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Abstract

We consider the task of optimizing an objective function subject to inequality
constraints when both the objective and the constraints are expensive to evaluate.
Bayesian optimization (BO) is a popular way to tackle optimization problems
with expensive objective function evaluations, but has mostly been applied to
unconstrained problems. Several BO approaches have been proposed to address
expensive constraints but are limited to greedy strategies maximizing immediate
reward. To address this limitation, we propose a lookahead approach that selects
the next evaluation in order to maximize the long-term feasible reduction of the
objective function. We present numerical experiments demonstrating the perfor-
mance improvements of such a lookahead approach compared to several greedy
BO algorithms, including constrained expected improvement (EIC) and predictive
entropy search with constraint (PESC).

1 Introduction

Constrained optimization problems are often challenging to solve, due to complex interactions be-
tween the goals of minimizing (or maximizing) the objective function while satisfying the constraints.
In particular, non-linear constraints can result in complicated feasible spaces, sometimes partitioned
in disconnected regions. Such feasible spaces can be difficult to explore for a local optimizer, po-
tentially preventing the algorithm from converging to a global solution. Global optimizers, on the
other hand, are designed to tackle disconnected feasible spaces and optimization of multi-modal
objective functions. Such algorithms typically require a large number of evaluations to converge.
This can be prohibitive when the evaluation of the objective function or the constraints is expensive,
or when there is a finite budget of evaluations allocated for the optimization, as it is often the case
with expensive models. This evaluation budget typically results from resource scarcity such as the
restricted availability of a high-performance computer, finite financial resources to build prototypes,
or even time when working on a paper submission deadline.

Bayesian optimization (BO) [19] is a global optimization technique designed to address problems
with expensive function evaluations. Its constrained extension, constrained Bayesian optimization
(CBO), iteratively builds a statistical model for the objective function and the constraints. Based on
this model that leverages all the past evaluations, a utility function quantifies the merit of evaluating
any design under consideration. At each iteration, a CBO algorithm evaluates the expensive objective
function and constraints at the design which maximizes this utility function.

In most existing methods, the utility function only quantifies the reward obtained over the immediate
next step, and ignores the gains that could be collected at future steps. This results in greedy CBO
algorithms. However, quantifying long-term rewards may be beneficial. For instance, in the presence
of constraints, it could be valuable to learn the boundaries of the feasible space. In order to do so, it
is likely that an infeasible design would need to be evaluated, bringing no immediate improvement,
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but leading to long-term benefits. Such strategy requires planning over several steps. Planning is also
required to balance the so-called exploration-exploitation trade-off. Intuitively, in order to improve
the statistical model, the beginning of the optimization should mainly be dedicated to exploring the
design space, while the end of the optimization should focus on exploiting that statistical model to
find the best design. To balance this trade-off in a principled way, the optimizer needs to plan ahead
and be aware of the remaining evaluation budget.

To address the shortcomings of greedy algorithms, we propose a new lookahead formulation for
CBO with a finite budget. This approach is aware of the remaining budget and can balance the
exploration-exploitation trade-off in a principled way. In this formulation, the best optimization policy
sequentially evaluates the design yielding the maximum cumulated reward over multiple steps. This
optimal policy is the solution of an intractable dynamic programming (DP) problem. We circumvent
this issue by employing an approximate dynamic programming (ADP) algorithm: rollout, building on
the unconstrained BO algorithm in [17]. Numerical examples illustrate the benefits of the proposed
lookahead algorithm over several greedy ones, especially when the objective function is multi-modal
and the feasible space has a complex topology.

The next section gives an overview of CBO and discusses some of the related work (Sec. 2). Then, we
formulate the lookahead approach to CBO as a dynamic programming problem and demonstrate how
to approximately solve it by adapting the rollout algorithm (Sec. 3). Numerical results are provided
in Sec. 4. Finally, we present our conclusions in Sec. 5.

