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Abstract

This paper introduces a new approach for importance-sampling-based reliability-based design op-
timization (RBDO) that reuses information from past optimization iterations to reduce computa-
tional effort. RBDO is a two-loop process—an uncertainty quantification loop embedded within
an optimization loop—that can be computationally prohibitive due to the numerous evaluations of
expensive high-fidelity models to estimate the probability of failure in each optimization iteration.
In this work, we use the existing information from past optimization iterations to create efficient
biasing densities for importance sampling estimates of probability of failure. The method involves
two levels of information reuse: (1) reusing the current batch of samples to construct an a poste-
riori biasing density with optimal parameters, and (2) reusing the a posteriori biasing densities of
the designs visited in past optimization iterations to construct the biasing density for the current
design. We demonstrate for the RBDO of a benchmark speed reducer problem and a combustion
engine problem that the proposed method leads to computational savings in the range of 51% to
76%, compared to building biasing densities with no reuse in each iteration.

Keywords: Information reuse, importance sampling, biasing density, probability of failure,
reliability analysis, optimization under uncertainty, reliability-based optimization, RBDO.

1. Introduction

Designing efficient and robust engineering systems requires dealing with expensive computa-
tional models while taking into account uncertainties in parameters and surrounding conditions.
Reliability-based design optimization (RBDO) is a framework to minimize a prescribed cost function
while simultaneously ensuring that the design is reliable (i.e., has a small probability of failure).
RBDO is a two-loop process involving an outer-loop optimization with an inner-loop reliability
analysis for each optimization iteration as shown in Figure 1(a). The reliability analysis requires
estimating a probability of failure. RBDO approaches include: fully-coupled two-loop methods that
evaluate the reliability at each optimization iteration, single-loop methods that introduce optimal-
ity criteria for an approximation of the reliability estimate [1, 2, 3, 4], and decoupled approaches
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that transform RBDO into a series of deterministic optimization problems with corrections [5, 6].
Surveys of existing RBDO methods can be found in Refs. [7, 8, 9] In this work, we concentrate on a
two-loop RBDO method. For mildly nonlinear systems, reliability can be estimated using first-order
and second-order reliability methods [10, 11]. However, strongly nonlinear systems typically require
Monte Carlo sampling. The use of Monte Carlo methods is also more appropriate for systems with
multiple failure regions, which first-order and second-order reliability methods cannot handle. The
high cost of Monte Carlo sampling renders the RBDO problem computationally prohibitive in the
presence of expensive-to-evaluate models. Thus, efficient methods are needed for evaluating the
reliability constraint in each RBDO iteration for nonlinear systems.
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(a) Using high-fidelity model
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(b) Using IRIS

Figure 1: Two-loop process for RBDO using (a) the high-fidelity model, and (b) the proposed information reuse
method.

One way to reduce the computational cost for RBDO is by using cheap-to-evaluate surrogate
evaluations to replace the expensive high-fidelity evaluations in the Monte Carlo estimation of the
probability of failure. Several methods use surrogates that have been adaptively refined around the
failure boundary. Dubourg et al. [12] proposed refining kriging surrogates using a population-based
adaptive sampling technique through subset simulation for RBDO. Bichon et al. [13, 14] combined
adaptive Gaussian-process-based global reliability analysis with efficient global optimization (a.k.a.
Bayesian optimization) for RBDO. Qu and Haftka [15] presented a method to solve the RBDO
problem by building surrogates for probability sufficiency factor, which defines a probability of
failure on the safety factor instead of the limit state function directly. Recent work has developed
a quantile-based RBDO method using adaptive kriging surrogates [16], which uses the quantile
(a.k.a. value-at-risk) instead of the probability of failure constraint. A comprehensive review on the
use of surrogates in RBDO can be found in [17]. We note that sampling directly from surrogate
models—while being computationally cheaper—introduces a bias, while we propose a method that
is unbiased. However, using surrogate models offer substantial computational savings [17], and it
would be possible to extend the proposed method to incorporate surrogates. Also, these methods
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do not reuse information from previous design iterations, which is a source of computational savings
that we explore in this work.

Another approach to reduce computational cost is to use importance sampling for the reliability
analysis, which can allow for a drastic reduction in samples needed to estimate the reliability (or
failure probability). Importance sampling is, in general, an efficient method for reliable systems
and can be used to estimate small failure probabilities [18, 19] or other measures of risk [20, 21,
22, 23]. Although importance-sampling-based approaches can increase the efficiency of probability
of failure estimation, they could still require many samples for the estimate if the biasing density
is not constructed appropriately. Various efficient adaptive importance sampling methods [19] that
iteratively get close to the optimal biasing density have been devised to meet this challenge. The
cross-entropy method is a popular adaptive importance sampling method that uses the Kullback-
Leibler (KL) divergence to iteratively get closer to the optimal biasing density [24, 25, 26]. Adaptive
importance sampling has also been implemented using mixture models to account for multiple failure
regions [27, 28]. Subset simulation is another method for efficiently estimating failure probabilities
by converting a small failure probability into a series of larger conditional failure probabilities [29,
30, 31]. Surrogate-based importance sampling methods have also been proposed to further improve
computational efficiency [32, 33, 34, 35, 36]. In this work, we develop an importance sampling
method that builds good biasing densities using the optimization setup in RBDO.

We propose a new importance-sampling-based RBDO method that reuses information from
past optimization iterations for computationally efficient evaluation of the reliability constraint as
illustrated in Figure 1(b). At the core of the IRIS-RBDO (Information Reuse for Importance
Sampling in RBDO) method, we propose to build a good importance sampling biasing density
by reusing data from previous optimization iterations. The proposed method reduces the com-
putational time for probability of failure estimates in each RBDO iteration through two levels of
information reuse:

1. At the current design iteration, once the reliability estimate is computed via importance-
sampling based Monte Carlo sampling, we reuse the current batch of samples from the relia-
bility estimate to form an a posteriori biasing density. The a posteriori biasing density is built
in an optimal way by minimizing the KL divergence measure to the optimal (zero-variance)
biasing density.

2. At the next design iteration, we reuse the available a posteriori biasing densities from nearby
designs explored in the past iterations to construct a mixture density at the current iteration.
The motivation for this is that nearby designs are likely to have similar failure regions, and
hence reusing the a posteriori biasing densities from the existing nearby designs can lead to
efficient biasing densities.

In our IRIS-RBDO framework, the information from past optimization iterations acts as a
surrogate for building biasing densities in each RBDO iteration. The optimization history is a
rich source of information. Reusing information from past optimization iterations in optimization
under uncertainty has been previously done in the context of robust optimization using control
variates [37, 38, 39]. Cook et al. [40] extended the control variates method for information reuse to
a larger class of estimators for robust optimization. The probabilistic re-analysis method, which has
been used for RBDO [41] and probability of failure sensitivity analysis under mixed uncertainty [42],
can be seen as a reuse method. The probabilistic re-analysis method creates an offline library with a
large number of samples using a density encompassing the entire design and random variable space,
and then uses importance sampling to re-weight the samples according to a specific density in each
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RBDO iteration [43]. However, RBDO using probabilistic re-analysis is dependent on restrictive
assumptions on the structure of the design and random variables, and does not guarantee the
accuracy of probability of failure estimates in each RBDO iteration since it is sensitive to the
quality of existing offline samples. Beaurepaire et al. [44] proposed a method for reusing existing
information in the context of RBDO through bridge importance sampling, which is an adaptive
sampling scheme that uses Markov Chain Monte Carlo to sample from intermediate densities. The
initial density for the bridge importance sampling at the current design is constructed using the
existing density from previous optimization iterations whose mode leads to the limit state function
at the current design to be closest to the failure boundary while being within the failure threshold.
This requires multiple new evaluations of the limit state function for implementing the reuse. While
similar in purpose, our method is fundamentally different from the existing work of Beaurepaire
et al. [44] in the way information from past optimization iterations is reused through a two-step
process. We directly connect to variance reduction for probability of failure estimates by building
the a posteriori biasing densities (leading to optimal biasing densities for the existing designs).
Note that no new evaluations of the expensive limit state function are required to implement our
information reuse. We next outline several important advantages of our method.

