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Abstract
Ice sheet simulations suffer from vast parametric uncertainties, such as the basal sliding boundary condition or geothermal
heat flux. Quantifying the resulting uncertainties in predictions is of utmost importance to support judicious decision-making,
but high-fidelity simulations are too expensive to embed within uncertainty quantification (UQ) computations. UQ methods
typically employ Monte Carlo simulation to estimate statistics of interest, which requires hundreds (or more) of ice sheet
simulations. Cheaper low-fidelity models are readily available (e.g., approximated physics, coarser meshes), but replacing the
high-fidelity model with a lower fidelity surrogate introduces bias, which means that UQ results generated with a low-fidelity
model cannot be rigorously trusted. Multifidelity UQ retains the high-fidelity model but expands the estimator to shift com-
putations to low-fidelity models, while still guaranteeing an unbiased estimate. Through this exploitation of multiple models,
multifidelity estimators guarantee a target accuracy at reduced computational cost. This paper presents a comprehensive
multifidelity UQ framework for ice sheet simulations. We present three multifidelity UQ approaches—Multifidelity Monte
Carlo, Multilevel Monte Carlo, and the Best Linear Unbiased Estimator—that enable tractable UQ for continental-scale ice
sheet simulations. We demonstrate the techniques on a model of the Greenland ice sheet to estimate the 2015-2050 ice mass
loss, verify their estimates through comparison with Monte Carlo simulations, and give a comparative performance analysis.
For a target accuracy equivalent to 1mm sea level rise contribution at 95% confidence, the multifidelity estimators achieve
computational speedups of two orders of magnitude.

Keywords Uncertainty quantification · Multi-fidelity · Ice sheet simulation · Surrogate modeling

1 Introduction

Sea level rise is impacting both coastal ecosystems and our
societies. Mass loss from ice sheets is becoming a major
driver of sea level change, and large-scale simulations of the
Greenland and Antarctic ice sheets have a central role when
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evaluating policies to combat climate change. Since these
simulationsmust be over time horizons spanning decades and
centuries, modeling decisions can significantly influence the
predicted icemass change and thus the predicted contribution
to sea level rise. Even among state-of-the-art high-fidelity ice
sheet models, as illustrated by model intercomparison stud-
ies [1–4], expert opinions onmodeling parameterizations and
datasets differ, and there is high variance in icemass loss pro-
jections. To provide effective support to decision-making,
it is paramount to quantify the uncertainty associated with
these simulation-based projections, yet doing so is compu-
tationally prohibitive because it would require an ensemble
of high-fidelity simulations to be run over many different
modeling choices. In this paper we lay out a multifidelity
uncertainty quantification (UQ) framework that addresses
this challenge.

Model intercomparison studies have a long tradition in
glaciology, including in model validation [5–7], verification
based on historical data [2, 4], and for high-fidelity pro-
jections [1, 3, 8]. Moreover, parametric uncertainties in ice
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Fig. 1 Multifidelity UQ framework

sheets are studied extensively and explored often through
sensitivity analyses, e.g., [9–11] for the geothermal heat flux,
or [12–14] for the basal friction. Acknowledging parametric
uncertainty and its importance for high-fidelity projections,
most ice sheetmodels infer the basal friction field fromobser-
vational data of the surface ice velocity in a deterministic [15,
16] ormore recentlyBayesian [17–19] inverse problem; other
parameters like the geothermal heat flux [20, 21] or the basal
topography [22–24] are inferred once and then distributed
throughout the community through datasets. While these are
examples of inverse UQ, where data is used to reduce the
uncertainty in a parameter, in this paper we are primarily
concerned with forward UQ, where the goal is to quantify
the influence of parametric uncertainty on an output of inter-
est (OoI) such as the predicted ice mass loss (see Fig. 1).

Forward UQ is challenging for computationally expen-
sive ice sheet simulations since typically a large ensemble
of projections is required to approximate the statistics (e.g.,
the mean) of the OoI under a given probabilistic description
of parametric uncertainties. In [25, 26], expert judgements
were pooled and formalized to quantify the uncertainty in
existing ice sheet projections. In [27], a mass-balance model
of so-called “intermediate complexity” was used in a Monte
Carlo (MC) estimation with 5,000 samples, but the projec-
tion was limited to a time horizon of 400 days and a glacier of
approximately 16km2. Other studies have balanced required
ensemble sizes and computational costs by accepting a 10 km
resolution [28, 29], using hybrid or approximated physics
models [30, 31], or built probabilistic emulators [32–36]
trained on high-fidelity simulations. A drawback in using
these modeling simplifications is the model bias introduced
by replacing the high-fidelity ice sheet model with a cheaper
surrogate model. In doing so, there is no guarantee that the
UQ results will reflect what would have been obtained using
the most trusted high-fidelity model. Multi-model ensemble
studies have also been employed to compare the determin-
istic projections of several high-fidelity models, each built
to reflect their modeller’s best domain expertise. However,

because these high-fidelity models are so expensive, only
small ensembles are possible. Moreover, most ensemble
studies do not account for the uncertainties in each individual
model. Multifidelity UQ methods can overcome these chal-
lenges: Formal UQ at a desired target accuracy is achieved
by leveraging surrogate models to reduce the computational
cost, but in a structured way that guarantees a statistically
unbiased estimate of the high-fidelity OoI statistic.

Multifidelity UQmethods exploit the correlation between
the high-fidelitymodel and less accurate but computationally
cheaper surrogate models to construct an unbiased estimator
of the high-fidelity expectation. Compared to MC sampling,
multifidelity estimators achieve an improved accuracy for
any prescribed computational budget (or equivalently, they
achieve a given target accuracywith a reduced computational
budget). In this paper we present three predominant multifi-
delity UQ methods, and highlight their applicability for ice
sheet simulations: the Multifidelity Monte Carlo (MFMC)
method [37, 38], the Multilevel Monte Carlo (MLMC)
method [39, 40], and the Multilevel Best Linear Unbiased
Estimator (MLBLUE) [41]. Our paper has three objectives:
(1) To establish the necessity of unbiased UQ for ice mass
loss projections by showing the errors that can be incurred
by using approximate models without a formal multifidelity
framework; (2) to demonstrate the efficiency of multifidelity
UQ methods for computationally expensive glaciology sim-
ulations; and (3) to provide a simple but flexible algorithmic
framework to implement, use, and interpretMFMC,MLMC,
andMLBLUEon any ice sheet codewithout prior experience
inUQor surrogatemodeling. To emphasize the relevance and
applicability of our work, we employ a community ice sheet
code — the Ice-sheet and Sea-level System Model (ISSM,
[42]) — and follow the projection protocols [43] of the Ice
Sheet Model Intercomparison Project (ISMIP6, [44]) contri-
bution to Coupled Model Intercomparison Project Phase 6
(CMIP6, [45]), with the goal to make the transfer of tech-
niques to similar applications as easy as possible.
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In Section 2, we describe our high-fidelity model of the
Greenland ice sheet, describe uncertainties in the basal fric-
tion and geothermal heat flux fields introduced by different
data sets, and show the large variance these cause in the
high-fidelity projections. We also discuss different types of
surrogatemodels, and illustrate their model bias. In Section 3
we provide primers to the MFMC, MLMC, and MLBLUE
methods, each with a detailed algorithmic description to
facilitate their implementation. In Section 4, we demonstrate
these methods for estimating the expected ice mass loss for
the year 2050, and discuss the benefits of multifidelity UQ
for ice sheet simulations.

2 Model of the Greenland Ice Sheet

This section sets up the high-fidelity model of the Greenland
ice sheet, which we use to demonstrate the necessity and
challenges of UQ for ice sheet simulations. Our high-fidelity
model comprises governing equations for ice temperature,
velocity and thickness (Section 2.1). We describe uncer-
tainties in the basal friction field and the geothermal heat
flux that stem from the variety of available datasets in
the literature (Section 2.2). The predictive uncertainty thus
reflects the influence that datasets have on model simula-
tions. This section also provides brief descriptions of some
of the many surrogate models readily available in ice sheet
codes (Section 2.3), including coarse-grid approximations,
simplified-physics models, and statistical emulators.