2 Constrained Bayesian Optimization

We consider the following optimization problem:

(OPc) x∗ = argmin
x∈X

f(x)

s.t. gi(x) ≤ 0,∀i ∈ {1, . . . , I},
(1)

where x is a d-dimensional vector of design variables. The design space X is a bounded subset of
Rd, f : X 7→ R is an objective function, I is the number of inequality constraints and gi : X 7→ R
is the ith constraint function. The functions f and gi are considered expensive to evaluate. We are
interested in finding the minimizer x∗ of the objective function f subject to the non-linear constraints
gi ≤ 0 with a finite budget of N evaluations. We refer to this problem as the original constrained
problem (OPc).

Constrained Bayesian optimization (CBO) addresses the original constrained problem (OPc) by
modeling the objective function f and the constraints gi as realizations of stochastic processes.
Typically, each expensive-to-evaluate function is modeled with an independent Gaussian process
(GP). At every iteration n, new evaluations of f and gi become available and augment a training
set Sn = {(xj , f(xj), g1(xj), · · · , gI(xj))}nj=1. Using Bayes rule, the statistical model is updated
and the posterior quantities of the GP, conditioned on Sn, reflect the current representation of the
unknown expensive functions. In particular, for any design x, the posterior mean µn(x;ϕ) and the
posterior variance σ2

n(x;ϕ) of the GP associated with the expensive function ϕ ∈ {f, g1, · · · , gI}
can be computed cheaply using a closed-form expression (see [24] for an overview of GP). CBO
leverages this statistical model to quantify, in a cheap-to-evaluate utility function Un, the usefulness of
any design under consideration. The next design to evaluate is then selected by solving the following
auxiliary problem (AP):

(AP) xn+1 = argmax
x∈X

Un(x;Sn). (2)

The vanilla CBO algorithm is summarized in Algorithm 1.

Many utility functions have been proposed in the literature. To decide which design to evaluate next,
[27] proposed the use of constrained expected improvement EIc, which, in the case of independent
GPs, can be computed in closed-form as the product of the expected improvement (obtained by
considering the GP associated with the objective function) and the probability of feasibility associated
with each constraint. This approach was later applied to machine learning applications [6] and
extended to the multi-objective case [5]. Note that this method transforms an original constrained
optimization problem into an unconstrained auxiliary problem by modifying the utility function.
Other attempts to cast the constrained problem into an unconstrained one include [3]. That work uses
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Algorithm 1 Constrained Bayesian Optimization

Input: Initial training set S1, budget N
for n = 1 to N do

Construct GPs using Sn
Update hyper-parameters
Solve AP for xn+1 = argmaxx∈X Un(x;Sn)

Evaluate f(xn+1), g1(xn+1), · · · , gI(xn+1)

Sn+1 = Sn ∪ {(xn+1, f(xn+1), g1(xn+1), · · · , gI(xn+1))}
end for

a penalty method to transform the original constrained problem into an unconstrained problem, to
which they apply a radial basis functions (RBF) method for global optimization (constrained RBF
methods exist as well [25]). Other techniques from local constrained optimization have been leveraged
in [10] where the utility function is constructed based on an augmented Lagrangian formulation. This
technique was recently extended in [22] where a slack-variables formulation allows the handling
of equality and mixed constraints. Another approach is proposed by [1]: at each iteration, a finite
set of candidate designs is first generated from a Latin hypercube, second, candidate designs with
expected constraint violation higher than a user-defined threshold are rejected. Finally, among the
remaining candidates, the ones achieving the best expected improvement are evaluated (several
designs can be selected simultaneously at each iteration in this formulation). Another method [26]
solves a constrained auxiliary optimization problem: the next design is selected to maximize the
expected improvement subject to approximated constraints (the posterior mean of the GP associated
with a constraint is used in lieu of the constraint itself). Note that the two previous methods solve a
constrained auxiliary problem.