The key contribution of this paper is a new approach for reusing information from past optimiza-
tion iterations in the context of importance-sampling-based RBDO. There are several advantages
of the proposed IRIS-RBDO method. First, the method is computationally efficient as it does not
require building a biasing density from scratch at every iteration and can build efficient biasing den-
sities by reusing existing information. The computational efficiency is demonstrated through two
numerical experiments. Second, the method can overcome bad initial biasing densities by reusing
samples to build (at every design iteration) a posteriori biasing densities for future reuse. Third,
the method is potentially useful for building biasing densities for disconnected feasible regions or
multiple failure regions because it uses a mixture of existing biasing densities. Using mixture den-
sities has been shown to be useful for multiple disconnected failure regions for probability of failure
estimation [27, 28]. The novelty of our approach lies in the way we choose the mixture densities
from the existing biasing densities, and the mixing weights in the context of RBDO. Fourth, there
is no bias in the IRIS-RBDO reliability analysis and it can maintain a desired level of accuracy in
the reliability estimates in every optimization iteration.

The rest of the paper is structured as follows. Section 2 provides the RBDO formulation and
background on methods used to estimate the probability of failure. Section 3 describes the details
of the proposed IRIS-RBDO method along with the complete algorithm. The effectiveness of IRIS-
RBDO is shown using a benchmark speed reducer problem in Section 4 and a combustion engine
model in Section 5. Section 6 presents the conclusions.

2. Reliability-based design optimization (RBDO)

This section describes the RBDO formulation used in this work (Section 2.1) followed by existing
Monte Carlo methods for estimating the probability of failure. Section 2.2 describes the Monte Carlo
estimate and Section 2.3 describes the importance sampling estimate for probability of failure.

2.1. RBDO formulation

The inputs to the system are nd design variables d ∈ D ⊆ Rnd and an nr-dimensional random
variable Z : Ξ→ Ω ⊆ Rnr defined on the sample space Ξ and with the probability density function
p, henceforth called nominal density. Here, D denotes the design space and Ω denotes the random
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sample space. A realization of Z is denoted as z ∈ Ω. We use z ∼ p to indicate that the
realizations are sampled from distribution p. We are interested in the RBDO problem that uses a
reliability constraint—herein a failure probability—to drive the optimization. The RBDO problem
formulation used in this work is

min
d∈D

J(d) = Ep[f(d, Z)]

subject to P(g(d, Z) < 0) ≤ Pthresh,
(1)

where J : D 7→ R is the cost function, f : D × Ω 7→ R is the quantity of interest, g : D × Ω 7→ R
is the limit state function, and Pthresh is the acceptable threshold on the probability of failure.
Without loss of generality, the failure of the system is defined by g(d, Z) < 0. With Ep[f(d, Z)] =∫

Ω
f(d, z) p(z)dz we denote the expectation of the random variable f(·, Z) with respect to the

density p.

2.2. Monte Carlo estimate for probability of failure

The solution of the RBDO problem given by Eq. (1) is obtained via an iterative procedure where
the optimizer evaluates a sequence of design iterates while seeking a minimum-cost solution that
satisfies the reliability constraint. Let dt be the design in optimization iteration t and define the
corresponding failure set as

Gt = {z | z ∈ Ω, g(dt, z) < 0}. (2)

We emphasize that evaluating the limit state function, g, and hence checking if z ∈ Gt, requires
evaluation of an expensive-to-evaluate model. The indicator function IGt : D×Ω→ {0, 1} is defined
as

IGt(dt, z) =

{
1, z ∈ Gt,
0, else.

(3)

The Monte Carlo estimate of the probability of failure P (dt) := P(g(dt, Z) < 0) is given by

P̂MC
p (dt) =

1

mt

mt∑
i=1

IGt(dt, zi), zi ∼ p, (4)

where zi, i = 1, . . . ,mt are the mt samples from probability density p used in iteration t. The
subscript for P̂ denotes the density from which the random variables are sampled to compute the
estimate.

In Monte Carlo simulation for estimating small probabilities, the number of samples required
to achieve a fixed level of accuracy in the probability estimate scales inversely with the probability
itself. Due to the low probability of failure for reliable designs, standard Monte Carlo sampling
would be computationally infeasible for expensive-to-evaluate limit state functions because the
number of samples, mt, required to reach an acceptable level of accuracy would be prohibitively
large.

2.3. Importance sampling estimate for probability of failure

Importance sampling is a change of measure—from the nominal density to the biasing density—
that is corrected via re-weighting of the samples drawn from the new measure. In probability of
failure estimation, a biasing density is sought so that many samples lie in the set Gt. In this
work, we use a parametric biasing density denoted by qθt for optimization iteration t, where θt
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denotes the parameters of the distribution. The biasing density must satisfy supp(IGt(dt, Z)p(Z)) ⊂
supp(qθt(Z)). The importance sampling estimate for P (dt) is given by

P̂ IS
qθt

(dt) =
1

mt

mt∑
i=1

IGt(dt, z′i)
p(z′i)

qθt(z
′
i)
, z′i ∼ qθt , (5)

where z′i, i = 1, . . . ,mt are the mt samples from probability density qθt used in iteration t. The

ratio
p(z′i)
qθt (z

′
i)

is called the importance weight, or likelihood ratio.

The unbiased sample variance for the importance sampling estimate is defined by
σ̂2
mt

mt
, where

σ̂2
mt is estimated by

σ̂2
mt =

1

mt − 1

mt∑
i=1

(IGt(dt, z′i)
p(z′i)

qθt(z
′
i)
− P̂ IS

qθt
)2, z′i ∼ qθt .

The relative error, or coefficient-of-variation, in the probability of failure estimate is given by

e(P̂ IS
qθt

) =
1

P̂ IS
qθt

√
σ̂2
mt

mt
. (6)

The importance sampling estimate of the failure probability is unbiased, i.e.,

Ep[IGt(dt, ·)] = Eqθt

[
IGt(dt, ·)

p

qθt

]
.

3. IRIS-RBDO: Information reuse in importance sampling for RBDO

We propose an efficient importance-sampling-based RBDO method that reduces computational
cost through two levels of reusing existing information:

1. Reusing existing samples from the reliability computation in the current iteration to build
an a posteriori biasing density with optimal parameters (see Theorem 1) that minimize the
Kullback-Leibler divergence measure as described in Section 3.1.

2. Reusing existing biasing densities from nearby designs as described in Section 3.2.

The complete IRIS-RBDO algorithm is summarized in Section 3.3.

3.1. Reusing samples for a posteriori biasing density with optimal parameters

The first level of information reuse consists of building an a posteriori biasing density. We
propose a method for approximating the optimal biasing density at current iteration t by reusing
the current batch of samples that are used in the probability of failure computation. This first
level of reuse builds on the ideas developed in the cross-entropy method for probability of failure
estimation [24] applied to the context of reusing samples in the RBDO setup. The novelty lies in
the way KL divergence is applied to reusing existing data in the optimization loop (after getting the
reliability estimate), which is tailored to the two-loop RBDO setup. While we do use KL divergence
as a distance measure to formulate the optimization problem to solve for the a posteriori density,
our approach is different from the cross-entropy method (where KL divergence is used during the
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reliability estimate at a particular design in the RBDO iteration). Note that this reuse method
can be extended to use with cross-entropy method, where the initial density can be defined by
the mixture of these a posteriori densities (as described in Section 3.2) to reduce the number of
cross-entropy iterations.

After evaluating the importance-sampling failure probability estimate P̂ IS
qθt

(dt) with density qθt ,

we can compute an a posteriori biasing density that is close to the optimal (also known as zero-
variance) biasing density. It is known [45, Chapter 9] that the theoretical optimal biasing density

results in the estimate P̂ IS
h∗t

(dt) having zero variance, and is given by

h∗t (z) =
IGt(dt, z)p(z)

P (dt)
, (7)

where the superscript for h∗t denotes that it is the optimal biasing density for RBDO iteration t.
However, due to the occurrence of P (dt) in Eq. (7), it is not practical to sample from this density.