2.1 High-Fidelity Model

We consider a model of the Greenland ice sheet that con-
sists of three coupled nonlinear partial differential equations
(PDEs), namely

• a thermal model, which governs changes in the tempera-
ture T within the ice sheet, based on the conservation of
energy;

• a dynamicalmodelwith nonlinear rheology for the veloc-
ity vector v = (vx , vy, vz)

�, which governs the motion
of the ice sheet, based on the conservation of momentum;

• a mass transport model, which governs changes in the
thickness h of the ice sheet, based on the conservation of
mass.

Out of these variables, the temperature T and the velocity
components vx , vy , and vz in x-, y-, and z-direction are each
three-dimensional fields, defined on the ice sheet domain
�(t); the ice thickness h is two-dimensional, defined on the
horizontal extent �2D of the ice sheet, and determines how
the ice geometry �(t) evolves in time t vertically.

The specific three-part systemwe consider is a simplifica-
tion of more sophisticated ice sheet models1 that incorporate
additional ice sheet features such as ice–ocean interactions
and basal hydrology. Despite these simplifications, the sys-
tem we consider is already at a scale where UQ tasks are
computationally demanding, and suffices to demonstrate how
multifidelity UQ techniques can obtain trusted estimates of
statistical OoIs at a much lower computational cost than MC
estimation.

2.1.1 Geometry and initialization

We model the main part of the Greenland ice sheet under
the shared economic pathway scenario SSP1-2.6 ([46, 47],
chapter 1.6), which is a low emission scenario. For our atmo-
spheric forcing, we follow the experimental protocol [43] of
the ISMIP6 Greenland study [1]. Consequently, the projec-
tions for our multifidelity UQ study start in the year 2015,
and we perform a spin-up run from our model initialization
in t0 := 1989 to obtain the 2015 initial conditions (described
below). For facilitating comparisons with Monte Carlo sam-
pling, it suffices that we limit our projections to the years
2015 to t f := 2050, though the methodology applies analo-
gously to longer projection regimes.

For our domain outline, we traced any ice of thickness
greater than 5m reported in [22, 48], removed all discon-
nected parts (e.g., islands, numerical artifacts) and major
bottlenecks, and smoothed theobtainedoutline.Ourfinal out-
line encompasses approximately 86.64 % of the ice-covered
area in [49] (version 2, with coastline from Jeremie Moug-
inot) and approximately 99.59 % of the total ice mass in [22,
48]. Using the 1995–2015 averaged surface ice velocity from
[50] and the ice thickness [22, 48] for reference, we create
our high-fidelity mesh with a resolution varying from 100m
to 15km. We denote this domain by �2D, and keep it fixed
throughout all simulations,

To obtain the basal topography �b, we interpolate the ice
base from [22, 48] onto our mesh. Similarly, for the surface
topography �s(t0), we interpolate the ice altitude data from
[49] (version 2). Following [22], these initializations give
us a geometry consistent with the year 2009. For any t0 ≤
t ≤ 2009, we thus keep the geometry fixed, with a constant
ice thickness h(t) = �s(t0) − �b. Starting from the year
t = 2009, h(t) obeys the ice thickness equations defined in
Section 2.1.4, and the ice surface topography �s(t) = �b +
h(t) evolves accordingly. For 3D variables, the 2D domain
�2D and its mesh are extruded with five layers, starting from

1 Removing the simplificationswould result in even better performance
of the multifidelity UQ estimation approaches discussed in this paper,
but then the reference high-fidelity UQ results would become compu-
tationally prohibitive, preventing us from analyzing the performance of
the multifidelity approaches.
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the ice base �b upwards to the ice surface �s(t). We denote
the obtained 3D domain by�(t), using the variable t to stress
its variability in time.

To initialize our model in t0 = 1989, we compute the
steady-state equilibrium of the ice temperature T and veloc-
ity vwith CNRM-CM6-1 1960–1989 reference forcing [51].
This initialization mimics that the Greenland ice sheet is
believed to have been in steady state in the 1960–1989 time
period [52, 53]. We then run our model using the equations
described in the following subsections, until the start year
t = 2015 prescribed in [43] to obtain the initial conditions
of temperature T , velocity v, and ice thickness h used in our
predictive runs.

2.1.2 Stress balance model

There exists a hierarchy of ice sheet dynamical models that
can be ordered according to decreasing physical fidelity and
which, for the most part, also possess decreasing compu-
tational simulation costs. At the top of the hierarchy is the
most generally accepted (with respect to physical fidelity)
full-Stokes model (FS). However, for a given ice geometry
�(t) and a given temperature field T (t), the numerical solu-
tion of the FS model is challenging and expensive for several
reasons, which include the usage of fine grids and long time
horizons; stable and sufficiently accurate spatial and temporal
discretization choices (e.g., finite element and time-stepping
schemes, respectively); and the need to solve for four field
variables over the 3D domain (three velocity components
and the pressure). As a result, few ice sheet codes support
the FS equations. In significantly greater use by practition-
ers is the higher-order model2 (HO), which is an ice sheet
dynamical model representing the next lower level of physi-
cal fidelity from FS. For reference, in the ISMIP6 Greenland
study [1], none of the 21 participating models solved the FS
system, but seven solved the HO equations. The remaining
14 groups opted for further physical approximations in the
form of the Shallow-Shelf or Shallow-Ice Approximations,
or their hybrid combination ([1], Table A1).

The HO model is derived as a simplification of the FS
model by taking advantage of the small vertical-to-horizontal
aspect ratio of the ice sheet. The net result is that the hori-
zontal gradients of vertical velocities are neglected compared
to vertical gradients of horizontal velocities, and bridging
effects are also neglected. The resulting HO model is then

2 Here, the nomenclature “higher order” is relative to evenmore simpli-
fied ice sheet models such as the shallow-shelf and shallow-ice models;
see e.g., Section 2.3, and [54].

given by the system of PDEs

∇ · (2με̇HO,1) = ρiceg
∂s(t)

∂x
(1)

∇ · (2με̇HO,2) = ρiceg
∂s(t)

∂ y
(2)

for x = (x, y, z) ∈ �(t) and t0 < t ≤ t f , and where
ρice = 917 kg/m3 is the ice density, g = 9.81m/s2 is the
gravitational acceleration, s(x, y; t) is the altitude of the sur-
face �s(t) vertically above the point x = (x, y, z), and the
strain rates ε̇HO,1, ε̇HO,2 take the form

ε̇HO,1 =

⎛
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The effective ice viscosity μ follows the generalized Glen’s
flow law

μ = B(T )√
2

∥∥(ε̇HO,1, ε̇HO,2)
∥∥− n−1

n (3)

where the Glen’s flow law exponent n is typically taken as
n = 3. To determine the local ice rigidity B(T ) for the ice
temperature T (t), we apply the temperature relationship pro-
vided by [55, p. 97].

The system Eqs. 1 and 2 is subject to homogeneous
zero-Neumann boundary conditions on the surfaces �air(t)
exposed to air, i.e.,

ε̇HO,1 · n = 0, ε̇HO,2 · n = 0

for x = (x, y, z) ∈ �air(t), and where n = (nx , ny, nz) is
the outward pointing unit normal of�(t). The stress balance
with the atmospheric pressure has been neglected because
that pressure is negligible in the setting we consider. In con-
trast, at the ice-water interface �w the water pressure gets
applied through

2με̇HO,1 · n = fwnx , 2με̇HO,2 · n = fwny

for x = (x, y, z) ∈ �w, and with

fw(x) = ρiceg(s(x, y; t) − z) + ρwgmin{z, 0}
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where ρw = 1023 km/m3 is the ocean water density. At the
basal boundary�b, we prescribe sliding boundary conditions

2με̇HO,1 · n = −α2N vx , 2με̇HO,2 · n = −α2N vy

for x = (x, y, z) ∈ �b, and where α is the basal friction
field, and N = ρicegh + ρwatergb, with b denoting the alti-
tude of the basal topography �b, is the effective pressure,
following Budd’s friction law [56]. We make the simplifying
assumption that all ice is grounded such that α is constant
in time. Note that floating ice is not essential to our consid-
ered scenario as this assumption only affects 0.22% of the
domain.