Another method to address constrained BO is proposed by [11], who develop an integrated conditional
expected improvement criterion. Given a candidate design, this criterion quantifies the expected
improvement point-wise (conditioned on the fact that the candidate will be evaluated). This point-
wise improvement is then integrated over the entire design space. In the unconstrained case, in the
integration phase, equal weight is given to designs throughout the design space. The constrained
case is addressed by defining a weight function that depends on the feasible probability of a design:
improvement at designs that are likely to be infeasible have low weight. The probability of a design
being feasible is calculated using a classification GP. The computation of this criterion is more
involved as there is no closed-form formulation available for the integration and techniques such as
Monte Carlo or Markov chain Monte Carlo must be employed. In a similar spirit, [21] introduces a
utility function which quantifies the benefit of evaluating a design by integrating its effect over the
design space. The proposed utility function computes the expected reduction of the feasible domain
below the best feasible value evaluated so far. This results in the expected volume of excursion
criteria which also requires approximation techniques to be computed.

The former approaches revolve around computing a quantity based on improvement and require
having at least one feasible design. Other strategies use information gain as the key element to
drive the optimization strategy. [7] proposed a two-step approach for constrained BO when the
objective and the constraints can be evaluated independently. The first step chooses the next location
by maximizing the constrained EI [27], the second step chooses whether to evaluate the objective or
a constraint using an information gain metric (i.e., entropy search [12]). [13, 14] developed a strategy
that simultaneously selects the design to be evaluated and the model to query (the objective or a
constraint). The criterion used, predictive entropy search with constraints (PESC), is an extension
of predictive entropy search (PES) [15]. One of the advantages of information gain-based methods
stems from the fact that one does not need to start with a feasible design.

All aforementioned methods use myopic utilities to select the next design to evaluate, leading
to suboptimal optimization strategies. In the unconstrained BO setting, multiple-steps lookahead
algorithms have been explored [20, 8, 18, 9, 17] and were shown to improve the performance of
BO. To our knowledge, such lookahead strategies for constrained optimization have not yet been
addressed in the literature and also have the potential to improve the performance of CBO algorithms.
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3 Lookahead Formulation of CBO

In this section, we formulate CBO with a finite budget as a dynamic programming (DP) problem
(Sec. 3.1). This leads to an optimal but computationally challenging optimization policy. To mitigate
the cost of computing such a policy, we employ an approximate dynamic programming algorithm,
rollout, and demonstrate how it can be adapted to CBO with a finite budget (Sec. 3.2).

3.1 Dynamic Programming Formulation

We seek an optimization policy which leads, after consumption of the evaluation budget, to the
maximum feasible decrease of the objective function. Because the value of the expensive objective
function and constraints are not known before their evaluations, it is impossible to quantify such
long-term reward within a cheap-to-evaluate utility function Un. However, CBO endows the objective
function and the constraints with a statistical model that can be interrogated to inform the optimizer
of the likely values of f and gi at a given design. This statistical model can be leveraged to simulate
optimization scenarios over multiple steps and quantify their probabilities. Using this simulation
mechanism, it is possible to quantify, in an average sense, the long-term reward achieved under a
given optimization policy. The optimal policy is the solution of the DP problem that we formalize
now.

Let n be the current iteration number of the CBO algorithm, and N the total budget of evaluations,
or horizon. We refer to the future iterations of the optimization generated by simulation as stages.
For any stage k ∈ {n, · · · , N}, all the information collected is contained in the training set Sk. The
function f and the I functions gi are modeled with independent GPs. Their posterior quantities,
conditioned on Sk, fully characterize our knowledge of f and gi. Thus, we define the state of our
knowledge at stage k to be the training set Sk ∈ Zk.

Based on the training set Sk, the simulation makes a decision regarding the next design xk+1 ∈ X to
evaluate using an optimization policy. An optimization policy π = {π1, · · · , πN} is a sequence of
rules, πk : Zk 7→ X for k ∈ {1, · · · , N}, mapping a training set Sk to a design xk+1 = πk(Sk).