Consequently, we want to find an a posteriori biasing density that is close to h∗t . In this work,
the KL divergence [46] is used as the distance measure between two distributions. We thus define a
density qθ parameterized by θ ∈ P and want to minimize the KL divergence to h∗t , which is defined
as

KL(h∗t ‖ qθ) = Eh∗t

[
ln

(
h∗t
qθ

)]
=

∫ ∞
−∞

ln

(
h∗t (z)

qθ(z)

)
h∗t (z) dz. (8)

The optimal parameters for qθ for RBDO iteration t are given by θ∗t , where the superscript denotes
that it is the optimal solution. Then θ∗t can be found by solving an optimization problem given by

θ∗t = arg min
θ∈P

KL(h∗t ‖ qθ)

= arg min
θ∈P

Eh∗t

[
ln

(
h∗t
qθ

)]
= arg min

θ∈P

∫
z∈Ω

ln(h∗t (z))h∗t (z) dz −
∫
z∈Ω

ln(qθ(z))h∗t (z) dz

= arg min
θ∈P

−
∫
z∈Ω

ln(qθ(z))h∗t (z) dz

= arg min
θ∈P

−Eh∗t [ln(qθ)]

= arg min
θ∈P

−Ep [IGt(dt, ·) ln(qθ)] ,

(9)

where in the last step we used the definition of the optimal biasing density from Eq. (7), and dropped
the term P (dt) as it does not affect the optimization. Since the integral requires evaluating the
failure region, we use again importance sampling with density qθt to obtain an efficient estimate,
i.e.,

Ep [IGt(dt, ·) ln(qθ)] = Eqθt

[
IGt(dt, ·)

p

qθt
ln(qθ)

]
. (10)

Overall, we obtain the closest biasing density in KL distance via

θ∗t = arg min
θ∈P

−Eqθt
[
IGt(dt, ·)

p

qθt
ln(qθ)

]
≈ arg min

θ∈P
−

mt∑
i=1

[
IGt(dt, z′i)

p(z′i)

qθt(z
′
i)

ln(qθ(z
′
i))

]
, (11)
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where we replaced the expectation by an importance sampling estimate and z′ is sampled from the
biasing density qθt . Note that z′ samples are existing samples that are reused after the probability
of failure for dt is already estimated.

We choose a multivariate normal distribution as the parametric distribution for qθ. However, the
method can be applied to any choice of parametric distribution. In order to find analytic solutions
for the parameters, the chosen distribution can be mapped to an exponential family. One can also
directly sample from the zero-variance optimal biasing density h∗t using Markov chain Monte Carlo
and this could be a possible extension to the proposed method.

For the case of the multivariate normal distribution, i.e., qθ∗t ∼ N (µt,Σt), (and for several other
parametric distributions, specifically the exponential family of distributions), an analytic solution
of the optimal parameters θ∗t can be derived and shown to be the global optimum for Eq. (11) as
described below.

Theorem 1. Let qθ∗t ∼ N (µt,Σt) be a multivariate normal distribution, with the mean vector

µt =
[
µ1
t , . . . , µ

nr
t

]>
and Σt =

[
Σj,kt

]
j,k=1,...,nr

being the symmetric positive definite covariance

matrix. Let z′i =
[
z′i,1, . . . , z

′
i,nr

]> ∼ qθt represent the ith sample vector and z′i,j represent the jth
entry of the ith sample vector for j ∈ {1, . . . , nr}. Then the parameters θ∗t = {µt,Σt} are given by

µjt =

∑mt
i=1 IGt(dt, z′i)

p(z′i)
qθt (z

′
i)
z′i,j∑mt

i=1 IGt(dt, z′i)
p(z′i)

qθt (z
′
i)

=

∑|Gt|
i=1

p(z′i)
qθt (z

′
i)
z′i,j∑|Gt|

i=1
p(z′i)

qθt (z
′
i)

, (12)

Σj,kt =

∑mt
i=1 IGt(dt, z′i)

p(z′i)
qθt (z

′
i)

(z′i,j − µjt )(z′i,k − µkt )∑mt
i=1 IGt(dt, z′i)

p(z′i)

qθt (z
′
i)

=

∑|Gt|
i=1

p(z′i)
qθt (z

′
i)

(z′i,j − µjt )(z′i,k − µkt )∑|Gt|
i=1

p(z′i)

qθt (z
′
i)

. (13)

and are the global optimum for the optimization problem given by Eq. (11).

Proof. See Appendix A.

Constructing the a posteriori biasing density by reusing the existing samples as proposed here
can help overcome a bad initial biasing density. Example 2 presents a two-dimensional example to
illustrate the effectiveness of the a posteriori biasing density constructed through the first level of
information reuse in the proposed IRIS-RBDO method. These a posteriori biasing densities are
then stored in a database for future optimization iterations to facilitate the second level of reuse in
IRIS-RBDO as described in Section 3.2.

Example 2. We give a simple example to illustrate the reuse of samples to build the a posteriori
biasing density, which constitutes the first level of information reuse in IRIS-RBDO. We compare
with a common method to built biasing densities following [18], where the biasing density is chosen to
be the normal distribution with mean shifted to the most probable failure point (MPP, see Appendix
B on how to compute) and the same standard deviation as the nominal density.

Given is a two-dimensional random variable Z with nominal density p ∼ N
([

1
10

]
,

[
0.12 0

0 32

])
.

The limit state function is g(z) = 18 − z1 − z2. Failure is defined as g(z) < 0. In this case,
the MPP is located at z1 = 1.0078, z2 = 16.9922. Therefore, the MPP-based biasing density is

qMPP ∼ N
([

1.0078
16.9922

]
,

[
0.12 0

0 32

])
.
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KL-MVN denotes the first level of information reuse in IRIS-RBDO used for building the a pos-
teriori biasing density with optimal parameters θ∗ for the multivariate normal distribution using KL

divergence as described in Section 3.1. In this case, qθ∗ ∼ N
([

1.0107
18.0124

]
,

[
0.01 −0.0112
−0.0112 0.8812

])
.

We compute the probability of failure using importance sampling to be 9.7×10−3. The coefficient
of variation of probability of failure estimate using the MPP-based biasing density is 0.0164 and
KL-MVN-based biasing density is 0.0081. In both cases, 104 samples are used from the biasing
densities. For this example, we observe that the KL-MVN biasing density (constructed without any
additional calls to the limit state function) is a better biasing density since it leads to a reduction
in the coefficient of variation by around a factor of two compared to using the MPP-based biasing
density. Notice that this example has a linear limit state function which makes it easy to find
the MPP, leading to a good biasing density using MPP. This makes the reduction in coefficient of
variation of probability of failure estimate by a factor of two using KL-MVN biasing density even
more impressive and the gains will be potentially much higher for non-linear limit states, where
finding a good biasing density using MPP is much more difficult.

Figure 2 shows the resulting biasing densities and the failure boundary. Note that the MPP-
based biasing density successfully tilts the distribution towards the failure region. However, since
the MPP-based method chooses the same variance as the nominal density with mean on the failure
boundary, samples drawn from that biasing density are far from the failure boundary and about 50%
of the samples are in the safe region. This results in either small importance weights (which are
prone to numerical errors and increase variance in the estimate) or uninformative samples (in the
safe region with indicator function equal to zero). As can be seen from Figure 2, the information-
reuse-based a posteriori biasing density places a large portion of samples in the failure region, and
close to the failure boundary, which leads to good importance weights and variance reduction.

0.8 0.9 1 1.1 1.2 1.3

4

6

8

10

12

14

16

18

20

22

24

Figure 2: Illustrative example comparing a posteriori biasing density with MPP-based biasing density.
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3.2. Reusing biasing densities from nearby designs for failure probability computation

The second level of information reuse involves reusing the existing a posteriori biasing densities
(see Section 3.1) from past RBDO iterations to construct a biasing density in current design iter-
ation t. We propose to reuse the a posteriori biasing densities corresponding to existing designs
d0, . . . ,dt−1 from past optimization iterations that are close in design space.

A neighborhood of designs is defined as: Mt := {dj | 0 ≤ j ≤ t− 1, ‖dj − dt‖2 ≤ r}, where r
is the radius of the hypersphere defined by the user. The weights βj , j = 0, . . . , t − 1 for existing
a posteriori biasing densities are defined according to the relative distance of design point dt to
previously visited design points as

βj :=


‖dj−dt‖−1

2∑
dj∈Mt

‖di−dt‖−1
2

, 0 ≤ j ≤ t− 1, ‖dj − dt‖2 ≤ r

0, else
. (14)

Note that
∑t−1
j=0 βj = 1. The weights for each biasing density in our second level of information

reuse reflects a correlation between the designs, which exists if designs are close to each other.
Nearby designs from past optimization iterations will likely have similar failure regions and thus
similar biasing densities. We set the radius of the hypersphere to only include designs that are in
close proximity to the current design, and otherwise set the weight to zero as seen in Eq. (14). In
this work, we chose the l2-norm as the distance metric, however, any other norm can also be used
in this method.