Since the basal friction field α is only indirectly observ-
able, we model it as a random variable, see Section 2.2.
However, in our reference parameterization used for the
spin-up and control runs, we choose αref by minimizing the
misfit between observed and simulated surface velocity data,
described by the cost function

J (α; vobs) = 180
∫

�s

‖v(α) − vobs‖2dS

+ 0.6
∫

�s

(
log

(‖v(α)‖ + ε

‖vobs‖ + ε

))2

dS

+ 8 × 10−6
∫

�b

‖∇α‖2dS.

(4)

Here, v(α) is the HO solution at t = t0 for a given basal
friction field α, �s = �s(t0) is the domain’s initial sur-
face boundary interpolated from [49] (version 2), and vobs is
the observed 1995-2015 averaged surface velocity field from
[50]. The variable ε = 2.22 × 10−16 m/s is added to avoid
division by zero. The weights for the first two cost functions
are normalization parameters chosen to balance the influence
of the two terms; theweight for the regularizationwas chosen
via an L-curve analysis.

The HO system Eqs. 1 and 2 is solved for the 3-
dimensional velocity fields vx and vy . After they have been
determined, the vertical velocity field vz can be constructed
by from the constraint divv = 0, which is required by the
conservation of mass, assuming that ice is an incompress-
ible material. Note that although both the FS and HOmodels
are posed on the same three-dimensional domain �(t), the
HO model involves solving for only two unknowns (vx and
vy) instead of four (vx , vy , vz , and pressure p). Moreover,
without the additional stability requirements posed by the
pressure term [57, 58], the HO system is simpler to solve
numerically. Hence, the computational costs associated with
the HO model are smaller than that for the FS model. For a
detailed introduction and comparison of both equations, we
refer to [54].

2.1.3 Thermal model

The thermal model is derived from the balance equation of
internal energy and Fourier’s law of heat transfer under the
assumption of constant heat conductivity κice = 2.4WK/m,
constant heat capacity cice = 2093 JK/kg, and constant ice
density ρice = 917 kg/m3. Given the velocity vector v(t) =
(vx (t), vy(t), vz(t))� at time t0 ≤ t ≤ t f , the thermal model
is described by the PDE

ρicecice

(
∂T

∂t
+ v · ∇T

)
= −κicecice	T + tr(σ · ε̇) (5)

for x ∈ �(t) and t0 < t ≤ t f , and where σ is the Cauchy
stress tensor, ε̇ the strain rate tensor, and tr denotes the trace
operator. The PDE Eq. 5 accounts for the transfer of energy
(due to dissipation via the Fourier heat law), convection (due
to ice movement), friction and viscous heating (due to ice
deformation and sliding).

At the surfaces �air of the ice sheet exposed to air, i.e.,
the upper surface and the part of the lateral surface above
sea level, we locally prescribe the mean annual air temper-
ature Tair(x) predicted by CNRM-CM6-1 [51] as Dirichlet
boundary condition. As the geometry �(t) changes, Tair is
adjusted to account for changes in altitude as described in
[43]. To preserve continuity of T between years, at the begin-
ning of each year we linearly interpolate between the old and
new air temperature over a duration of 9.125 days. At the
basal boundary �b of the ice sheet touching the bedrock, we
prescribe the Neumann boundary condition

− κicecice∇T · n = qgeo(x, y)

for x = (x, y, z) ∈ �b and t0 ≤ t ≤ t f , and where
qgeo denotes the geothermal heat flux. Since the latter is
only sparsely observable through ice core measurements, we
model it as a random variable (see Section 2.2); for our refer-
ence parameterization, we choose qgeo as the average of the
fields in [20] and [21].

2.1.4 Ice thickness equation

The mass and geometry of the ice sheet are determined by
the ice thickness h, whose evolution is governed by the PDE

∂h

∂t
= −∇ · (hv̄) + Ṁs − Ṁb (6)

for (x, y) ∈ �2D, and t0 ≤ t ≤ t f . The PDE Eq. 6 is
connected to the velocity v of the ice sheet through the depth-
averaged horizontal velocity vector v̄. In addition, Eq. 6
depends the imposed climate forcing and the ice temperature
T through the basalmelt rate Ṁb and the surfacemass balance
Ṁs. The basal melt Ṁb is caused by ice-movement induced
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Fig. 2 Far left: Reference basal friction field at the parametric mean (measured in (s/m)1/2); Center left to right: mean and first two modes (scaled
by their standard deviation) of the log-normal distribution (measured in ln(s/m)/2)

friction and geothermal heating; it is updated throughout the
computations using the geothermal heat flux qgeo, the ice
velocity v, and the ice temperature T . The surface mass
balance Ṁs is an input function that is positive wherever
accumulation occurs, e.g., from snowfall. For our purposes
here, we impose the surface mass balance predicted by the
CNRM-CM6-1 climate model [51] with the altitude depen-
dent adjustment described in [43].

Our OoI is the ice mass loss in the modelled domain of
Greenland compared to a control run over the 2015–2050
time period. The purpose of the control run is to negatemodel
drift, and is computed using the CNRM-CM6-1 [51] SSP1-
2.6 1960–1989 reference forcing, i.e., the same forcing as
used during the initialization at equilibrium. The ice mass is
computed by integrating the ice thickness h over �2D, and
multiplying with the ice density ρice = 917 kg/m3. Conse-
quently, ice mass can be lost not only through melting, but
also through ice discharge as ice is advected outside of the
modelled domain along the periphery of the ice sheet.

2.2 Model uncertainties

Ice sheet simulations are subject to a number of uncertainties
because many of the physical properties cannot be directly
observed through measurements and their indirect inference
from data leads to model parameter uncertainties. Moreover,
projections are further uncertain because future forcing con-
ditions are unknown. Reports to inform policy making treat
this issue by defining socioeconomic pathway scenarios that
climate models can simulate. Ice sheet simulations use these
climate model projections to define the future forcing, while
parameter uncertainties are treated by comparing projections
of models from different expert groups with each other for
the same scenarios (e.g., ISMIP6 [1, 3]). However, these
approaches do not result in formal forward propagation of
parameter uncertainties to determine quantitative effects on
projections; rather, the ensemble approach computes a mean
projection by averaging across the projections of different

models (typically a small number). We address that gap here
through the introduction of UQ methods that formally char-
acterize parameter uncertainties and compute the impact of
those uncertainties on projections.

We first characterize uncertainty in the basal friction field
α, which governs the sliding of the ice at the bedrock and
thus has a strong influence on the ice velocity v. However, the
basal friction field can only be indirectly observed through
velocity data at the surface, and is thus uncertain. Estimates
of the basal friction field are commonly obtained by solving
an inverse problem such as Eq. 4.Wemodel the uncertainty in
the basal friction field induced by the choice for vobs: Using
the sameweights as in Eq. 4, we compute basal friction fields
αi as the minimizers of the cost function J (α; vobsi )with vobsi
being the annual average surface velocity data for the year i
(i = 2015, . . . , 2021) from [59]. In these inverse problems
we use the geometry of our 2015 initial condition, and start
the minimization from αref as initial guess, such that the data
vobsi can loosely be interpreted as measurements obtained for
a basal friction α drawn from a log-normal distribution

α = exp

(
ln(αre f ) +

7∑
i=1

Xα,iφi

)
, (7)

with random variable Xα ∈ R
7, Xα ∼ N(0, �α), and modes

φ1, . . . , φ7 defined on the basal surface�b. Note that bymod-
eling α through a log-normal distribution, we are guaranteed
that α is positive everywhere. To determine �α ∈ R

7×7

and φ1, . . . , φ7, we form the covariance matrix between
ln(αi ) − ln(αre f ), i = 2015, . . . , 2021; we then choose φi

as the i-th principal component and �α as the associated
diagonal covariance matrix (c.f., [60]). Figure 2 shows the
log-mean and the two dominant principal components scaled
by their respective standard deviation. The first mode iden-
tifies large areas with strong uncertainty, in the second the
uncertainties are smaller and slightly more local, but still
affect large areas of the domain. The remaining modes (not
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Fig. 3 Geothermal heat flux
fields from [21] (left) and [20]
(right) measured in W/m2

shown) follow this trend in reflecting increasingly more local
fluctuations in the basal friction field α.

