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This paper presents Transform & Learn, a physics-informed surrogate modeling approach
that unites the perspectives of model reduction and machine learning. The proposed method
uses insight from the physics of the problem—in the form of partial differential equation (PDE)
models—to derive a state transformation in which the system admits a quadratic representa-
tion. Snapshot data from a high-fidelity model simulation are transformed to the new state
representation and subsequently are projected onto a low-dimensional basis. The quadratic
reduced model is then learned via a least-squares-based operator inference procedure. The
state transformation thus plays two key roles in the proposed method: it allows the task of
nonlinear model reduction to be reformulated as a structured model learning problem, and
it parametrizes the machine learning problem in a way that recovers efficient, generalizable
models. The proposed method is demonstrated on two PDE examples. First, we transform the
Euler equations in conservative variables to the specific volume state representation, yielding
low-dimensional Transform & Learn models that achieve a 0.05% relative state error when
compared to a high-fidelity simulation in the conservative variables. Second, we consider
a model of the Continuously Variable Resonance Combustor, a single element liquid-fueled
rocket engine experiment. We show that the specific volume representation of this model also
has quadratic structure and that the learned quadratic reduced models can accurately predict
the growing oscillations of an unstable combustor.

I. Nomenclature

A = cross-sectional area
A, Â = full and reduced linear operator matrices for linear-quadratic ODE
Cf o = fuel-oxidizer ratio
E = total energy
F = nonlinear function describing ODE state evolution
H, Ĥ = full and reduced matricized quadratic tensor operators for linear-quadratic ODE
K = number of state snapshots used to compute POD basis
ṁ f = fuel mass flow rate
N = full state dimension
r = reduced state dimension
s, ŝ = full and reduced system states for general nonlinear ODE
S = snapshot matrix containing snapshots of general nonlinear state
t = time
u = velocity
U1:r = POD basis of dimension r
p = pressure
w, ŵ = full and reduced system states for linear-quadratic ODE
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W, Ẇ = snapshot and time derivative data matrices for linear-quadratic state
α = unsteady heat release parameter
∆h0 = heat of reaction
∆x = mesh size
γ = heat capacity ratio
ρ = density
ρu = specific momentum
ω̇ f = fuel injection source term
ζ = specific volume, ζ = 1

ρ

⊗ = Kronecker product

II. Introduction

This paper proposes a new surrogate modeling approach that unites advantages from two approaches to nonlinear
system approximation: projection-based model reduction and machine learning. The development of inexpensive

surrogate models is a critical enabling technology for many-query computations such as optimization, uncertainty
quantification, and control. In these settings, a predictive simulation of the system must be evaluated many times,
so traditional simulation methods based on high-dimensional spatial discretizations of nonlinear partial differential
equations (PDEs) can be prohibitively expensive. In our approach, we use physics information from the governing
PDEs to formulate a structured learning problem which recovers accurate, analyzable reduced-order models.

Projection-based model reduction starts with a high-dimensional full-order model (FOM), and obtains the reduced-
order model (ROM) by projecting the FOM equations onto a low-dimensional subspace. When the FOM has
polynomial structure, projecting the FOM onto the reduced space yields low-dimensional matrix operators that preserve
the polynomial structure of the FOM [1–5]. This preservation of polynomial structure means that the ROM may
then be cheaply evaluated many times, with a cost independent of the FOM dimension. For linear systems, the
preservation of structure also enables the derivation of rigorous error estimators for the ROM [6–9]. For nonlinear
PDEs without polynomial structure, however, simulating the ROM is expensive because it requires reconstruction of the
high-dimensional state. To recover computational efficiency, state-of-the-art methods [8, 10–15] evaluate the nonlinear
term at only selected elements of the state and interpolate. These methods sacrifice structure, making analysis of the
resultant ROM more difficult. Additionally, for some problems the number of interpolation points required for accuracy
limits the achievable speedups [16, 17].