The information reuse biasing density for current design iteration t is defined by the mixture of
existing a posteriori biasing densities as given by

qθt :=

t−1∑
j=0

βjqθ∗j , (15)

where qθ∗j are all the a posteriori biasing densities constructed using the first level of information

reuse (see Section 3.1) from the past RBDO iterations j ∈ {0, . . . , t − 1} that are stored in a
database. Using a mixture distribution for constructing the biasing density also has the potential
to capture multiple disconnected failure regions.

3.3. Algorithm and implementation details

Algorithm 1 describes the implementation of IRIS-RBDO method that constitutes of two levels
of information reuse for an RBDO problem as described by Eq. (1). In this work, we set the radius
of the specified hypersphere r to 0.5% of the largest diagonal of the hypercube defining the design
space. We note that a distance measure of this nature works best if the design space is normalized
so that each design variable has the same scale. The second level of information reuse described
in Section 3.2 is used only if there are nearby designs. If there are no nearby designs (Mt = ∅)
for current optimization iteration t, we use an MPP-based [18] method (see Appendix B on how
to compute) for building a biasing density for importance sampling with no reuse. However, any
other method depending on the user’s preference can be chosen to build the biasing density for
importance sampling with no reuse. Note that we do not put any restrictions on how many designs
to reuse, i.e., we reuse information from all nearby designs within the specified radius r, see Eq. (14).
However, the user can choose to limit the number of reused designs.
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Algorithm 1 IRIS-RBDO: Information reuse in importance-sampling-based RBDO

Input: Cost function J(·), limit state function g(·), nominal density p, design space D, initial
design d0, hypersphere radius r, coefficient of variation tolerance εtol, maximum number of samples
mmax, threshold on probability of failure Pthresh

Output: Optimal design d∗, optimal cost Jopt

1: procedure IRIS RBDO(p,D,d0, r, εtol,mmax, Pthresh)
2: Build biasing density qθ0 for d0 from scratch . For MPP-based method, see Appendix B

3: (P̂ IS
qθ0

(d0),G0) = ProbabilityOfFailure(p, qθ0 ,d0, εtol,mmax) . See Algorithm 2

4: Evaluate cost function J(d0)

5: if P̂ IS
qθ0

(d0) ≤ Pthresh then . Check if design is reliable

6: Jopt ← J(d0) . Assign optimal cost
7: d∗ ← d0 . Assign optimal design
8: else
9: Jopt ← 1010 . Initialize optimal cost

10: end if

11: t = 0
12: while optimization not converged do
13: Calculate µt using Eq. (12) and samples from qθt
14: Calculate Σt using Eq. (13) and samples from qθt
15: qθ∗t ← N (µt,Σt) . Reusing existing samples: a posteriori biasing density

16: t← t+ 1
17: Get design dt from optimizer
18: Mt ← {dj | 0 ≤ j ≤ t− 1, ‖dj − dt‖2 ≤ r} . Neighborhood designs
19: if Mt 6= ∅ then . Nearby designs exist
20: Compute weights βj ∀ j = 0, . . . , t− 1 using Eq. (14)

21: qθt ←
∑t−1
j=0 βjqθ∗j . Reusing existing biasing densities: mixture of qθ∗j

22: else
23: Build biasing density qθt from scratch . No nearby previous designs
24: end if
25: (P̂ IS

qθt
(dt),Gt) = ProbabilityOfFailure(p, qθt ,dt, εtol,mmax) . See Algorithm 2

26: Evaluate cost function J(dt)

27: if J(dt) ≤ Jopt and P̂ IS
qθt

(dt) ≤ Pthresh then

28: Jopt ← J(dt) . Assign optimal cost
29: d∗ ← dt . Assign optimal design
30: end if
31: end while
32: return d∗, Jopt

33: end procedure

Algorithm 2 shows the implementation for the failure probability estimation required in every
iteration of Algorithm 1. We require the coefficient of variation defined in Eq. (6), in the probability
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of failure estimate to be within acceptable tolerance εtol at iteration t. That is, we require

e(P̂ IS
qθt

) ≤ εtol. (16)

The value for εtol can be set by the user depending on the level of accuracy required for a specific
application. We choose εtol ∈ [10−2, 10−1] in the applications presented in this paper. We follow
an iterative process to add samples and check if the coefficient of variation is below a specified
error tolerance. In this work, 100 samples are added at a time. However, to ensure termination of
the algorithm in case this criterion is not met, we set a maximum number of samples mmax that
shall not be exceeded at every design iteration. Note that mmax can typically be set by taking into
account the values of Pthresh and εtol.

Algorithm 2 Probability of failure estimate

Input: Limit state function g(·), design dt, nominal density p, biasing density qθt , coefficient of
variation tolerance εtol, maximum number of samples mmax

Output: Probability of failure estimate P̂ IS
qθt

(dt), failure set Gt
1: procedure ProbabilityOfFailure(p, qθt ,dt, εtol,mmax)
2: mt = 0 . Number of samples
3: madd = 100 . 100 samples are added at a time
4: e(P̂ IS

qθt
) = 100εtol

5: Z ′t = ∅
6: while (mt ≤ mmax) or (e(P̂ IS

qθt
) > εtol) do

7: Get madd samples {z′1, . . . ,z′madd
} from qθt

8: mt ← mt +madd

9: Z ′t ← Z ′t ∪ {z′1, . . . ,z′madd
}

10: Compute probability of failure

P̂ IS
qθt

(dt) =
1

mt

mt∑
i=1

IGt(dt, z′i)
p(z′i)

qθt(z
′
i)

11: Calculate coefficient of variation in probability of failure estimate e(P̂ IS
qθt

) using Eq. (6)
12: end while
13: Gt ← {z | z ∈ Z ′t, g(dt, z) < 0} . Failure set

14: return P̂ IS
qθt

(dt),Gt
15: end procedure

After estimating P̂ IS
qθt

(dt) within the specified relative error tolerance εtol, we reuse the existing
samples to construct the a posteriori biasing density qθ∗t with optimal parameters θ∗t using the
method described in Section 3.1. The algorithm then proceeds to the next optimization iteration.

Remark 3 (Defensive importance sampling). Importance sampling (with a good biasing density)
is efficient for small probabilities and we are commonly interested in low probabilities of failure in
reliable engineering design applications. It should be noted that for large probabilities, importance
sampling can be inefficient. To ensure a robust method to guard against such cases when building
biasing densities for importance sampling with no reuse, one can use defensive importance sampling
(described in Appendix C) in combination with a method of choice for importance sampling (in
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our case, MPP-based). However, we found biasing densities built using IRIS to be efficient without
the use of defensive importance sampling even for higher probabilities of failure. A reason is that
we build the a posteriori biasing density via a weighted sample average as given by Eqs. (12) and
(13), where the weights depend on the distance from the nominal density, naturally and efficiently
encoding the defensive part. For high probabilities of failure, IRIS should potentially lead to similar
number of required samples as defensive importance sampling or generic Monte Carlo sampling,
and we see that to be the case in our numerical experiments.