Next, we characterize the uncertainty in the geothermal
heat flux, which describes how much heat moves outward
from the interior of the earth and is needed for the basal
boundary condition of the thermal model. Since the basal
boundary is underneath the ice, the geothermal heat flux is
difficult to observe and therefore has large uncertainty [10].
Sparse measurements are obtained through ice cores. There
are many approaches using these sparse geothermal heat flux
measurements to infer the complete geothermal heat flux
field, including machine learning [61, 62], topographic cor-
rections [63], magnetic fields [64, 65], and others [10, 66].
Different approaches lead to flux fields that are vastly differ-
ent (see [61], Figure 13, or [10]), and there generally appears
to be disagreement on how to best quantitatively describe the
flux field. For instance, in ISMIP6, 13 groups used the heat
flux from [20], where seismic data is used to extrapolate heat
flow measurements, five groups used [21], where ice-core
measurements are used for local adjustments of the global
heat flux map [67], and the remaining groups used different
fluxes ([1], Table A1). Yet, as shown in Fig. 3, the geothermal
heat flux fields from [21] and [20] are considerably different.

We build an uncertainty model for the geothermal heat
flux using the fields that were predominantly chosen in
the ISMIP6 models: the field qGgeo with superscript “G”
for “Greve” from [21], and the field qSRgeo with superscript
“SR” for “Shapiro-Ritzwoller” from [20], both depicted in
Fig. 3. Following the example at theNASASeaLevelChange

Portal,3 wemodel the uncertainty of the geothermal heat flux
through

qgeo = Xgeoq
G
geo + (1 − Xgeo)q

SR
geo

where Xgeo ∼ U(0, 1) is a uniformly distributed random
variable taking values between 0 and 1.

We now show quantitatively the effects of these uncer-
tainties in basal friction field and geothermal heat flux on
predicted ice mass loss, treating Xgeo and Xα as indepen-
dent variables. This choice neglects how the inversion for
the basal friction field would absorb increased/decreased ice
velocities caused by stronger/weaker geothermal heating (see
[42]), and therefore leads to higher/lower local ice velocity.
To additionally model this effect, the uncertainties in qgeo
need already be included when generating the training data
for the model Eq. 7 such that (Xgeo, Xα) can be modelled as
a correlated random vector. Here, we used the mean E(qgeo)
when building the model Eq. 7.

Figure 4 shows the high-fidelity projections of the 2015–
2050 icemass loss inGreenland for 32 samples of (Xgeo, Xα)

chosen via Latin-Hypercube sampling. The colors are ordered
according to the magnitude of the projections for the year
2050. It can be seen that the modelled uncertainty in the
geothermal heat flux and the basal friction field lead to large
variations in the predicted ice mass change. These variations
grow increasingly as time progresses. Comparing the mean

3 https://sealevel.nasa.gov/, accessed Aug. 2024
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Fig. 4 Left: High-fidelity ice mass change projections for 32 samples
(colored lines) of the geothermal heat flux and basal friction fields;
right: Histogram and kernel density estimate of the high-fidelity ice

mass change projections for the year 2050 computed over 480 samples
of the geothermal heat flux and basal friction fields

ice mass change over 480 projections of i.i.d. samples (dot-
ted line) with the predicted ice mass change at the mean
parameter E[(Xgeo, Xα)] = (0.5, 0, . . . , 0) (dashed-dotted
line), we see a discrepancy of 1310Gt by the year 2050. This
discrepancy is perhaps not surprising considering that our
high-fidelity model is highly nonlinear with respect to the
uncertain parameters. Moreover, the histogram of 480 sam-
ples plotted in Fig. 4 illustrates that the model nonlinearity
leads to a non-Gaussian distribution in ice mass change out-
puts, likely due to the presence of tipping points in ice retreat.
This highlights the critical importance of conducting a full
quantitative assessment of uncertainty.

We remark that the multifidelity UQ framework intro-
duced in Section 3 is agnostic to the specific choice of
modeled uncertainties; thus, other characterizations of the
uncertainty in the geothermal heat flux and basal friction
fields are permitted, e.g., through Gauss Markov random
fields (see [68]), posterior distributions (see [17, 18]), or
learned distributions (see [19, 62]). Similarly, other uncer-
tainties may be considered, such as the basal topography
(see [22, 69]), or hyperparameters associated with data-fit
surrogate models.

2.3 Surrogate modeling

The multifidelity UQ framework relies on the availability of
surrogate lower-fidelity/lower-costmodels. In this sectionwe
provide brief descriptions of some of the types of surrogate
models readily available in many ice sheet codes.

A straightforward means for obtaining lower-fidelity/lower-
cost surrogates is to use coarser grids and/or larger time steps
when discretizing the continuous models. This approach was
first used for MLMC estimation in [39] and further devel-
oped in [40]. Because a coarsened computational model has
fewer degrees of freedom, its solution can be expected to

require less computational effort. Note that when coarsen-
ing a discretization, it is important to still adhere to stability
conditions (e.g., the CFL condition for time step size).

Another common form of surrogate model in computa-
tional glaciology is a simplified-physicsmodel, especially for
the stress balance equations. The development of simplified-
physics approximations is primarily motivated by the high
computational cost of the FS equations, which necessitates
surrogate modeling for many applications. Consequently,
there exists a vast variety of approximated physics models,
primarily the HO equations (if the high-fidelity model is the
Full Stokes system), SSA equations [70], the Shallow Ice
Approximation [71],mono-layermodels [72, 73], and hybrid
models that impose different equations on different parts of
the domain [74, 75]. The prevalence of approximated physics
models in the ISMIP6 studies [1–4] and throughout the ice
sheet literature shows the existing trust in these methods.
It can thus be expected that approximated physics models
have strong correlations with the high-fidelity model, and
are already implemented in many ice sheet codes.

In the SSA model, vertical shear is neglected such that
only the depth-averaged velocity field v̄ on the 2D domain
�2D is solved for. The governing equations become:

∇ · (2μ̄hε̇SSA,1) − α2N v̄x = ρgh
∂s

∂x
(8)

∇ · (2μ̄hε̇SSA,2) − α2N v̄y = ρgh
∂s

∂ y
(9)

for x = (x, y) ∈ �2D and t0 < t ≤ t f , and where the mean
ice viscosity μ̄ is computed from Glen’s flow law Eq. 3 with
strain rate

ε̇SSA,1 =
⎛
⎜⎝

2
∂ v̄x
∂x

+ ∂ v̄y
∂ y

1

2

∂ v̄x
∂ y

+ 1

2

∂ v̄y
∂x

⎞
⎟⎠
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Table 1 Discretization and runtime of our ISSM models

resolution DoFs/variable cost [CPUh]
mesh name min. max. 2D 3D SSA HO

fine 100 m 15 km 20,455 102,275 0.455 64.888

medium 100 m 30 km 6,554 32,770 0.105 22.889

coarse 100 m 50 km 3,600 18,000 0.059 4.689

and

ε̇SSA,2 =
⎛
⎜⎝

1

2

∂ v̄x
∂ y

+ 1

2

∂ v̄y
∂x

∂ v̄x
∂x

+ 2
∂ v̄y
∂ y

⎞
⎟⎠ .

The equations Eqs. 8 and 9 are solved with boundary condi-
tions

ε̇SSA,1 · n2D = 0 ε̇SSA,2 · n2D = 0 on ∂�2D,

on the interface of �2D with air, and with

2μ̄hε̇SSA,1 · n2D = fw,SSAnx

2μ̄hε̇SSA,2 · n2D = fw,SSAnx

on the ice-water interface. Here, n2D = (nx , ny)� denotes
the outward pointing unit normal of the domain �2D. The
water pressure is applied through the Neumann flux function

fw,SSA = 1

2
(ρicegh

2 − ρwgb
2).