In contrast to the intrusive nature of projection-based model reduction, where users must have access to the
high-dimensional operators, machine learning methods treat the PDE simulation as a black box. These methods seek
only to approximate an input-output mapping based on data. The parametrization of this mapping is critical to the
efficiency and accuracy of the learned model [18, 19]. Neural networks provide a general architecture that can accurately
approximate a large class of functions [20], but the amount of data required to accurately train them presents a barrier to
their use when the data comes from large-scale PDE simulations [21], they struggle to generalize to regimes outside of
their training data, and rigorous error analysis remains a challenge. To obtain generalizable and analyzable models, a
different body of work uses techniques from compressive sensing to identify the true terms of a governing equation
from a large library of candidate terms [19, 22, 23]. When the form of the model is known exactly, then the learning
problem can be formulated as a parameter estimation. In the work in [24], on which we build, data is used to learn
matrix operators for large systems of ordinary differential equations (ODEs) with polynomial nonlinearities in the state.

Knowledge of polynomial structure in the nonlinear model thus presents advantages in both learning and model
reduction approaches. Variable transformations allow the benefits of structure to be exploited even when the original
model has no such structure: for example, the work in [3, 25] exploits lifting transformations to quadratic form for
model reduction. In this paper, by transforming the PDE state to a representation in which the PDE has polynomial
structure, we can reformulate the nonlinear model reduction task as a structured model learning problem, with the
accompanying benefits of non-intrusivity and avoiding cumbersome interpolation procedures. Likewise, transformation
to a representation with polynomial structure enables the learning problem to be efficiently formulated, leading to
models that generalize well to regimes outside their training data and which are amenable to error and stability analysis.

Section III presents necessary background on model reduction, learning polynomial models, and variable transfor-
mations. In Section IV we present the Transform & Learn method. Section V presents results on the Euler equations
and on a combustion example.
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III. Background
In this section, we present background in nonlinear model reduction (Section III.A), learning polynomial models

(Section III.B), and variable transformations (Section III.C).

A. Nonlinear model reduction via proper orthogonal decomposition
Proper orthogonal decomposition (POD) [26, 27] is the most widely-used method for nonlinear model reduction,

and has been successfully applied in aerodynamic applications [28–35]. We present POD here for an N-dimensional
system of ODEs of the form

ds
dt
= F(s), (1)

where s ∈ RN is the state, and the nonlinear function F : RN 7→ RN maps the state to its time derivative. In applications
where the underlying model is a PDE, N is typically large. In POD, the full system is simulated and the state is recorded
at K time instances ti , for i = 1, . . . , K . These state snapshots are collected and used to compute a reduced basis onto
which the operators of the full system are projected. Let the snapshot data matrix S ∈ RN×K be given by

S =
*...
,

| | |

s(t0) s(t1) · · · s(tK )
| | |

+///
-

. (2)

The singular value decomposition of S is given by S = UΣV>, and the POD basis of size r , denoted U1:r , consists of the
first r columns of U. The state s is then approximated in the POD subspace spanned by the first r POD basis functions as

s ≈ U1:r ŝ, (3)

where ŝ is the r-dimensional reduced state. By substituting Eq. 3 into Eq. 1 and applying the standard Galerkin
projection, we obtain the following r-dimensional POD ROM:

dŝ
dt
= U>1:rF(U1:r ŝ). (4)

For general F(·), the cost of evaluating Eq. 4 scales not with r but with N . To achieve reductions in computational
cost, an additional reduction step must be taken, e.g., by evaluating F(·) at only a subset of the elements of U1:r ŝ
and interpolating. This is often referred to as hyper-reduction. Several methods for doing this have been proposed
in [8, 10–14]. While this is often successful, applications in combustion systems have shown [16, 36] that due to
the complexity of reacting flows, a large number of interpolation points is needed, effectively eliminating the ROM
computational savings. Moreover, subsampling procedures used in hyper-reduction are in general not amenable to
rigorous analysis of ROM properties such as stability and errors.