In the simulations, the values f(xk+1) and gi(xk+1) are unknown and are treated as uncertainties.
We model those I + 1 uncertain quantities with I + 1 independent Gaussian random variables W f

k+1

and W gi
k+1 based on the GPs:

W f
k+1 ∼ N (µk(xk+1; f), σ2

k(xk+1; f)), (3)

W gi
k+1 ∼ N (µk(xk+1; gi), σ

2
k(xk+1; gi)), (4)

where we recall that µk(xk+1;ϕ) and σ2
k(xk+1;ϕ) are the posterior mean and variance of the GP

associated with any expensive function ϕ ∈ {f, g1, · · · , gI}, conditioned on Sk, at xk+1. Then, the
simulation generates an outcome. A simulated outcome wk+1 = (fk+1, g

1
k+1, · · · , gIk+1) ∈ W ⊂

RI+1 is a sample of the (I + 1)-dimensional random variable Wk+1 = [W f
k+1,W

g1
k+1, · · · ,W

gI
k+1].

Note that simulating an outcome does not require evaluating the expensive f and gi. In particular,
fk+1 and gik+1 are not f(xk+1) and gi(xk+1).

Once an outcomewk+1 = (fk+1, g
1
k+1, · · · , gIk+1) is simulated, the system transitions to a new state

Sk+1, governed by the system dynamic Fk : Zk ×X ×W 7→ Zk+1 given by:

Sk+1 = Fk(Sk,xk+1,wk+1) = Sk ∪ {(xk+1, fk+1, g
1
k+1, · · · , gIk+1)). (5)

Now that the simulation mechanism is defined, one needs a metric to assert the quality of a given
optimization policy. At stage k, a stage-reward function rk : Zk ×X ×W 7→ R quantifies the merit
of querying a design if the outcome wk = (fk+1, g

1
k+1, · · · , gIk+1) occurs. This stage-reward is

defined as the reduction of the objective function satisfying the constraints:

rk(Sk,xk+1,wk+1) = max
{

0, fSkbest − fk+1

}
, (6)

if gik+1 ≤ 0 for all i ∈ {1, · · · , I}, and rk(·, ·, ·) = 0 otherwise, where fSkbest is the best feasible value
at stage k. Thus, the expected (long-term) reward starting from training set Sn under optimization
policy π is:

Jπ(Sn) = E

[
N∑

k=n

rk(Sk, πk(Sk),wk+1)

]
, (7)
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where the expectation is taken with respect to the (correlated) simulated values (wn+1, · · · ,wN+1),
and the state evolution is governed by Eq. 5. An optimal policy, π∗, is a policy maximizing this
long-term expected reward in the space of admissible policies Π:

Jπ∗(Sn) = max
π∈Π

Jπ(Sn). (8)

The optimal reward Jπ∗(Sn) is given by Bellman’s principle of optimality and can be computed
using the DP recursive algorithm, working backward from k = N − 1 to k = n,

JN (SN ) = max
xN+1∈X

E[rN (SN ,xN+1,wN+1)] = max
xN+1∈X

EIc(xN+1;SN )

Jk(Sk) = max
xk+1∈X

E[rk(Sk,xk+1,wk+1) + Jk+1(Fk(Sk,xk+1,wk+1))],
(9)

where each expectation is taken with respect to one simulated outcome vector wk+1, and we have
used the fact that E[rk(Sk,xk+1,wk+1)] = EIc(xk+1;Sk) is the constrained expected improvement
known in closed-form [27]. The optimal reward is given by Jπ∗(Sn) = Jn(Sn). Thus, at iteration n
of the CBO algorithm, the optimal policy select the next design xn+1 that maximizes Jn(Sn) given
by Eqs. 9. In other words, the best decision to make at iteration n maximizes, on average, the sum of
the immediate reward rn and the future long-term reward Jn+1(Sn+1) obtained by making optimal
subsequent decisions. This is illustrated in Fig. 1, left panel.