Since Eqs. 8 and 9 are solved for two variables defined over a
2Dsurface instead of twovariables definedover a 3Ddomain,
SSA models offer vast computational savings compared to
HO models: For the meshes considered in this study, predic-
tions using an SSAmodel were between 142 and 1,099 times
faster than their HO counterparts, see Table 1.

Another tool for building surrogate models is training on
available data of the high-fidelity model or its approxima-
tions. Most prevalent are emulators of the model’s OoIs, for
instance through Gaussian process regression; this approach
was taken in the forward UQ studies [32–36]. Other forms of
data-driven models include physics-based learning keeping
the connection to governing equations [76] and more gen-
eral machine learning approaches [77, 78]. Throughout these
approaches, training-based surrogate models hinge on the
availability of training data, require some amount of exper-
tise from the modeller, and can have large generalisation
errors outside the training regime, especially if the uncer-
tain parameters are high-dimensional. On the other hand,
they can achieve significantly larger speed-ups than physical
approximations.

In general, for multifidelity UQ any approximation of the
high-fidelity input/output map can be considered as a sur-
rogate model as long as we can characterize its cost and its
correlation with the high-fidelity model. However, despite
the computational gains offered by surrogate models, the
high-fidelity model should generally not be replaced when
estimating its OoI as the model bias introduced by the sur-
rogate can be significant. For example, Fig. 5 illustrates the
effects of both mesh coarsening and physical approximation
via SSA on ice mass change predictions for 32 samples of

Fig. 5 Effect of mesh coarsening (left to right) and physical approximation (top to bottom) on the predicted 2015-2050 ice mass change for 32
samples of the geothermal heat flux and basal friction fields relative to control run on the same mesh with the same physical approximation
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the geothermal heat flux and the basal friction fields cho-
sen by Latin Hypercube sampling, with colors identifying
predictions for the same samples in different plots. Consid-
ering the fine mesh with the HO equations to be the highest
fidelity model, for the five surrogate models in Fig. 5, the
mean 2050 ice mass change differs by 407Gt to 2286Gt
(13.7% to 77.0%) from that estimated from the high-fidelity
samples. To avoid such an introduction of model bias, mul-
tifidelity estimators do not replace the high-fidelity model
with surrogates, but incorporate multiple models into their
structure in a way that guarantees an unbiased estimate of
the statistics of the high-fidelity OoI.

3 Multifidelity uncertainty quantification

This section presents multifidelity UQ methods that incur
lower costs than Monte Carlo estimation by exploiting the
statistical correlation between the high-fidelity model and
its surrogates. We present preliminaries (Section 3.1) and
then discuss three different methods with complementary
strengths that make them appropriate in different settings:

• MFMC (Section 3.2): Handles a large variety of model
types and computational costs, e.g., achieved by physi-
cal approximations and data-driven surrogates, including
situations where there is no clear a priori model hierar-
chy;

• MLMC (Section 3.3): Is particularly appropriate when
there is a hierarchy of similar lower-fidelity models, e.g.,
achieved by mesh coarsening;

• MLBLUE (Section 3.4): By construction is always at
least as good as MLMC andMFMC, but implementation
and handling can be more involved.

We also note that other multifidelity UQ methods, such as
the Approximate Control Variate approach [79], introduce
alternative algorithmic formulations that may be beneficial
in some applications settings. For MFMC, MLMC, and
MLBLUE we provide an algorithmic description for choos-
ing an optimized subset of surrogate models with optimal
weights and sample sizes, and the computation of the asso-
ciated multifidelity estimator. The sample sizes are chosen
such that the estimators’ total costs remain within a given
computational budget c > 0.4 The differences between the
methods and their applicability for UQ in ice sheet simula-
tions are discussed in Section 4.4.

4 We note that each algorithm can be re-written to work with a target
accuracy instead.

3.1 Preliminaries

In the following, we denote with s1 a high-fidelity output
of interest (OoI), and by s1(θ) ∈ R its scalar5 evaluation
at a parameter sample θ ∼ ν. In addition, we have at hand
L−1 ∈ N surrogate OoIs s2, . . . , sL . Evaluating an output si
for a parameter θ ∼ ν incurs the computational cost ci > 0,
e.g., measured in CPU-hours. We assume without loss of
generality that the models are ordered by cost: c1 ≥ c2 ≥
· · · ≥ cL . In our setting here, s1 is the 2050 ice mass change
(in Gt) computed by the high-fidelity model described in
Section 2.1, and ν = U(0, 1) × N(0, �) is the probability
distribution of the uncertainties in the geothermal heat flux
and basal friction field described in Section 2.2.

Furthermore, for i, j = 1, . . . , L , we define the model
covariance matrix � ∈ R

L×L :

�i, j := Cov(si , s j )

= Eν[(si − Eν[si ])(s j − Eν[s j ])].

If this matrix is not available from theoretical estimates, it
can be approximated using model convergence rates or from
npilot pilot samples:

�i, j ≈ 1

npilot − 1

npilot∑
k=1

(
si (θk) − s̄piloti

) (
s j (θk) − s̄pilotj

)

with s̄piloti := n−1
pilot

npilot∑
k=1

si (θk). We expect that for most ice

sheet applications, sufficient data is available from validation
and verification procedures, as well as from historic, con-
trol, and spin-up runs. However, should additional sampling
indeed be necessary, the model evaluations may be re-used
when evaluating themultifidelity estimators.We therefore do
not count the estimation of � towards computational costs.

3.2 Multifidelity Monte Carlo

The MFMC method employs surrogate models of arbitrary
structure [37, 38]. In the following we focus on the MFMC
method from [38] with the adaptation for restrictive compu-
tational budgets from [81] and an integrated model selection
step. Themethod is summarized inAlgorithm 1.We note that
MFMC has been extended to estimation of sensitivities and
covariances [82], is compatible with goal-oriented training
of surrogate models [83, 84], and has been applied to large-
scale applications, in particular in climate modeling [85].

5 We restrict our exposition to scalar OoIs solely for the purpose of
simpler notation; each of the presented multifidelity UQ methods can
be posed similarly for vector-valued quantities. ForMLBLUE, it is even
possible to consider surrogate models that have additional or less OoIs
than the high-fidelity model (c.f., [80]).
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TheMFMC estimator is based on writing the target statis-
tic E[s1] in the form

E[s1] = E[s1] + α2E[s2] − α2E[s2]

= E[s1] +
L∑
j=2

α j
(
E[s j ] − E[s j ]

)

for arbitrary weights α2, . . . , αL (optimal values are defined
below). Each expectation E[s j ] is then approximated using
the Monte Carlo method with shared samples such that the
MFMC estimator s̄MFMC has the form

s̄MFMC := 1

n1

n1∑
i=1

s1(θi )

+
L∑
j=2

α j

(
1

n j

n j∑
i=1

s j (θi ) − 1

n j−1

n j−1∑
i=1

s j (θi )

) (10)

where, for each 1 ≤ j ≤ L , n j ∈ N is the number of
samples for which the OoI s j needs to be evaluated using
model j , and θ1, . . . , θnL ∼ ν are i.i.d. parameter sam-
ples shared between the models. By imposing the order
1 ≤ n1 ≤ n2 ≤ · · · ≤ nL , the cheapest model sL is sampled
the most while the expensive high-fidelity model, s1, is sam-
pled the least. By construction, the MFMC estimator s̄MFMC

is unbiased: E
[
s̄MFMC

] = E[s1]. Note that, in constrast to
MLMC, the samples within the individual sums in Eq. 10
are shared. Exploiting the consequent correlation between
the sums, the mean squared error (MSE) of the MFMC esti-
mator Eq. 10 is then given by

MSE(s̄MFMC)

= E[(s̄MFMC − E[s1])2]

= σ 2
1

n1
+

L∑
j=2

(
1

n j−1
− 1

n j

)
(α2

jσ
2
j − 2α jρ jσ1σ j )

(11)

where, for 1 ≤ j ≤ L , σ j = √
� j, j is the standard deviation

for model s j , and ρ j := �1, j/(σ1σ j ) is the correlation of
model j with the high-fidelity model s1. Since the MFMC
error is unbiased, the MSE is the expected squared error
between the MFMC estimator and the target statistic E[s1].
From the formula Eq. 11 we can immediately deduce that
α j = ρ jσ1/σ j = �1, j/� j, j for j = 2, . . . , L are optimal
for achieving the smallest MSE in Eq. 10.