Remark 4 (Optimizer and gradients). We emphasize that this work does not develop a particular
optimization algorithm for RBDO but provides a general method of efficiently integrating infor-
mation from past optimization iterations into the reliability analysis. In this work, we show the
efficiency of the proposed method for both a gradient-free optimizer and a gradient-based optimizer.
Typically, it is difficult to accurately estimate gradients of probability of failure making it challenging
to use a gradient-based optimizer for RBDO. However, for high-dimensional optimization problems
gradient-based optimizers often are the only choice. If one wants to use a gradient-based optimizer
for black-box optimization, finite difference (although not the most efficient) is a generic choice for
calculating derivatives in a number of off-the-shelf optimizers. The IRIS method offers an advantage
when finite difference is used to calculate the gradients because it reuses biasing densities from a
very close design (since the finite difference step-size is very small) and leads to efficient estimates

for the probability of failure gradients. For differentiable P̂ IS
qθ

(d), the finite difference estimate for
derivative of the probability of failure at any given design d is

∂P̂ IS
qθ

(d)

∂di
≈
P̂ IS
qθ′

(d+ δei)− P̂ IS
qθ

(d)

δ
,∀i = 1, . . . , nd

where δ is a small perturbation, and ei is the ith unit vector. We can ensure that every probability
of failure estimate meets a set error tolerance εtol as seen in Algorithm 2. The error in probability
of failure estimates directly affect the variance of the finite difference estimator for the derivatives,
and thus ensures that the variance is also under a certain tolerance. The variance of the finite
difference estimate for the derivatives using IRIS is given by

Var

[
∂P̂ IS

qθ
(d)

∂di

]
≈ 1

δ2

(
Var[P̂ IS

qθ′
(d+ δei)] + Var[P̂ IS

qθ
(d)]

)
≤ ε2tol

δ2

(
P̂ IS
qθ′

(d+ δei)
2 + P̂ IS

qθ
(d)2

)
.

Notice that since δ(� r) is a small perturbation, we can use the IRIS method for rest of the nd
probability of failure estimates required in the finite difference scheme after estimating P̂ IS

qθ
(d). Thus,

using IRIS we need substantially fewer samples to estimate P̂ IS
qθ′

(d+δei) while maintaining the same
error tolerance εtol in the probability of failure estimates required in the finite difference scheme as
compared to regular Monte Carlo estimator or importance sampling without reuse. The variance of
the derivative is also controlled through the error tolerance given by Equation (16). Further variance
reduction at the cost of additional bias can be obtained by using common random numbers [47, 48]
for the finite difference scheme. There are also several approximate methods available for estimating
the gradient of probability of failure that can also be used to solve the RBDO problem [49, 50, 12, 51].

4. Benchmark problem: Speed reducer

The speed reducer problem used in Ref. [52, Ch.10] is a benchmark problem in RBDO. Here,
we make the problem more challenging by modifying the limit state functions in order to lead
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to lower probabilities of failure for the system. We set a lower threshold probability of failure
of Pthresh = 10−3, as compared to 10−2 in Ref. [52]. The tolerance on coefficient of variation in
probability of failure estimation within IRIS-RBDO is set to εtol = 0.01. This makes the estimation
of the lower failure probabilities within the specified tolerance more expensive and challenging than
the original problem. The inputs to the system are six design variables defined in Table 1 and three
uncertain variables defined as uncorrelated random variables in Table 2. Note that the method can
handle any distribution for the random variables and they do not need to be uncorrelated. We fix
the number of gear teeth to 17.

Table 1: Design variables d = [d1, . . . , d6] ∈ D ⊆ R6 used in the speed reducer application.

Design variable Lower bound (mm) Upper bound (mm) Initial design (mm) Best design (mm)
d1 2.6 3.6 3.5 3.5
d2 0.7 0.8 0.7 0.7
d3 7.3 8.3 7.3 7.3
d4 7.3 8.3 7.72 7.88
d5 2.9 3.9 3.35 3.45
d6 5.0 5.5 5.29 5.34

Table 2: Uncertain variables modeled as vector-valued random variable z ∈ Ω ⊆ R3 with realization z = [z1, z2, z3]
used in the speed reducer application.

Random variable Distribution Mean Standard deviation (µm)
z1 Normal d2 1
z2 Normal d4 30
z3 Normal d6 21

The RBDO problem formulation used in this work is given by

min
d∈D

J(d) = Ep[f(d, Z)]

subject to P(gi(d, Z) < 0) ≤ Pthresh = 10−3, i ∈ 1, 2, 3,
(17)

where

f(d, z) = 0.7854d1z
2
1(3.3333× 172 + 14.9334× 17− 43.0934)

− 1.5079d1(z2
3 + d2

6) + 7.477(z3
3 + d3

6) + 0.7854(z2z
2
3 + d4d

2
7),

(18)

is a cost function that penalizes the material used in the manufacturing process with units of mm3.
The limit state functions are

g1(d, z) = 1− 1.93z3
2

17z1z4
3

,

g2(d, z) = 1120− A1

B1
, A1 =

[(
745z2

17z1

)2

+ 16.9× 106

]0.5

, B1 = 0.1z3
3 ,

g3(d, z) = 870− A2

B2
, A2 =

[(
745d4

17z1

)2

+ 157.5× 106

]0.5

, B2 = 0.1d3
6.

(19)
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We used the COBYLA (constrained optimization by linear approximation) optimizer from the
NLopt package to run the optimization and also set a cut-off for maximum number of samples to be
used in each optimization iteration to mmax = 5× 105. COBYLA is a gradient-free optimizer. We
compare the efficiency of probability of failure estimates using the proposed IRIS-RBDO method
that reuses information to importance sampling with no information reuse. We also compare
those results to subset simulation [29], a state-of-the-art method in reliability analysis and failure
probability estimation.4

Figure 3 (a) shows the IRIS-RBDO convergence history versus the cumulative computational
cost in terms of number of samples used. We see that the optimization requires around 2 × 105

samples before it finds the first feasible design. The probability of failure history seen in Figure 3
(c) shows the progress of designs from infeasible to feasible regions during the optimization. The
best design obtained in this case is given in Table 1, which had an associated cost of 3029.2 mm3.

The total number of samples used in each optimization iteration in IRIS-RBDO versus impor-
tance sampling with no reuse and subset sampling is shown in Figure 4 (a). Note that we are
showing the plots for the same designs in each RBDO iteration for all the cases, which makes it
a one-to-one comparison. When no designs are nearby, our method also builds a biasing density
with no reuse, hence the two markers overlap in those iterations. Otherwise, IRIS-RBDO always
outperforms the other methods. IRIS-RBDO leads to overall computational savings of around 51%
compared to importance sampling with no reuse and subset sampling throughout the optimization.
Current implementation of subset simulation performs similar to the importance sampling with no
reuse for the speed reducer problem. For this problem, subset simulation using 104 samples in each
level does not meet the error tolerance (see Figure 4 (c)). However, IRIS and importance sampling
with no reuse meet the set tolerance (εtol = 0.01) on the coefficient of variation in probability of
failure estimate for every optimization iteration as seen in Figure 4 (c).

Figure 4 (b) compares performance of IRIS-RBDO vs importance sampling with no reuse and
subset simulation by showing the number of samples required for the corresponding probability of
failure estimates. For the case when there is no reuse, we see that the required number of samples
is approximately inversely proportional to the respective probability of failure. However, for IRIS
the required number of samples depend on the quality and amount of information reused. In this
case, using IRIS we considerably reduce the number of samples required even for lower probabilities
of failure due to the extra information about the failure boundary encoded in the biasing density
by reusing information from the past optimization iterations. As noted before, when the markers
overlap it means that there was no nearby designs and the biasing density was built with no reuse
(here, MPP-based) during IRIS-RBDO.

The number of designs reused in each optimization iteration of IRIS-RBDO is shown in Figure 5.
Reusing designs leads to computational savings because of better biasing densities. As the itera-
tion converges, IRIS-RBDO finds many close designs and beneficially reuses the biasing densities;
compare this to Figure 4 (a) to see how reuse saves model evaluations. However, note that the
computational savings are not directly proportional to the number of reused designs. For iterations
where no designs were reused—typically in the early design space exploration stage—the biasing

4We use the recent Markov Chain Monte Carlo implementation for subset simulation of [30] (https:
//www.mathworks.com/matlabcentral/fileexchange/57947-monte-carlo-and-subset-simulation-example?s_

tid=prof_contriblnk) where we use 104 samples in each level. Note that we tried different sample sizes for each
level and settled on 104 in order to get close to the set error tolerance. For this problem, subset simulation does not
meet the set error tolerance as seen later. We use the approximate error estimate for subset simulation from [30].
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Figure 3: Optimization progress using IRIS-RBDO showing (a) the objective function value for designs from all
optimization iterations, (b) magnified convergence plot of feasible designs against the cumulative computational cost
in terms of number of samples, and (c) probability of failure history in each optimization iteration for the speed
reducer problem.
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Figure 4: Comparison of IRIS, importance sampling (IS) with no reuse and subset simulation for the same designs
showing (a) number of samples required in each optimization iteration, (b) number of samples required to calculate
the corresponding probabilities of failure, and (c) error in probability of failure estimate (quantified by the coefficient
of variation) in each optimization iteration for the speed reducer problem.
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density was built without any information reuse (here, MPP-based).
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Figure 5: Number of designs reused in IRIS in each optimization iteration for the speed reducer problem.