Sk
xk+1

wk+1 Sk+1 xk+2 wk+2 Sk+2 xk+3

· · ·

· · ·

· · ·

· · ·

Sk
xk+1

wk+1 Sk+1 πk+1(Sk+1) wk+2 Sk+2 πk+2(Sk+2)

· · ·

· · ·

· · ·

· · ·

Figure 1: Left: Tree illustrating the intractable DP formulation. Each black circle represents a training
set and a design, each white circle is a training set. Dashed lines represent simulated outcomes
resulting in expectations. The double arrows represent designs selected with the (unknown) optimal
policy, leading to nested maximizations. Double arrows depict the bidirectional way information
propagates when the optimal policy is built: each optimal decision depends on the previous steps and
relies on the optimality of the future decisions. Right: Single arrows represent designs selected using
a heuristic. This illustrates the unidirectional propagation of information when a known heuristic
drives the simulations: each decision depends on the previous steps but is independent of the future
ones. The absence of nested maximization leads to a tractable formulation.

3.2 Rollout for Constrained Bayesian Optimization

The best optimization policy evaluates, at each iteration n of the CBO algorithm, the design xn+1

maximizing the optimal reward Jπ∗(Sn) (Eq. 8). This requires solving a problem with several nested
maximizations and expectations (Eqs. 9), which is computationally intractable. To mitigate the cost
of solving the DP algorithm, we employ an approximate dynamic programming (ADP) technique:
rollout (see [2, 23] for an overview). Rollout selects the next design by maximizing a (suboptimal)
long-term reward Jπ. The reward is computed by simulating optimization scenarios over several
future steps. However, the simulated steps are not controlled by the optimal policy π∗. Instead,
rollout uses a suboptimal policy π, i.e. a heuristic, to drive the simulation. This circumvents the
need for nested maximizations (as illustrated in Fig. 1, right panel) and simplifies the computation of
Jπ compared to Jπ∗ . We now formalize the rollout algorithm, propose a heuristic π adapted to the
context of CBO with a finite budget, and detail further numerical approximations.

Let us consider the iteration n of the CBO algorithm. The long-term reward Jπ(Sn) induced by
a (known) heuristic π = {π1, · · · , πN}, starting from state Sn, is defined by Eq. 7. This can be
rewritten as Jπ(Sn) = Hn, where Hn is recursively defined, from k = N back to k = n, by:

HN+1(SN+1) = 0

Hk(Sk) = E[rk(Sk, πk(Sk),wk+1) + γHk+1(Fk(Sk, πk(Sk),wk+1))],
(10)
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where each expectation is taken with respect to one simulated outcome vector wk+1, and γ ∈ [0, 1]
is a discount factor encouraging the early collection of reward. A discount factor γ = 0 leads to a
greedy policy, focusing on immediate reward. In that case, the reward Jπ simplifies to the constrained
expected improvement EIc. A discount factor γ = 1, on the other hand, is indifferent to when the
reward is collected.

The fundamental simplification introduced by the rollout algorithm lies in the absence of nested
maximizations in Eqs. 10. This is illustrated in Fig. 1, right panel. By applying a known heuristic,
information only propagates forward: every simulated step depends on the previous steps, but is
independent from the future simulated steps. This is in contrast to the DP algorithm, illustrated in
Fig. 1. Because the optimal policy is not known, it needs to be built by solving a sequence of nested
problems. Thus, information propagates both forward and backward.

While Hn is simpler to compute than Jn, it still requires computing nested expectations for which
there is no closed-form expression. To further alleviate the cost of computing the long-term reward,
we introduce two numerical simplifications. First, we use a rolling horizon h ∈ N to decrease the
number of future steps simulated. A rolling horizon h replaces the horizonN by Ñ = min{N,n+h}.
Second, the expectations with respect to the (I + 1)-dimensional Gaussian random variables are
numerically approximated using Gauss-Hermite quadrature. We obtain the following formulation:

H̃Ñ+1(SÑ+1) = 0

H̃k(Sk) = EIc(πk(Sk);Sk) + γ

Nq∑
q=1

α(q)[H̃k+1(Fk(Sk, πk(Sk),w
(q)
k+1))],

(11)

where Nq is the number of quadrature weights α(q) ∈ R and points w(q)
k+1 ∈ RI+1.

