,… , 𝑘

• Sample from all these densities 𝑞2, … , 𝑞𝑘 and combine samples

• Mixed MFIS estimator 𝑃𝑓
Mixed derived as in [Owen et al, 2000]

• Known that
Var 𝑃𝑓

Mixed

𝑘 − 1
≤ min

𝑖=2,…,𝑘
Var 𝐼(1)

𝑝

𝑞𝑖

• Our 𝑃𝑓
Mixed is up to factor 𝑘 − 1 as good as using the 

surrogate that minimizes variance

𝑓(1) 𝑦𝑧

𝑓(2) 𝑦𝑧

𝑓(𝑘) 𝑦𝑧

⋮

𝑓(2), … , 𝑓 𝑘 : 𝒵 → 𝒴
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Example: Locally damaged plate (multiple models)

• Locally damaged plate

• Inputs: nominal thickness, load,

two damage parameters

• Inputs uniformly distributed in

[0.05, 0.1] x [1, 100] x [0, 0.2] x (0, 0.05]

• QoI: maximum deflection of plate

Peherstorfer

& W., 2015

• Six models available

 High-fidelity model: FEM, 300 dof

 Reduced model: POD, 10 dof

 Reduced model: POD, 2 dof

 Reduced model: POD, 5 dof

 Data-fit model: linear 

interpolation, 256 pts

 Support vector machine: 256 pts

• Variance, correlation, 

runtime estimated from

100 samples



Locally 
damaged 
plate: MFMC

MFMC estimation of 
mean deflection 
achieves up to 4 
orders of magnitude 
reduction in 
computational cost

• Combine high-fidelity + reduced (POD, 10) + 

data-fit (linear interp, 256)

• Reduced and data-fit model lead to biased 

estimator, MFMC is unbiased



Locally 
damaged plate: 
MFMC mean 
estimate

Successively add 
reduced (POD, 10), 
data-fit (linear interp, 
256), and then all others

Adding data-fit model 
reduces variance, even 
though data-fit model is 
poor approximation of 
high-fidelity model 

MFMC achieves almost 4 orders of magnitude 
improvement over standard Monte Carlo simulation with 
high-fidelity model only.



Locally 
damaged 
plate: MFIS

Estimate the 
probability that the 
deflection exceeds a 
critical value 

• Biasing density 

constructed from 

𝑁 = 106

realizations

• Using surrogate 

only leads to

large bias

• MFIS leads to 

unbiased estimate 

of 𝑃𝑓

• If ROM available, 

speedup of up to 

104, cf. high-fidelity 



• Multifidelity Monte Carlo (MFMC): a 
control variate formulation for 
estimating means

• Multifidelity Importance Sampling 
(MFIS): an importance sampling 
formulation for estimating probabilities

• MFMC extension to estimating 
variance and sensitivity indices
(Qian MS89, MS145)

Conclusion

Multifidelity 
strategies for the 
outer loop: 

leverage 
approximate models 

but maintain 
guarantees on
outer-loop result



• Air Force Office of Sponsored Research 
MURI on Multi-Physics Multi-Source 
Information (J.-L. Cambier)

• Department of Energy Applied 
Mathematics Program: DiaMonD
Multifaceted Mathematics Integrated 
Capability Center (A. Patra, S. Lee)

• DARPA EQUiPS program QUANTUM 
Project (F. Fahroo)

Acknowledgements