However, if F(·) has polynomial structure, the reduced-order model preserves this structure. Consider a linear-
quadratic FOM of the form

dw
dt
= F(w) = Aw +H(w ⊗ w), (5)

where A ∈ RN×N , H ∈ RN×N 2 are matrix operators and ⊗ denotes the Kronecker product for vectors. Here, and in the
remainder of the paper, w is used to denote states that have linear-quadratic evolution, and s is used to denote states
described by general nonlinear equations. Then, substituting Eq. 3 into Eq. 5 and applying the standard Galerkin
approximation yields the following linear-quadratic POD ROM:

dŵ
dt
= Âŵ + Ĥ(ŵ ⊗ ŵ), (6)

where the reduced operators are given by Â = U>1:rAU1:r and Ĥ = U>1:rH(U1:r ⊗ U1:r ). The reduced operators Â and Ĥ
can be pre-computed, allowing evaluations of Eq. 6 to be computed cheaply. This avoids the need to approximate the
nonlinear term through hyper-reduction, and thus retains some hope for analysis of the reduced system.
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B. Polynomial operator inference
In this subsection, we present the polynomial operator inference framework developed in [24]. We consider again a

linear-quadratic system of ODEs, as in Eq. 5. If a model is known to have the form in Eq. 5, but the actual coefficients
contained in A and H are unknown, a natural approach is to learn the matrix operators from state and time derivative
data. We collect state snapshots taken at times t1, . . . , tK , as well as the corresponding state time derivative data. We
define the snapshot and time derivative data matrices, respectively, as

W =



| |

w(t1) · · · w(tK )
| |



, Ẇ =



| |

ẇ(t1) · · · ẇ(tK )
| |



. (7)

We note that when Eq. 5 arises from the high-dimensional discretization of a quadratic PDE, the operators are
high-dimensional and sparse, and can be learned e.g., using the approach in [23]. However, since we are ultimately
interested in an efficient low-dimensional model, we present the approach of [24] here.

Let U1:r be an r-dimensional POD basis for the snapshots collected in W. We project the state and time derivative
data onto the space spanned by U1:r to obtain data for the reduced state and time derivative as follows:

Ŵ = U>1:rW, and ˙̂W = U>1:rẆ. (8)

Since we know the FOM has the form in Eq. 5, we postulate that the reduced state data satisfies the linear-quadratic
Galerkin reduced model in Eq. 6. When A and H are unknown, Â and Ĥ cannot be obtained through projection as in
Section III.A but must be inferred from data. The least-squares operator inference minimization is given by

min
Â∈Rr×r ,Ĥ∈Rr×r2

Ŵ
>Â> +

(
Ŵ⊗̂Ŵ

)>
Ĥ> − ˙̂W>


2

F
, (9)

where Ŵ⊗̂Ŵ denotes the matrix whose kth column is given by w(tk ) ⊗ w(tk ). In Eq. 9, each column of Ŵ>, ˙̂W>, and
(Ŵ⊗̂Ŵ)> corresponds to the evolution of a single component of the state ŵ(t), leading to r independent least-squares
problems (each defined by a column of ˙̂W>) which can be efficiently solved. The work in [24] shows that as r → N , the
inferred operators will converge to the Galerkin ROM operators (Eq. 6).

C. Variable transformations
Variable transformations can elucidate polynomial structure in nonlinear systems. For example, the well-known

Cole-Hopf transformation turns the nonlinear Burgers PDE into a linear PDE [37, 38]. In fluid dynamics problems,
writing the governing PDEs in specific volume variables rather than the typical conservative variables yields quadratic
structure in the PDEs. In this section, we present the specific volume transformation for the Euler equations as well as
for a combustor model. Before we proceed, we emphasize that these transformations are exact at the PDE level∗; the
transformation exactly preserves the physics inherent in the original conservative representation. We also emphasize
that our intent is not to discretize the transformed systems. Rather, this reformulation at the PDE level identifies a set of
features (i.e., the transformed variables) in which the governing equations admit a quadratic formulation. In the next
section, we will exploit this fact to learn a quadratic reduced model from data.