For all iteration n ∈ {1, · · · , N} and for all xn+1 ∈ X , we define the utility function of our rollout
algorithm for CBO with finite budget to be:

Un(xn+1;Sn) = EIc(xn+1;Sn) + γ

Nq∑
q=1

α(q)[H̃n+1(Fn(Sn,xn+1,w
(q)
n+1))]. (12)

The heuristic π is problem-dependent. A desirable heuristic combines two properties: (1) it is
cheap to compute, (2) it is a good approximation of the optimal policy π∗. In the case of CBO
with a finite budget, the heuristic π ought to mimic the exploration-exploitation trade-off balanced
by the optimal policy π∗. To do so, we propose using a combination of greedy CBO algorithms:
maximization of the constrained expected improvement (which has an exploratory behavior) and
a constrained optimization based on the posterior means of the GPs (which has an exploitative
behavior). For a given iteration n, we define the heuristic π = {πn+1, · · · , πÑ} such that for stages
k ∈ {n+ 1, · · · , Ñ − 1}, the policy component πk : Zk 7→ X , maps a state Sk to the design xk+1

satisfying:

xk+1 = argmax
x∈X

EIc(x;Sk). (13)

The last policy component, πÑ : ZÑ 7→ X , maps a state SÑ to xÑ+1 such that:

xÑ+1 = argmin
x∈X

µÑ (x; f) s.t. PF (x;SÑ ) ≥ 0.99, (14)

where PF is the probability of feasibility known in closed-form. Every evaluation of the utility
function Un requiresO

(
Nh

q

)
applications of a heuristic component πk. The heuristic that we propose

optimizes a quantity that requires O
(
|Sk|2

)
of work.

To summarize, the proposed approach sequentially selects the next design to evaluate by maximizing
the long-term reward induced by a heuristic. This rollout algorithm is a one-step lookahead formu-
lation (one maximization) and is easier to solve than the N -steps lookahead approach (N nested
maximizations) presented in Sec. 3.1. Rollout is a closed-loop approach where the information
collected at a given stage of the simulation is used to simulate the next stages. The heuristic used in
the rollout is problem-dependent, and we proposed using a combination of greedy CBO algorithms
to construct such a heuristic. The computation of the utility function is detailed in Algorithm 2.
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Algorithm 2 Rollout Utility Function

Function: utility(x, h,S)
Construct GPs using S
if h = 0 then
U ← EIc(x;S)

else
U ← EIc(x;S)
Generate Nq Gauss-Hermite quadrature weights α(q) and points w(q) associated with x
for q = 1 to Nq do
S ′ ← S ∪ {(x,w(q))}
if h > 1 then
x′ ← π(S ′) using Eq. 13

else
x′ ← π(S ′) using Eq. 14

end if
U ← U + γα(q)utility(x′, h− 1,S ′)

end for
end if
Output: U

4 Results

In this section, we numerically investigate the proposed algorithm and demonstrate its performance
on classic test functions and a reacting flow problem.

To compare the performance of the different CBO algorithms tested, we use the utility gap metric
[14]. At iteration n, the utility gap en measures the error between the optimum feasible value f∗ and
the value of the objective function at a recommended design x∗n:

en =

{|f(x∗n)− f∗| if x∗n is feasible,
|Ψ− f∗| else,

(15)

where Ψ is a user-defined penalty punishing infeasible recommendations. The recommended design,
x∗n, differs from the design selected for evaluation xn. It is the design that the algorithm would
recommend to evaluate if the optimization were to be stopped at iteration n, without early notice. We
use the same system of recommendation as [14]:

x∗n = argmin
x∈X

µn(x; f) s.t. PF (x;Sn) ≥ 0.975. (16)

Note that the utility gap en is not guaranteed to decrease because recommendations x∗n are not
necessarily better with iterations. In particular, en is not the best error achieved in the training set Sn.