To obtain optimal sample sizes 1 ≤ n1 ≤ n2 ≤ · · · ≤ nL
for a given total computational budget c ≥ c1, we solve the

relaxed optimization problem

min
n1,...,nL∈RMSE(s̄MFMC)

s.t.

{
0 < n1 ≤ n2 ≤ · · · ≤ nL∑L

j=1 n j c j ≤ c.

(12)

The first constraints on the sample sizes ensure that at least
as many samples are taken of the OoI s j as are taken for the
more costly OoI s j−1, with the constraint 0 < n1 ensuring
that all sample sizes are positive. The last constraint on the
model evaluation costs ensures that the given computational
budget c is not exceeded.

It has been shown in [38] that if 1 = |ρ1| > |ρ2| > · · · >

|ρL | and

c j−1

c j
>

ρ2
j−1 − ρ2

j

ρ2
j − ρ2

j+1

(13)

hold, then the global minimum of Eq. 12 is obtained by

n1 = c

⎛
⎝

L∑
j=1

c jr j

⎞
⎠

−1

, n j = r j n1 (14)

for j = 2, . . . , L , where we are using the auxiliary variable

r j :=
√√√√c1(ρ2

j − ρ2
j+1)

c j (ρ2
1 − ρ2

2 )
. (15)

Condition Eq. 13 describes how much faster any lower-
fidelity model s j must be, compared to the more expensive
model s j−1, in order to make up for its worse correlation
|ρ j | < |ρ j−1|.6 After computing n1, . . . , nL ∈ R using
the closed-form solution Eq. 14, they need to be rounded
to integers larger or equal than one. If possible, sample sizes
are rounded down to ensure the computational budget is not
exceeded. Any remaining budget can be redistributed to fur-
ther decrease the MFMC estimator’s variance, e.g., using the
optimized rounding strategy in [81].

Algorithm 1 summarizes the computation of the sample
sizes n1, . . . , nL and weights α1, . . . , αL for given models
s1, . . . , sL . Since the smallest MSE of the MFMC estimator
may be achieved with a subset of the available surrogate
models, Algorithm 1 should always be placedwithin an outer
loop over all subsets of the available surrogate models to
determine when the MSE is the smallest. In addition, the
obtained value for MSE should be compared with the MSE
ofMonte Carlo sampling, i.e., the value σ 2

1 /�c/c1�, to ensure
6 Note that if there exists a model j + 1 such that ρ j+1 ≥ ρ j , then it is
clearly superior to model s j both in cost and correlation, and model s j
should be removed.
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Algorithm 1 Multifidelity Monte Carlo
Input: high-fidelity model s1, surrogate models s2, . . . , sL , model eval-
uation costs c1 ≥ · · · ≥ cL , model correlations ρ1, . . . , ρL , model
variances σ 2

1 , . . . , σ 2
L , computational budget c

Output: sample sizes 1 ≤ n1 ≤ · · · ≤ nL , optimal weights α1, . . . , αL ,
estimator MSE MSE = E[(s̄MFMC − E[s1])2]
1. Assert that 1 = |ρ1| > · · · > |ρL |. If not, then any model s j with

ρ j ≤ ρ j+1 needs to be removed; return MSE = ∞.
2. Define the auxiliary variable ρL+1 = 0.
3. Assert that the budget the budget is large enough, i.e.,

∑L
j=1 c j ≤ c,

and that Eq. 13
holds for j = 2, . . . , L . If not, then the provided combination of
surrogate models is not suitable for MFMC; return MSE = ∞.

4. Compute the ratios r j for j = 1, . . . , L using Eq. 15, and use them
to compute n1, . . . , nL ∈ R with Eq. 14.

5. For j = 1, . . . , L , round all n j < 1 up to 1, and round all n j ≥ 1
down to the next smallest integer.

6. Compute the optimal weights α j = ρ jσ1/σ j for j = 1, . . . , L
7. Compute the MSE of the MFMC estimator with Eq. 11 and save

in variable MSE
8. Return (n1, . . . , nL ), (α1, . . . , αL ), MSE

that MFMC is indeed applicable. After the model subset has
been selected, the MFMC estimator s̄MFMC can be computed
using Eq. 10.

3.3 Multilevel Monte Carlo

The MLMC method has its roots in [39, 40], where it was
first formulated for grid-refinement based surrogate mod-
els and their convergence rates. The method has since been
expanded structurally (e.g., Multi-Index Monte Carlo [86]),
refined for stronger convergence (e.g. randomized and adap-
tive MLMC methods [87–89]), and combined with other
sampling schemes (e.g., Multilevel Quasi Monte Carlo [90],
MultilevelMarkov ChainMonte Carlo [91]); we refer to [92]
for an extensive introduction. In our exposition here we focus
on the non-geometric MLMC method, which is posed for
arbitrary surrogate models and based on model correlations
instead of convergence rates, following the exposition in [92].
Algorithmic instructions are provided in Algorithm 2.

The MLMC estimator exploits that the expectation is a
linear operator to expand the high-fidelity expectation E[s1]
in a telescoping sum of the form7

E[s1] = E[s2] + E[s1 − s2]

= E[sL ] +
L−1∑
j=1

E[s j − s j+1].

The difference s j − s j+1 between models s j and s j+1 is
typically referred to as the j-th level, with sL = sL − 0 the

7 Contrary to typicalMLMCnotation but consistent with all other parts
of this paper, a larger index here indicates a model of lower computa-
tional cost, i.e. cL ≤ cL−1 ≤ · · · ≤ c1.

L-th level. To obtain the MLMC estimator, the expectation
of each level is approximated independently viaMonte Carlo
sampling

s̄MLMC := 1

nL

nL∑
i=1

sL(θ
(L)
i )

+
L−1∑
j=1

1

n j

n j∑
i=1

(
s j (θ

( j)
i ) − s j+1(θ

( j)
i )

) (16)

where, for each level 1 ≤ j ≤ L , the θ
( j)
i ∼ ν, 1 ≤ i ≤ n j ,

are i.i.d. samples, and n j ∈ N is the sample size for the j-
th level Monte Carlo approximation. For implementation it
is important to note that the samples are not shared beyond
each level. The cost of evaluating Eq. 16 is thus nLcL +∑L−1

j=1 n j (c j + c j+1).
By construction, s̄MLMC is an unbiased estimator of the

high-fidelity model s1, i.e., E[s̄MLMC] = E[s1]. Its MSE is
given by the formula

MSE(s̄MLMC) = E[(s̄MLMC − E[s1])2]

= σ 2
L

nL
+

L−1∑
j=1

σ 2
j

n j

(17)

where we are using the auxiliary variable

σ 2
j := Var(s j − s j+1) = � j, j − 2� j, j+1 + � j+1, j+1

to abbreviate the variance of each level. The underlying
premise for the MLMC estimator to be effective is the obser-
vation that if models s j and s j+1 yield similar OoIs, then the
level variance σ 2

j is small; consequently only a small sample
size n j is required to balance out the contribution of level
j to the MSE of the MLMC estimator in Eq. 17. For level
L , the surrogate sL is sampled alone without an additional
model to decrease that level’s variance, but since sL is the
cheapest model it can be expected that the associated cost
cLnL remains reasonable, even if nL is large.

To balance andminimize the contributions of each level to
the MLMC estimator’s MSE, it suggested in [92] to choose

nL = τ

√
σ 2
L

cL
, n j = τ

√
σ 2

j

c j + c j+1

(18)

for j = 1, . . . , L−1. The scaling factor τ > 0 can be chosen
to adhere to budget constraints: For s̄MLMC to have a cost of
c, i.e.,

nLcL +
L−1∑
j=1

n j (c j + c j+1) = c,
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is equivalent to choosing

τ = c

⎛
⎝

√
σ 2
LcL +

L−1∑
j=1

√
σ 2

j (c j + c j+1)

⎞
⎠

−1

. (19)

To obtain integers, sample sizes n j ≤ 1 are rounded up to 1,
and down otherwise. Note that the rounding may cause the
computational budget to be violated8; the budget constraint
therefore needs to be checked before accepting a combination
of surrogate models (see Step 2.4 in Algorithm 2).