5. RBDO for a combustion engine model

In this section, we show the effectiveness of the proposed IRIS-RBDO method when applied to
the design of a combustion engine. The advent of reusable rockets for space flight requires new,
more durable, engine designs [53]. Satisfying reliability constrains is not only important for safety,
but also for durability, as failure to meet reliability constraints results in excessive wear of the
engine, in turn limiting the rockets’ repeated use. The computational model used to analyze the
combustion engine is described in Section 5.1. Section 5.2 describes the RBDO problem formulation
and the results are discussed in Section 5.3.

5.1. Computational model

We consider a continuously variable resonance combustor (CVRC), which is a single element
model rocket combustor as illustrated in Figure 6. The CVRC is an experiment at Purdue University
which has been extensively studied both experimentally [54, 55, 56] and computationally [57, 58, 59].

5.1.1. Governing equations and geometry

The experiment is modeled with a quasi-1D5 partial differential equation model. Figure 7 shows
the computational domain of the combustor, plotting the one-dimensional spatial variable x versus
the combustor radius R(x). From left to right, the figure shows the five important combustor
segments, separated by the dashed lines: the injector, back-step, combustion chamber, back-step
and nozzle. The injector length is Li = 3.49cm, the chamber length is Lc = 38.1cm, the length

5The three dimensional state variables are averaged across the combustor, resulting in a stream-wise dependence
of the state variables, i.e., states are x-dependent.
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Figure 6: CVRC experimental configuration from [55]. The computational domain for the reactive flow computations
is given in Figure 7.

of both backsteps is fixed at Lbs = 3.81cm and the nozzle length is Ln = 0.635cm. The spatial
variable is thus considered as x ∈ −Li ≤ x ≤ 2Lbs + Lc + Ln. The injector radius is given by Ri
and the combustion chamber radius is given by Rc. The nozzle radii are Rt = 1.0401cm at the
throat and 1.0922cm at the exit. The quasi-1D Euler partial differential equation model for the
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Figure 7: Computational domain (dashed area in Fig. 6) for the CVRC model combustor and its segments. The
injector radius Ri and combustion chamber radius Rc are design parameters (for this plot chosen as the mean of the
design parameter intervals). The location of the fuel source, Lf , is also a design variable.

CVRC [59, 60] is given as

∂

∂t


ρ
ρu
E
ρYox

 = − 1

A

∂

∂x


Aρu

A(ρu2 + p)
Au(E + p)
AρuYox

+


ω̇f

p
A

dA
dx + ω̇fu
ω̇f∆h0

−ω̇f/Cf/o

 , (20)
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which we solve for the steady-state solution ∂
∂t = 0 via pseudo-time stepping. In the following we

compute steady-state solutions for Eq. (20), i.e., time-independent solutions. The velocity is u(x)
and Yox(x) is the oxidizer mass fraction. The state variables are density ρ(x), specific momentum
ρ(x)u(x), total energy E(x), and ρ(x)Yox(x). The equation of state

E =
p

γ − 1
+

1

2
ρu2 (21)

relates energy and pressure p(x) via the heat capacity ratio γ. In the source terms of Eq. (20),
which model the chemical reaction and the cross-sectional area variation, ∆h0 denotes the heat of
reaction, which is taken as a constant. The fuel-to-oxidizer ratio is the parameter Cf/o. Moreover,
A = A(x) = πR2(x) encodes the cross-sectional area of the combustor as a function of x. Fuel at
a mass-flow rate ṁf is injected through an annular rig at the backstep after the oxidizer injector,
centered at coordinate x = Lf , see also Fig. 7. The forcing function ω̇f in Eq. (20) is then modeled
as

ω̇f (x, ṁf ) =
ṁf

A(x)
∫ 2Lbs+Lc+Ln

−Li
(1 + sin(ξ(x)))dx

(1 + sin(ξ(x))), (22)

ξ(x) =

{
−π2 + 2π x−ls

lf−ls , ls < x < lf

0, else
. (23)

The computational model is a finite-volume discretization with upwinding, where we use 800 non-
uniform finite volume elements and a fourth order Runge-Kutta integration scheme. The CPU time
required for one evaluation of the computational model is on average around 20 seconds.

5.1.2. Boundary conditions

The inlet boundary condition is modeled via a subsonic inlet. At the inlet, we prescribe the
oxidizer mass flow rate ṁox and the oxidizer concentration Yox. The inlet stagnation temperature
T0 is determined as follows: we prescribe a reference temperature T∞ and reference pressure p∞,
which are typically given from upstream components of an engine. We then use the relation T0 =

T∞ + 1
2

ṁ2
oxR

2
gasT

2
∞

A2p2∞Cp
with universal gas constant Rgas = 8.314 × 103 g

mol and specific heat of the fuel

Cp = 4.668 × 103 J
kg K . Due to the subsonic nature of the boundary, the pressure is extrapolated

from the domain. Having ṁox, Yox, T0, p at the inlet allows us to compute the boundary conditions
for the state variables. The downstream boundary is modeled as a supersonic outlet, with constant
extrapolation of the state variables.

5.1.3. Design variables

We define a four-dimensional design space D with the following design variables d ∈ D ⊆ R4:
the geometric parameters of the injector radius Ri, the combustion chamber radius Rc and the
location of the fuel injection Lf (see Figure 7), and the mass-flow rate ṁf that enters into the
forcing model in Eq. (22). The design variables d = [Ri, Rc, Lf , ṁf ] and the respective bounds
are given in Table 3.

5.1.4. Uncertain variables

The reference pressure p∞ and the reference temperature T∞ are typically measured from up-
stream components of the combustion engine and are therefore subject to uncertainty. They enter
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Table 3: Design variables d = [Ri, Rc, Lf , ṁf ] ∈ D ⊆ R4 used in the combustion engine problem.

Design variable Description Range Initial design Best design
Ri Injector radius [0.889, 1.143]cm 1.02 1.14
Rc Combustion chamber radius [1.778, 2.54]cm 2.16 2.41
Lf Location of fuel injection [3.5, 4]cm 3.75 3.5
ṁf Mass flow rate for fuel injection [0.026, 0.028]kg/s 0.027 0.026

in the inlet boundary conditions, see Section 5.1.2. Another uncertain variable is the fuel-to-oxidizer
ratio Cf/o which enters into the forcing term in the governing equations, Eq. (20), and in practice
is also uncertain. Since all three uncertain variables are known within certain bounds, we model
them as a vector-valued random variable Z with a uniform probability distribution. A realization
of the random variable is z = [p∞, T∞, Cf/o] ∈ Ω ⊆ R3. We list the three uncertain variables and
their respective probability distributions (in this case, uncorrelated) in Table 4.

Table 4: Random variable z ∈ Ω ⊆ R3 with realization z = [p∞, T∞, Cf/o] used in the combustion engine problem.

Uncertain variable Description Distribution Range
p∞ Upstream pressure Uniform [1.3, 1.6]MPa
T∞ Upstream oxidizer temperature Uniform [1000, 1060]K
Cf/o Fuel-to-oxidizer ratio Uniform [0.10, 0.11]

5.2. RBDO formulation: Objective function and reliability constraints

Having defined both the design variables and uncertain variables, we note that solutions to
the state Eqs. (20)–(21) depend on the design d = [Ri, Rc, Lf , ṁf ] and a realization z =
[p∞, T∞, Cf/o] of the uncertain parameters, i.e., the pressure p(x) = p(x;d, z). We next describe
the cost function for RBDO and the reliability constraints,which then completes the RBDO problem
formulation from Eq.(1).