1. Specfic volume transformation of the Euler equations
The one-dimensional Euler equations are most commonly formulated in the conservative variables,

∂

∂t

*...
,

ρ

ρu
E

+///
-

= −
∂

∂x

*...
,

ρu
ρu2 + p

(E + p)u

+///
-

, (10)

where the state variables are the density ρ, specific momentum ρu, and total energy E, and the equation of state
E = p

γ−1 +
1
2 ρu2 relates energy and pressure via the heat capacity ratio γ. The right-hand side of Eq. 10 contains several

∗Note that when considering these transformations we work with the strong form of the equations, which presumes the existence of the derivatives.
The presence of discontinuities complicates the situation, but is not considered here.
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nonlinear terms that are not quadratic in the chosen state representation. However, the one-dimensional Euler equations
can be alternatively formulated in the specific volume variables:

∂u
∂t
= −u

∂u
∂x
− ζ

∂p
∂x
, (11a)

∂p
∂t
= −γp

∂u
∂x
−
∂p
∂x
, (11b)

∂ζ

∂t
= −u

∂ζ

∂x
+ ζ

∂u
∂x

. (11c)

where ζ = 1
ρ is the specific volume, and the other state variables are velocity and pressure. For constant γ, Eq. 11

contains only quadratic nonlinear dependencies on the state and its spatial derivatives. Note that Eq. 11 can be extended
to the 3D Euler setting by adding the y- and z-velocity equations.

2. Continuously Variable Resonance Combustor (CVRC) model
The continuously variable resonance combustor (CVRC) is an experiment at Purdue University which has been

extensively studied both experimentally [39–41] and computationally [42–45], and is therefore a good candidate for
validation of new methods. In this work we use a quasi-1D Euler model for the CVRC [46, 47]:

∂

∂t

*.....
,

ρ

ρu
E
ρYox

+/////
-

+
1
A
∂

∂x

*.....
,

Aρu
A(ρu2 + p)
Au(E + p)

AρuYox

+/////
-

=

*......
,

ω̇ f
p
A

dA
dx + ω̇ f u

ω̇ f ∆h0
(
1 + α p(x, t−τ)−p̄(x)

p̄(x)

)
−ω̇ f /Cf o

+//////
-

, (12)

where the conservative state variables are the same as those in the Euler equations, with the addition of ρYox, where
Yox denotes the oxidizer mass fraction. In the source terms of Eq. 12, which model the chemical reaction and the
cross-sectional area variation, α is the unsteady heat release parameter, ∆h0 denotes the heat of reaction, and Cf o is the
fuel-oxidizer ratio, all of which are constants. Moreover, A = A(x) is a known function that encodes the cross-sectional
area of the combustor, ω̇ f (x, ṁ f ) is also a known function of x for fixed fuel mass flow rate ṁ f , and p̄(x) is the pressure
of the steady solution. The unsteady heat release term depends on the pressure at a previous time p(t − τ), where the
time delay parameter τ can be tuned to match experimental results. For our transformation, we let τ = 0 and model γ as
a constant.

As in the 1D Euler equations, the CVRC governing equations admit a quadratic representation when formulated in
the specific volume variables:

∂

∂t

*.....
,

u
p
ζ

Yox

+/////
-

=

*......
,

0
(γ − 1)ω̇ f ∆h0α

p
p̄(x)

0
−ω̇ f

1
C f o

ζ

+//////
-︸                       ︷︷                       ︸

linear

+

*.....
,

−u ∂u∂x − ζ
∂p
∂x

−γp ∂u∂x − u ∂p∂x −
γpu
A

dA
dx −

γ−1
2 u2ω̇ f

−u ∂ζ
∂x + ζ

∂u
∂x +

1
A

dA
dx ζu − ω̇ f ζ

2

−u ∂Yox
∂x − ω̇ f ζYox

+/////
-︸                                             ︷︷                                             ︸

quadratic

+

*.....
,

0
(γ − 1)(1 − α)ω̇ f ∆h0

0
0

+/////
-︸                         ︷︷                         ︸

constant

.
(13)

We note that the first term on the right-hand side of Eq. 13 contains terms that are linear in their state dependence; the
second term contains terms that have quadratic state dependence, and the third term is state-independent.