In the following numerical experiments, for the rollout algorithm, we use independent zero-mean GPs
with automatic relevance determination (ARD) square-exponential kernel to model each expensive-to-
evaluate function. In Algorithm. 1, when the GPs are constructed, the vector of hyper-parameters θi
associated with the ith GP kernel is estimated by maximization of the marginal likelihood. However,
to reduce the cost of computing Un, the hyper-parameters are kept constant in the simulated steps (i.e.,
in Algorithm. 2). To compute the expectations of Eqs. 11-12, we employ Nq = 3I+1 Gauss-Hermite
quadrature weights and points and we set the discount factor to γ = 0.9. Finally, at iteration n, the
best value fSnbest is set to the minimum posterior mean µn(x; f) over the designs x in the training
set Sn, such that the posterior mean of each constraint is feasible. If no such point can be found,
then fSnbest is set to the maximum of {µn(x; f) + 3σm} over the designs x in Sn, where σ2

m is the
maximum variance of the GP associated with f . The EIC algorithm is computed as a special case of
the rollout with rolling horizon h = 0, and we use the Spearmint package1 to run the PESC algorithm.
We additionally run a CBO algorithm that selects the next design to evaluate based on the posterior
means of the GPs2:

xn+1 = argmin
x∈X

µn(x; f) s.t. µn(x; gi) ≤ 0,∀i ∈ {1, . . . , I}. (17)

1https://github.com/HIPS/Spearmint/tree/PESC
2As suggested by a reviewer.
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Figure 2: Left: Multi-modal objective and single constraint (P1). Right: Linear objective and multiple
non-linear constraints (P2). Shaded region indicates 95% confidence interval of the median statistic.

We refer to this algorithm as PM. We also compare the CBO algorithms to three local algorithms
(SLSQP, MMA and COBYLA) and to one global evolutionary algorithm (ISRES).

We now consider four problems with different design space dimensions d, several numbers of
constraints I , and various topologies of the feasible space. The three first problems, P1-3, are analytic
functions while the last one, P4, uses a reacting flow model that requires solving a set of partial
differential equations (PDEs) [4]. For P1 and P2, we use N = 40 evaluations (as in [6, 10]). For
P3 and P4, we use a small number of iterations N = 60, which corresponds to situations where the
functions are very expensive to evaluate (e.g. solving large systems of PDEs can take over a day on a
supercomputer). The full description of the problems is available in the appendix. In Figs. 2-3, we
show the median of the utility gap, the shadings represent the 95% confidence interval of the median
computed by bootstrap. Other statistics of the utility gap are shown in the appendix.

For P1, the median utility gap for EIC, PESC, PM and the rollout algorithm with h ∈ {1, 2, 3} is
shown in Fig. 2 (left panel). The PM algorithm does not improve its recommendations. This is not
surprising because PM focuses on exploitation (PM does not depends on posterior variance) which
can result in the algorithm failing to make further progress. Such behavior has already been reported
in [16] (Sec. 3). The three other CBO algorithms perform similarly in the first 10 iterations. PESC
is the first to converge to a utility gap ≈ 10−2.7. The rollout performs better or similarly than EIC.
In the 15 first iterations, longer rolling horizons lead to slightly lower utility gaps. This is likely
to be due to the more exploratory behavior associated with lookahead, which helps differentiating
the global solution from the local ones. For the remaining iterations, the shorter rolling horizons
reduce the utility gap faster than longer rolling horizons before reaching a plateau. EIC and rollout
outperform PESC after 25 iterations. We note that EIC and rollout have essentially converged.

For P2, the median performance of EIC, PESC, PM and rollout with rolling horizon h ∈ {1, 2, 3} is
shown in Fig. 2 (right panel). The PM algorithm reduces the utility gap in the first 10 iterations, but
reaches a plateau at 10−1.7. The three other CBO algorithms perform similarly up to iteration 15,
where PESC reaches a plateau 3. This similarity may be explained by the fact that the local solutions
are easily differentiable from the global one, leading to no advantage for exploratory behavior. In
this example, the rollout algorithms reached the same plateau at 10−3, with longer horizons h taking
more iterations to converge. EIC performs better than rollout h = 2 before its performance slightly
decreases, reaching a plateau at a larger utility gap 10−2.6 (note that the utility gap is not computed
with the best value observed so far and thus is not guaranteed to decrease). This increase of the
median utility gap can be explained by the fact that a few runs change their recommendation from
one local minimum to another one, resulting in the change in median utility function. This is also
reflected in the 95% confidence interval of the median, which further indicates that the statistic is
sensitive to a few runs.