5.2.1. Cost function

We are interested in maximizing C? (“C-star”) efficiency, also known as characteristic exhaust
velocity, a common measure of the energy available from the combustion process of the engine. To
compute C?, we need the total mass flow rate at the exhaust, ṁout = ṁox + ṁf. The oxidizer
mass flow rate ṁox is given via ṁox =

ṁf
Cf/oφ

with the equivalence ratio φ computed from reference

mass-flow and oxidizer-flow rates as φ = 0.0844
Cf/o

. We then obtain ṁox = 11.852ṁf. The outlet mass

flow rate follows as ṁout(d) = 12.852ṁf. Recall, that ṁf is a design variable.
The C? efficiency measure is defined as

C?(d, z) =
p̄(d, z) At

ṁout(d)
,

with units of m/s. Here, At = πR2
t denotes the area of the nozzle throat (see Figure 7 for the nozzle

radius Rt) and

p̄(d, z) :=
1

Li + 2Lbs + Lc + Ln

∫ 2Lbs+Lc+Ln

−Li

p(x;d, z)dx
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is the spatial mean of the steady-state pressure. We then define the quantity of interest f : D×Ω 7→
R as

f(d, z) = −C?(d, z),

and recall that the RBDO objective is to minimize the cost function from Eq.(1).

5.2.2. Reliability constraint

The reliability constraint is based on the maximum pressure, as engines are unsafe if the max-
imum chamber pressure exceeds a certain threshold. Here, we limit the pressure deviation in
the engine relative to the inflow pressure to 13.5% to define failure, i.e., the engine is safe if

maxx

[
p(x;d,z)−p∞

p∞

]
< 0.135. The limit state function g : D × Ω 7→ R for this example is

g(d, z) = 0.135−max
x

[
p(x;d, z)− p∞

p∞

]
,

where the pressure p(x;d, z) is computed by solving Eqs. (20)–(21) for design d and with a real-
ization z of the random variable. Note that p∞ is an uncertain variable, defined in Section 5.1.4.
Failure of the system is defined by g(d, z) < 0. Recall from Eq. (1) that the reliability constraint
is P(g(d, Z) < 0) ≤ Pthresh. For the CVRC application, the threshold on the reliability constraint
is set at Pthresh = 0.005 with error tolerance εtol = 0.05 in Eq. (16).

5.3. Results of RBDO

We use the fmincon optimizer in MATLAB to run the optimization. fmincon is a gradient-based
optimizer that uses finite difference to estimate the gradients. The maximum number of samples
allowed in each optimization iteration for estimating the probability of failure set to mmax = 104.
Note that in this case, the mmax value is governed by cost of evaluation of the computational model.
IRIS-RBDO convergence history in Figure 8 (a) shows that it requires more than 2.5×104 samples
before the optimizer finds the first feasible design. The probability of failure history in Figure 8
(c) shows the progress of designs from infeasible to feasible regions during the optimization of the
combustion engine. The best design obtained through RBDO is given in Table 3 and the optimal
mean C∗ efficiency obtained is 1426.2 m/s.

Figure 9 (a) shows the number of samples used in each optimization iteration using IRIS-RBDO
compared to importance sampling with no reuse. Note that the comparison is shown for the same
designs in each optimization iteration so that we can make a direct comparison of the computational
efficiency. We can see that when biasing density was built with no reuse (here, MPP-based), the
number of required samples reached the maximum of 104 in most of the optimization iterations.
There were only six cases for IRIS-RBDO that reached the maximum number of samples. In this
case, IRIS-RBDO leads to overall computational saving of around 76% compared to importance
sampling with no reuse. The efficiency of IRIS-RBDO can also be seen from Figure 9 (b) that shows
the required number of samples for corresponding probability of failure estimates. We can see that
specifically for low probabilities of failure, the required number of samples are substantially lower
when compared to building biasing densities with no reuse.

Figure 9 (c) shows that the coefficient of variation (error) in probability of failure estimate for
IRIS-RBDO is below the set tolerance (εtol = 0.05) for all but six optimization iterations. All of the
cases where the error tolerance was not met for IRIS-RBDO occurred because for these cases the
required number of samples reached mmax, which is set to 104 (as seen from Figure 9 (a)). These
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Figure 8: Optimization progress using IRIS-RBDO showing (a) convergence history of mean C∗ values for designs
from all optimization iterations, (b) magnified convergence plot of feasible designs vs the cumulative computational
cost in terms of number of samples, and (c) probability of failure history in each optimization iteration for the
combustion engine problem.
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Figure 9: (a) Comparison of IRIS and importance sampling (IS) with no reuse for the same designs showing number
of samples required in each optimization iteration, (b) number of samples required to calculate the corresponding
probabilities of failure, and (c) the error in probability of failure estimate (quantified by the coefficient of variation)
using IRIS in each optimization iteration for the combustion engine problem.
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were also the same cases where there were no nearby designs (as seen from Figure 9 (a)) which
mean that even IRIS builds the biasing density with no information reuse (here, MPP-based).

The number of designs reused in each optimization iteration by IRIS-RBDO is shown in Fig-
ure 10. We can see that all six cases of IRIS-RBDO that required 104 samples were cases where no
nearby designs were available, i.e., no information was reused. However, we can see that for most
of the cases where information was reused, the required number of samples was lower compared to
building biasing densities with no reuse (see Figure 9 (a)). The required number of samples are
the same when there are zero reused designs. We can also see the additional advantage of the IRIS
method for the gradient-based optimizer using finite difference. As pointed out in Remark 4, after
estimating the probability of failure at a particular design, the next nd probability of failure esti-
mates required for the finite difference estimate of the derivative will always use the IRIS method in
the implementation of our method with a gradient-based optimizer. This can be clearly seen from
the first nd + 1 (here, five) optimization iterations shown in Figure 10, where designs are reused
after the first iteration. The efficiency of using the IRIS method is reflected by concurrently looking
at the number of samples required by IRIS in the first nd+1 optimization iterations in Figure 9 (a).
Note that in this case, an optimization iteration refers to either a probability of failure estimate at
a given design or the probability of failure estimates required for the gradient.
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Figure 10: Number of designs reused in IRIS in each optimization iteration for the combustion engine problem.

6. Concluding remarks

This paper introduced IRIS-RBDO (Information Reuse for Importance Sampling in RBDO),
a new importance-sampling-based RBDO method. IRIS-RBDO reuses information from past op-
timization iterations for computationally efficient reliability estimates. The method achieves this
by building efficient biasing distributions through two levels of information reuse: (1) reusing the
current batch of samples to build an a posteriori biasing density with optimal parameters for all
designs, and (2) reusing a mixture of the a posteriori biasing densities from nearby past designs
to build biasing density for the current design. The rich source of existing information from past
RBDO iterations helps in constructing very efficient biasing densities. The method can also over-
come bad initial biasing densities and there is no bias in the reliability estimates. We show the
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efficiency of IRIS-RBDO through a benchmark speed reducer problem and a combustion engine
problem. IRIS-RBDO leads to computational savings of around 51% for the speed reducer prob-
lem and around 76% for the combustion engine problem as compared to building biasing densities
with no reuse (using MPP in this case). In this work, we develop the information reuse idea for
importance sampling in RBDO but the method can be easily extended to building initial biasing
densities for adaptive importance sampling schemes used in the RBDO setup, and we will explore
this in a future work.
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Appendix A. Proof for Theorem 1

The proof follows from similar work in the cross-entropy method [24], where KL divergence is
applied in a different context than in this RBDO work. In this section, we derive the analytic
solution for the parameters of multivariate normal density, which is chosen to be the distribution
in this work. Consider the multivariate normal density with parameters θ = {µ,Σ}:

qθ(z) =
1√

(2π)nr |Σ|
exp

(
−1

2
(z − µ)>Σ−1(z − µ)

)
, (A.1)

Taking the logarithm of qθ(z), we get

ln(qθ(z)) = −nr
2

ln(2π)− 1

2
ln|Σ| − 1

2
(z − µ)>Σ−1(z − µ). (A.2)

Then the objective function of the optimization problem given by Eq. (11) at iteration t can be
rewritten as

L(µ,Σ) =−
mt∑
i=1

IGt(dt, z′i)
p(z′i)

qθt(z
′
i)

[
−nr

2
ln(2π)− 1

2
ln|Σ| − 1

2
(z′i − µ)>Σ−1(z′i − µ)

]

=
nr
2

ln(2π)

mt∑
i=1

IGt(dt, z′i)
p(z′i)

qθt(z
′
i)

+
1

2
ln|Σ|

mt∑
i=1

IGt(dt, z′i)
p(z′i)

qθt(z
′
i)

+
1

2

mt∑
i=1

IGt(dt, z′i)
p(z′i)

qθt(z
′
i)