IV. Transform & Learn
We now present our Transform & Learn method for learning efficient, generalizable reduced models from data. The

steps of our method are as follows:
1) Perform paper-and-pen transformation of the PDEs to obtain a state representation in which the system

admits a quadratic representation. Examples of such transformations are given in Section III.C. This
transformation at the PDE level identifies a set of features, i.e., the transformed variables, for which a quadratic
model can be learned.

2) Obtain state snapshot data (Eq. 2) and corresponding time derivative data by simulating the original
system. We emphasize that in this step, we use existing simulation code for the original equations (Eq. 1). This
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code is treated as a black box, and we obtain data in the original variable representation. We do not intrusively
transform code to produce data in the transformed variables, nor do we discretize the transformed equations.

3) Transform state and time derivative data to obtain transformed data matrices (Eq. 7). Using the
transformation identified in Step 1, we transform the data collected in Step 2. We postulate that the transformed
data can be described by a quadratic model of the form in Eq. 5.

4) Compute PODbasis in the transformed state and obtain projected transformed data (Eq. 8). By projecting
the transformed data onto a POD basis of lower dimension, we obtain data for a reduced state, which can be
described by a reduced-order model of the form in Eq. 6.

5) Solve least-squares minimization (Eq. 9) to obtain reduced linear and quadratic operators in the trans-
formed state. Because the operators Â and Ĥ in our proposed ROM are unknown, we use the operator inference
approach of [24] to learn the matrix operators from the reduced data obtained in Step 4.

We note that our method relies on the existence of a state transformation for which the transformed PDE contains
only quadratic nonlinearities in the state and its time derivatives. Transformation to the specific volume representation
achieves this structure for the three-dimensional Euler and Navier-Stokes equations, which underlie a large class of fluid
dynamics applications in aerospace settings, in addition to other applications in areas such as hydro- and hemodynamics.
Additionally, we have shown in Section III.C.2 an example of such a transformation for equations for reacting flow.

V. Numerical experiments
We apply our Transform & Learn approach to the Euler and CVRC equations from section III.C.

A. Euler equations
We solve Eq. 10 on the periodic domain x ∈ [0, 2) with mesh size ∆x = 0.01. The initial pressure is set to 1 bar

everywhere in the domain. The initial density is a periodic cubic spline interpolation at the points x = 0, 23,
4
3 , where the

interpolation values are drawn from a normal distribution with mean density 22 kg/m3 and standard deviation 1 kg/m3.
The initial velocity is also a periodic cubic spline interpolation of data at the same x-locations with interpolation values
drawn from a normal distribution with mean velocity 100 m/s and standard deviation 5 m/s. Twenty random smooth
initial conditions are generated in this way and simulated from t = 0 to t = 0.01. The resultant trajectories are used to
train the Transform & Learn model. Twenty additional random initial conditions are used to generate trajectories for a
test set.

The POD basis is computed from the training data set only and the projected training data is used to train the
Transform & Learn models. We apply our Transform & Learn framework to infer a quadratic reduced operator Ĥ
for this system. Note that the transformed system in Eq. 11 contains no linear dependencies on the state, so in our
postulated polynomial ROM (Eq. 6), we have Â = 0. Because the condition number of the least squares data matrix
grows rapidly as the basis size is increased, we apply a Tikhonov regularization penalty with weight 0.001 to improve
the conditioning of the data matrix. The learned model is then used to simulate the system for each of the 20 initial
conditions in the training set and each of the 20 initial conditions in the test set. The average relative reconstruction
error over the training and test sets are calculated relative to the N = 600-dimensional FOM in conservative variables.

The experiment described above is repeated 20 times; i.e., 20 different sets of random training data are generated, 20
different models are learned from the data, and the learned models are tested on 20 different random test sets. From the
20 experiments, the median, minimum and maximum average errors over the training and test sets are shown in Fig. 1.

For POD basis sizes r ≥ 25, the Transform & Learn models are stable, accurate, and generalizable, achieving an
error under 0.01% for reconstructing the training data and an error under 0.05% for the test data set. For smaller basis
sizes, the error in the learned models is higher, and for r = 10, the learned models yield unstable trajectories in many of
the training data cases and all of the test data cases. This indicates that 10 basis functions are not sufficient to accurately
capture the dynamics of the system. A stronger regularization penalty can be used to achieve stable models at this basis
size, although this will increase the bias in the model error.