For P3, the median utility gap for the four CBO algorithms is shown in Fig. 3 (left panel). PM is
rapidly outperformed by the other algorithms. The PESC algorithm is outperformed by EIC and
rollout after 25 iterations. Again, we note that rollout with h = 1 obtains a lower utility gap that EIC
at every iteration. The rollout with h ∈ {2, 3} exhibits a different behavior: it starts decreasing the
utility gap later in the optimization but achieves a better performance when the evaluation budget

3Results obtained for PESC mean utility gap are consistent with [13].
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Figure 3: Left: Multi-modal 4-d objective and constraint (P3). Right: Reacting flow problem (P4).
The awareness of the remaining budget explains the sharp decrease in the last iterations for the rollout.

is consumed. Note that none of the algorithms has converged to the global solution, and the strong
multi-modality of the objective and constraint function seems to favor exploratory behaviors.

For the reacting flow problem P4, the median performances are shown in Fig. 3 (right panel). PM
rapidly reaches a plateau at en ≈ 101.3. PESC reduces rapidly the utility gap, outperforming the
other algorithms after 15 iterations. EIC and rollout perform similarly and slowly decrease the utility
gap up to iteration 40, where EIC reaches a plateau and rollout continues to improve performance,
slightly outperforming PESC at the end of the optimization.

The results are summarized in Table. 1, and show that the rollout algorithm with different rolling
horizons h (R-h) performs similarly or favorably compared to the other algorithms.

Table 1: Log median utility gap log10(eN ). Statistics computed over m independent runs.
Prob d N I m SLSQP MMA COBYLA ISRES PESC PM EIC R-1 R-2 R-3

P1 2 40 1 500 0.59 0.59 -0.05 -0.19 -2.68 0.30 -4.45 -4.59 -4.52 -4.42
P2 2 40 2 500 -0.40 -0.40 -0.82 -0.70 -2.43 -1.76 -2.62 -2.99 -2.99 -2.994

P3 4 60 1 500 2.15 3.06 3.06 1.68 1.66 1.79 1.60 1.48 1.31 1.35
P4 4 60 1 50 0.80 0.80 0.80 0.13 0.09 1.26 0.57 -0.10 -0.10 0.19

Based on the four previous examples, we notice that increasing the rolling horizon h does not
necessarily improve the performance of the rollout algorithm. One possible reason stems from the
fact that lookahead algorithms rely more on the statistical model that greedy algorithms. Because
this model is learned as the optimization unfolds, it is an imperfect model (in particular the hyper-
parameters of the GPs are updated after each iteration, but not after each stage of a simulated
scenario). By simulating too many steps with the GPs, one may be over-confidently using the model.
In some sense, the rolling horizon h, as well as the discount factor γ, can be interpreted as a form
of regularization. The effect of a larger rolling horizon is problem-dependent, and experiment P3
suggests that multimodal problems in higher dimension may benefits from longer rolling horizons.

5 Conclusions

We proposed a new formulation for constrained Bayesian optimization with a finite budget of
evaluations. The best optimization policy is defined as the one maximizing, in average, the cumulative
feasible decrease of the objective function over multiple steps. This optimal policy is the solution of
a dynamic programming problem that is intractable due to the presence of nested maximizations. To
circumvent this difficulty, we employed the rollout algorithm. Rollout uses a heuristic to simulate
optimization scenarios over several step, thereby computing an approximation of the long-term
reward. This heuristic is problem-dependent and, in this paper, we proposed to use a combination
of cheap-to-evaluate greedy CBO algorithms to construct such heuristic. The proposed algorithm
was numerically investigated and performed similarly or favorably compared to constrained expected
improvement (EIC) and predictive entropy search with constraint (PESC).

This work was supported in part by the AFOSR MURI on multi-information sources of multi-physics
systems under Award Number FA9550-15-1-0038, program manager Dr. Jean-Luc Cambier.

4For cost reasons, the median for h = 3 was computed with m = 100 independent runs instead of 500.
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