(z′i − µ)>Σ−1(z′i − µ),

(A.3)

where z′i ∼ qθt .
The local optimum of Eq. (11) given by parameters θ∗t = {µt,Σt} for RBDO iteration t can be

found by equating the gradients of Eq. (A.3) to zero (Karush-Kuhn-Tucker (KKT) conditions).
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The local optimum µt is found by setting the gradient of L(µ,Σ) w.r.t. µ to zero as given by

∇µ L = −1

2

mt∑
i=1

IGt(dt, z′i)
p(z′i)

qθt(z
′
i)

(
2Σ−1(z′i − µ)

)
= 0, (A.4)

which then leads to the solution for the parameter µt as given by

mt∑
i=1

IGt(dt, z′i)
p(zi)

qθt(z
′
i)

(z′i − µt) = 0 ⇒ µt =

∑mt
i=1 IGt(dt, z′i)

p(z′i)
qθt (z

′
i)
z′i∑mt

i=1 IGt(dt, z′i)
p(z′i)

qθt (z
′
i)

. (A.5)

We used the fact that Σ is symmetric positive definite to get the derivative in Eq. (A.4). The
expression given by Eq. (12) can then be derived by writing out each entry of the vector in Eq. (A.5)
as given by

µjt =

∑mt
i=1 IGt(dt, z′i)

p(z′i)
qθt (z

′
i)
z′i,j∑mt

i=1 IGt(dt, z′i)
p(z′i)

qθt (z
′
i)

=

∑|Gt|
i=1

p(z′i)
qθt (z

′
i)
z′i,j∑|Gt|

i=1
p(z′i)

qθt (z
′
i)

. (A.6)

Since in Eq. (12), the indicator function IGt(dt, z′i) = 1 only for the failed samples z′i ∈ Gt, the
indicator function can be removed by taking the sum over the failed samples.

In order to show that Eq. (12) is the global minimum, we take the second-order partial derivative
of L(µ,Σ) w.r.t. µ as given by

∇2
µ L =

mt∑
i=1

IGt(dt, z′i)
p(z′i)

qθt(z
′
i)

Σ−1. (A.7)

We get convexity in µ because ∇2
µ L is positive definite. We know that the local minimum in convex

optimization must also be the global minimum [61]. Thus, Eq. (12) is the global optimum for µ.
In order to derive the local optimum Σt, we rewrite L(µ,Σ) using traces due to its usefulness

in calculating derivatives of quadratic form. Note that (z′i−µ)>Σ−1(z′i−µ) is a scalar and thus is
equal to its trace, tr((z′i−µ)>Σ−1(z′i−µ)). Since the trace is invariant under cyclic permutations,
we have

tr((z′i − µ)>Σ−1(z′i − µ)) = tr((z′i − µ)(z′i − µ)>Σ−1). (A.8)

We can take the derivative of the above expression w.r.t. the matrix Σ−1 to get

∇Σ−1(tr((z′i − µ)(z′i − µ)>Σ−1)) = (z′i − µ)>(z′i − µ). (A.9)

Also note that since Σ−1 is a symmetric positive definite matrix, we have

∇Σ−1 ln|Σ−1| = 1

|Σ−1| |Σ
−1|Σ> = Σ. (A.10)

Using Eq. (A.8) and the fact that the determinant of the inverse of a matrix is the inverse of
the determinant, L(µ,Σ) can be rewritten as

L(µ,Σ−1) = − ln|Σ−1|
mt∑
i=1

IGt(dt, z′i)
p(z′i)

qθt(z
′
i)

+

mt∑
i=1

IGt(dt, z′i)
p(z′i)

qθt(z
′
i)

tr((z′i − µ)(z′i − µ)>Σ−1).

(A.11)
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We can substitute the optimum value µt given by Eq. (A.5) in Eq. (A.11) to get

L(Σ−1) = − ln|Σ−1|
mt∑
i=1

IGt(dt, z′i)
p(z′i)

qθt(z
′
i)

+

mt∑
i=1

IGt(dt, z′i)
p(z′i)

qθt(z
′
i)

tr((z′i − µt)(z′i − µt)>Σ−1).

(A.12)
The local optimum Σt is found by taking the gradient of L(Σ) w.r.t. the matrix Σ−1 using the
properties described in Eqs. (A.9) and (A.10), and equating it to zero, as given by

∇Σ−1 L = −Σ

mt∑
i=1

IGt(dt, z′i)
p(z′i)

qθt(z
′
i)

+

mt∑
i=1

IGt(dt, z′i)
p(z′i)

qθt(z
′
i)

(z′i − µt)>(z′i − µt) = 0, (A.13)

which then yields

Σt =

∑mt
i=1 IGt(dt, z′i)

p(z′i)
qθt (z

′
i)

(z′i − µt)>(z′i − µt)∑mt
i=1 IGt(dt, z′i)

p(z′i)

qθt (z
′
i)

. (A.14)

The expression given by Eq. (13) can be derived by writing out each entry of the matrix in Eq. (A.14)
to get

Σj,kt =

∑mt
i=1 IGt(dt, z′i)

p(z′i)
qθt (z

′
i)

(z′i,j − µjt )(z′i,k − µkt )∑mt
i=1 IGt(dt, z′i)

p(z′i)

qθt (z
′
i)

=

∑|Gt|
i=1

p(z′i)
qθt (z

′
i)

(z′i,j − µjt )(z′i,k − µkt )∑|Gt|
i=1

p(z′i)

qθt (z
′
i)

.

As noted before, the indicator function IGt(dt, z′i) = 1 only for the failed samples z′i ∈ Gt and can
be removed by taking the sum over the failed samples in Eq. (13).

In order to show that Eq. (13) is the global minimum, we take the second-order derivative of
L(Σ−1) w.r.t. Σ−1 as given by

∇2
Σ−1 L = Σ2

mt∑
i=1

IGt(dt, z′i)
p(z′i)

qθt(z
′
i)
. (A.15)

We get convexity in Σ−1 because ∇2
Σ−1 L is positive definite. Thus, Eq. (13) is the global optimum

for Σ [61].

Appendix B. Most Probable Failure Point

The point with the maximum likelihood of failure is called the most probable failure point
(MPP), see [18, 62] for further reading. Typically, this is found by mapping Z ∼ p to the standard
normal space U ∼ N (0,diag(1)) ∈ Rnr . Let the mapping be done by using some transformation
u = T [z]. Then the MPP can be found by minimizing the distance from the mean to the limit
state failure boundary g(z) = 0 in the standard normal space. The optimization problem used to
find the MPP is given by

min
u∈Rnr

‖u‖2
subject to g(T−1[u]) = 0.

(B.1)
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Appendix C. Defensive importance sampling

While exploring the design space, the system can have small and large failure probabilities. For
small failure probabilities, importance sampling with q is an efficient sampling scheme. For large
failure probabilities, standard sampling from the nominal density p leads to good convergence of the
estimate. Defensive importance sampling [63] proposes to sample from the mixed biasing density

qα := (1− α)q + αp.

In [63] it is suggested to use 0.1 ≤ α < 0.5. However, this is for computing small failure probabilities
only. An adaptive approach to choose α can be used to account for both rare and common events.
Algorithm 3 describes one such adaptive method where we start with α = 1 and sample the mean.
Then decrease α if the mean has not converged (which is often the case in small failure probabilities),
effectively sampling more from the biasing density.

Combining defensive importance sampling with IRIS, the information reuse biasing density with
defensive importance sampling is given by

qαθt := (1− α)

(
t−1∑
i=0

βiqθ∗i

)
+ αp.

Algorithm 3 Adaptive defensive importance sampling

Input: Nominal density p, biasing density (can be mixture) q, design dt.
Output: Adaptive mixture density qα.

1: procedure AdaptiveISdensity(p, q, Pthresh)
2: α0 = 1, k = 1;
3: while P̂ IS(dt) not converged do
4: qαθt := (1− α)q + αp

5: mk = kP−1
thresh (start with a batch that would get 1/P−1

thresh) samples

6: Compute P̂ IS(dt) with samples from qαθt .

7: Assign α = |# of failed samples |
mk

(i.e., if all samples fail high with nominal density (=high-

FP), no need to use IS.))
8: k = k + 1.
9: end while

10: return P̂ IS
qαθt

(dt)

11: end procedure
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