The performance of an intrusive ROM based on a discretization in the specific volume variables is shown for
reference. When the basis is rich enough, our Transform & Learn approach achieves a similar error to the intrusive
ROM. For the training data, the learned ROMs are in fact slightly more accurate than the intrusive ROMs, as can be
seen in the left plot of Fig. 1. However, as the right plot shows, this comes at the expense of a slightly higher error when
generalizing to test data. These results highlight the important point of having a sufficiently rich set of training data
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Fig. 1 State reconstruction error of learned ROM in specific volume representation relative to FOM in conser-
vative variables. Minimum and maximum errors over the 20 experiments are shown by the shaded grey region
for the intrusive ROM and by the error bars for the Transform & Learn model.

to avoid overfitting. We note that when working with a transformed system, the intrusive ROM approach is usually
not viable because it would require rewriting existing code in the transformed variables. In Fig. 1, the intrusive ROM
convergence levels off due to differences between the specific volume and conservative variable representations that
arise when the PDE is discretized.

B. Continuously Variable Resonance Combustor
The CVRC equations (Eq. 12) are simulated with a heat release parameter of α = 3.1 and γ = 1.1756. At the

beginning of the simulation, a small pressure disturbance is applied at the inlet to excite unstable oscillations. The
velocity and pressure at the CVRC inlet over the simulation period are shown in Fig. 2a. The POD energy spectrum of
the CVRC data is shown in Fig. 2b, and suggests that r = 10 basis functions should be sufficient to capture the CVRC
behavior.

0 0.02 0.04 0.06 0.08 0.1
1.95

2

2.05
106

0 0.02 0.04 0.06 0.08 0.1
180

200

220

(a) Excitation of combustion instability in CVRC model. A
pressure disturbance is applied at the inlet from t = 0 to
t = 0.0138. Subsequent growth of oscillations is self-excited.

0 10 20 30 40 50
10 -20

10 -15

10 -10

10 -5

(b) POD energy spectrum of CVRC data.
With r = 10 basis functions we contain all
but 10−10 of the energy.

Fig. 2 CVRC combustion instability and data energy spectrum.

We process the data to remove the initial transient resulting from the pressure disturbance. We then apply our
Transform & Learn framework to the CVRC data using 10 POD basis functions for the transformed state. Fig. 3 shows
the Transform & Learn reconstruction of the FOM pressure signature. The qualitative match is excellent, and both the
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oscillation frequency and growth rate, two features of particular interest in unstable combustion problems, are matched
well. The overall relative state error of the reconstruction is less than 1%.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
1.96

1.98

2

2.02

2.04
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106

Fig. 3 Transform & Learn ROM reconstruction of CVRC pressure signature.

VI. Conclusions
We have introduced a new method for learning surrogate models for nonlinear PDEs. Our method is based on the

identification of a variable transformation in which the PDE for the transformed state has linear-quadratic structure. We
give examples of such transformations, which exist for many fluid dynamics applications. We evaluate existing codes to
obtain state and time derivative data in the original variables and transform these data to the new state representation in
order to formulate a structured model learning problem. The transformed data are projected onto a basis of smaller
dimension in order to learn structured reduced-order models.

The accuracy of the learned models is demonstrated on two example problems: the Euler equations and a simple
model of a liquid-fueled rocket combustor. For the Euler equations, the learned low-dimensional model can reconstruct
trajectories from the training set with less than 0.01% error. For the combustor example, the learned model accurately
predicts the growth and frequency of oscillations within the combustor with less than 1% error. For the Euler example,
our numerical experiments also demonstrate the ability of the learned models to generalize outside their training data
sets: when the reduced basis is rich enough, the learned model is able to reconstruct Euler equation trajectories in the
test set with less than 0.05% error. For smaller basis sizes, our results demonstrate that the success of the learned model
depends critically on the richness of the data and the resultant reduced basis. In future work, we will extend our method
to lifting transformations, which introduce auxiliary variables in order achieve quadratic structure.
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