Algorithm 2 Multilevel Monte Carlo
Input: high-fidelity model s1, surrogate models s2, . . . , sL , model
evaluation costs c1 ≥ · · · ≥ cL , level variances σ 2

1, . . . , σ
2
L−1, model

variance σ 2
L of lowest fidelity model, computational budget c

Output: sample sizes 1 ≤ n1 ≤ · · · ≤ nL , estimator MSE MSE =
E[(s̄MFMC − E[s1])2]
1. Compute the scaling ratio τ using Eq. 19.
2. Compute n1, . . . , nL ∈ R with Eq. 18.
3. For k = 1, . . . , L , if nk ≤ 1 round it up to 1, otherwise round

down.
4. Compute the MSE of the MLMC estimator with Eq. 17 and save

in variable MSE
5. Return (n1, . . . , nL ), MSE

The computation of the MLMC sample sizes and corre-
sponding MSE is summarized in Algorithm 2. Similar to
MFMC, the smallest MSE of the MLMC method may be
realized by a subset of the available surrogate models. Algo-
rithm 2 should hence be placed within an outer loop over all
combinations of available surrogate models to determine the
optimal model selection for which the returned value MSE is
minimal. If the identified MSE is smaller than σ 2

1 /�c/c1� —
the MSE of MC sampling — then the MLMC estimator can
be computed using the chosen models and identified sample
sizes using Eq. 16.

3.4 Multilevel best linear unbiased estimator

The MLBLUE method was introduced in [41] and has since
been extended with theoretical results in [93] and with algo-
rithms for sample size optimization and multiple OoIs in
[80]. In the following, we focus on the main concept and
algorithmic steps, and refer to the cited literature for details.
A full description of the MLBLUE method is provided in
Algorithm 3.

To explain the structure of the MLBLUE estimator, we
first define the vector of expectations of all available models

ŝ = (E[s1], . . . ,E[sL ])� ∈ R
L .

8 To our knowledge there does not yet exist a low-budget sample size
optimization for MLMC.

Estimating the high-fidelity expectation E[s1] is then equiv-
alent to estimating e�

1 ŝ with e�
1 = (1, 0, . . . , 0) ∈ R

L . Let
S1, . . . ,SL̂ be an enumeration of all L̂ := 2L non-empty
subsets of the model indices {1, . . . , L}.

Focusing on any one index group Si = {1 ≤ j1 ≤ · · · ≤
jL ′ ≤ L} with L ′ := |Si |, we define the random vector
si := (s j1, . . . , s jL̃ )

� by stacking the models s jk with indices
jk ∈ S together. The evaluation si (θ) at a sample θ ∼ ν can
then be interpreted as a noisy observation of ŝ:

si (θ) = (s j1(θ), . . . , s jL̃ (θ))�

=
(
E[s j1], . . . ,E[s jL̃ ]

)�

+
(
s j1(θ) − E[s j1], . . . , s jL̃ − E[s jL̃ ]

)�

=: Riŝ + εi (θ)

(20)

where thematrixRi ∈ {0, 1}L ′×L removes all entries in ŝ that
are not in the index setSi ; it is defined through (Ri)k,� = δ�, jk

using the Kronecker delta. By construction, εS ∈ R
L ′

is a
random variable withmean zero, and covariancematrixCi ∈
R

L ′×L ′
defined by (Ci )k,� := � jk , j� . Since Ci is a submatrix

of the symmetric positive definite covariance matrix � it is
itself symmetric positive definite and thus invertible.

For a given vector n ∈ N
L̂≥0 of sample sizes for each

model index group, we evaluate the random vector si at ni
i.i.d. samples

{
θ

(i)
k

}ni
k=1

. An estimate of ŝ is then obtained by

solving the regression problem

min
s∈RL

L̂∑
i=1

ni∑
k=1

(
Ri s − si (θ

(i)
k )

)�
C−1
i

(
Ri s − si (θ

(i)
k )

)

The minimum norm solution to this problem is obtained at

ŝ∗ = �(n)†y(n) (21)

with the vector

y(n) :=
L̂∑

i=1

RiC
−1
i

ni∑
k=1

si (θ
(i)
k ) ∈ R

L (22)

and using theMoore-Penrose pseudoinverse of the likelihood
matrix

�(n) := R(n)Cε(n)−1R(n)� ∈ R
L×L . (23)

In Eq. 23, the matrices R(n) ∈ {0, 1}L×m and Cε(n) ∈
R
m×m , with m = m(n) := ∑L̂

i=1 ni |Si |, contain ni copies
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of each matrix Ri and Ci :

R(n) := (R1, . . . ,R1, R2, . . . ,RL̂),

Cε(n) := diag(C1, . . . ,C1,C2, . . . ,CL̂).
(24)

After solving Eq. 21, we obtain the MLBLUE estimator

s̄MLBLUE := e�
1 ŝ

∗ ≈ E[s1]. (25)

It was shown in [41, 94], that s̄MLBLUE is an unbiased esti-
mator, i.e. E[s̄MLBLUE] = E[s1], if the high-fidelity model
s1 is sampled at least once. This condition can be written

equivalently as n�h ≥ 1 where h ∈ {0, 1}L̂ is defined by
hi = δ1∈Si

. In this case, the MLBLUE estimator’s MSE is
given by

MSE(s̄MLBLUE) = E[(s̄MLBLUE − E[s1])2]
= e�

1 �(n)†e1.
(26)

The sample size ni for each model vector si should be
chosen to minimize the MSE of the MLBLUE estimator
s̄MLBLUE. It was shown in [80] that the optimal n for a given
budget c solves the semi-definite programming problem

min
n≥0,t∈R t

s.t.

(
�(n) e1
e�
1 t

)
is s.p.d.,

and n�c ≤ c, n�h ≥ 1,

(27)

where the acronym s.p.d. stands for symmetric positive defi-

nite, and the vector c ∈ R
L̂ contains the costs for evaluating

the model group i , i.e., ci = ∑
j∈Si

c j ≥ 0. The obtained
sample size vector n can then be used to compute the optimal
MLBLUE estimator s̄MLBLUE. The procedure is summarized
in Algorithm 3.

Both the MFMC and the MLMC estimator can be written
in the MLBLUE index group structure, albeit with pre-
determinedweights.Recall thatMLMCoptimizes the sample
size and MFMC optimizes both the sample size and the
weights. The MLBLUE method goes further to optimize
sample sizes jointly with the estimator’s structure in the form
of selected model groups and their weights. This means that
by construction, the MSE of the MLBLUE estimator is at
least as small as that of the MFMC and the MLMC method,
meaning that the MLBLUE estimator is guaranteed to be
at least as good as MFMC’s and MLMC’s, and in many
cases will be better. However, since the number L̂ = 2L

of model index groups grows exponentially fast in the num-
ber L − 1 of available surrogate models and because the
covariancematrix�maybe arbitrarily badly conditioned and

Algorithm 3Multilevel Best Linear Unbiased Estimator
Input: high-fidelitymodel s1, surrogatemodels s2, . . . , sL , model eval-
uation costs c1 ≥ · · · ≥ cL , model covariance matrix � ∈ R

L×L ,
computational budget c
Output: MLBLUE estimator s̄MLBLUE ≈ E[s1], estimator variance
MSE = Var(s̄MLBLUE)

1. Set L̂ := 2L . Choose an enumeration S1, . . . ,SL̂ of all L̂ non-
empty subsets of the model indices {1, . . . , L}.

2. For i = 1, . . . , L̂ , compute the matrices Ci and Ri (defined after

Eq. 20), and the cost entry ci = ∑|Si |
k=1 c jk for the model index set

Si = { j1 ≤ · · · ≤ j|Si |}
3. Using the definitions in Eqs. 23 and 24, solve the semi-definite

programming problem Eq. 27 to obtain the sample sizes n. We
suggest using an off-the-shelf solver.

4. To compute theMLBLUEMSE,first computeR(n) andCε(n)with
Eq. 24, and use them to compute �(n) via Eq. 23. Then evaluate
MSE = e�

1 �(n)†e1 using Eq. 26.

5. To compute the MLBLUE estimator, for each 1 ≤ i ≤ L̂ with
ni �= 0, draw samples θ

(i)
k ∼ ν, 1 ≤ k ≤ ni , and evaluate s j (θ

(i)
k )

for each model index j ∈ Si . Use these output evaluations in Eq.
22 to compute y(n). Then compute the minimum norm solution
ŝ∗ of �(n)s = y(n) using Eq. 21. Finally, compute the MLBLUE
estimator s̄MLBLUE using Eq. 25.

6. return s̄MLBLUE, MSE

biased with approximation errors, solving Eqs. 27 and 21 can
becomenumerically challenging. In particular, theMLBLUE
optimization tends to select dissimilar model index groups,
sample sizes, and weights even for similar computational
budgets. In contrast, the MFMC method has been shown
to be robust towards approximation errors in � (see [38]).
Since MLBLUE has only recently been introduced, similar
advancements have not yet beenmade, though they can likely
be expected from future work.

4 Application to Greenland ice mass loss
projections

We conclude this paper with a demonstration of the intro-
duced multifidelity UQ methods MFMC, MLMC, and
MLBLUE. Specifically, we estimate the expected ice mass
loss of the Greenland ice sheet high-fidelity model under
uncertainties in the basal friction field and the geothermal
heat flux for the 2015–2050 time period. Our surrogate mod-
eling setup is described inSection 4.1. For our demonstration,
we distinguish between two UQ use cases: First, in Section
4.2 we prescribe a target accuracy in the estimated mean of
±1mm SLR equivalent (or ±361.8Gt) ice mass loss at a
95% confidence level; second, in Section 4.3, we compare
the accuracy of the 2015–2050 estimates obtained for a fixed
computational budget of five high-fidelitymodel evaluations.
We conclude with a discussion of the results in Section 4.4.
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4.1 Surrogate models

In our multifidelity modeling setting, we employ L = 13
models of the ice mass change in Greenland for the years
2015–2050. Our high-fidelity model s1 is governed by the
equations for ice temperature, ice thickness, and the HO
stress balance model for the ice velocity as described in Sec-
tion 2.1. It is discretized on our finest availablemesh, denoted
“fine.” Surrogate models s3 and s5 (named “HO, medium”
and “HO, coarse”, respectively) are obtained by replacing
the high-fidelity mesh with the two coarser meshes denoted
“medium” and “coarse,” with initial conditions obtained by
interpolating the t = 2015 high-fidelity initial condition fol-
lowed by a relaxation run. Themesh resolutions are provided
in Table 1. Surrogate models s7 (“SSA, fine”), s9 (“SSA,
medium”), and s11 (“SSA, coarse”), are obtainedby replacing
the HO stress balance solver with the SSA, which approxi-
mates the three-dimensional velocity fields vx and vy by their
two-dimensional depth-averages (see Section 2.3). All mod-
els are run using ISSM with adaptive time stepping adhering
to aCFL condition to guarantee numerical stability. The aver-
age computational costs are listed in Table 2. We did not
encounter any model blow-ups, and all runs concluded with-
out errors and warnings.

For each of the ISSM models s1, s3, s5, s7, s9, and s11,
we define data-fit surrogate models that we denote “extrapo-
lation” data-fit model. These data fit surrogates are denoted
s2, s4, s6, s8, s10, and s12, and are based on the observa-
tion that the ice mass loss is dominated by two trends, the
overall, almost linear decline whose slope varies by param-
eter samples, and yearly fluctuations. The latter is primarily
caused by the surface mass balance Ṁs , and only implicitly

Table 2 Surrogate model overview

model cost model setup
no. [CPU-h] type mesh velocity

1 64.888 ISSM fine HO

2 37.079 extr. fine HO

3 22.889 ISSM medium HO

4 13.079 extr. medium HO

5 4.689 ISSM coarse HO

6 2.679 extr. coarse HO

7 0.455 ISSM fine SSA

8 0.260 extr. fine SSA

9 0.105 ISSM medium SSA

10 0.060 extr. medium SSA

11 0.059 ISSM coarse SSA

12 0.034 extr. coarse SSA

13 < 0.001 interp. coarse SSA

depends on the parameter samples through the coupling of
Ṁs to the ice altitude, and the coupling of the basal melt
Ṁb to the geothermal heat flux. Both trends can clearly be
observed in Figs. 4 (left) and 5. To exploit this effect, we
first compute nine reference samples of the “SSA, coarse”
models, fit a linear function to each, and take the mean over
the misfit to approximate the parameter-independent yearly
adjustments. We then define “extrapolation” surrogate mod-
els by first running our HO or SSAmodels for 20 years using
a sampled parameter, and then fitting a linear curve and the
learned yearly adjustments to the thus obtained 2015-2035
predictions; to obtain predictions for t ∈ [2035, 2050], we
then evaluate the obtained data-fit model. The procedure is
illustrated in Fig. 6. As the cost is dominated by the first
simulation step in ISSM, each extrapolation model’s predic-
tions for 2015–2050 are 35/20 = 1.75 times cheaper than
its corresponding ISSM model.

Finally, for our cheapest surrogate model s13 we inter-
polate linearly between the nine reference ice mass change
predictions of “SSA, coarse.” This interpolation is extremely
cheap but is — unsurprisingly — not particularly accurate
for individual predictions, c.f. Figure 6. Still, as will be seen
in the following results, the interpolation model achieves a
high correlation with the high-fidelity model for the 2050 ice
mass loss, making it beneficial to employ in the multifidelity
estimators. Thus, this interpolation model demonstrates the
benefit of cheap surrogate models even at the cost of reduced
accuracy, when employed within a formal multifidelity esti-
mation framework.

The multifidelity UQ methods require an estimate of the
model covariance matrix � ∈ R

13×13. We use Latin Hyper-
cube sampling to choose32parameter samples for computing
all entries in� that depend on HOmodels. The ISSMmodel
predictions for the parameters are shown in Fig. 5, and for
the high-fidelity model additionally in Fig. 4. We do not
remove outliers from the sampled data (as seen in Fig. 5
for the “SSA, medium” model) to avoid estimating an overly
confident covariance matrix. For all entries in � that do not
depend on the HO models but on the cheaper SSA models,
we include an additional 96 parameters in the sampling to
reduce potential bias in �. Finally, for �13,13, the variance
of the interpolation model s13, we use 50, 000 samples. We
record the model costs c1, . . . , c13 as the average CPU time
for computing the predictions at these samples. Note that
we do not count these computations towards our budget for
estimating the high-fidelity expectation because we expect
that for state-of-the-art ice sheet models, � can be approxi-
mated fromverification and validation runs performedduring
model development, or using convergence rates. If not, then
the pilot samples computed for its estimation could also be
reused in the multifidelity estimators.
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Fig. 6 Left: schematic explanation of extrapolation surrogate modeling setup. Right: Interpolation-based predictions for 32 samples of the geother-
mal heat flux and basal friction fields

4.2 Target accuracy

We start by comparing the MSE that can be achieved by
MFMC, MLMC, and MLBLUE for different computational
budgets when approximating the expected 2050 ice mass
loss, see Fig. 7. Based on the heterogeneity of available
models, the MSE for MFMC is slightly smaller than that
of MLMC for the same budget, though both are larger than
the MSE achieved by MLBLUE. Asymptotically, the MSE
for the MFMC estimator is 13.0 times smaller than that of
Monte Carlo for the same budget. Similarly, MLMC reduces
theMSEbya factor of 10.2, andMLBLUEbya factor of 98.1.
Interpreted in terms of accuracy, this means that the multifi-
delity estimators achieve a computational speedup between
one and two orders of magnitude compared toMC sampling.

We compare the performance of the MFMC, MLMC, and
MLBLUEmethodswhenmodels and sample sizes are chosen
to obtain a prescribed target accuracy of ±361.8Gt, cor-
responding to ±1mm SLR equivalent ice mass loss, at a
95% confidence level. The computational budget required
by the multifidelity methods to achieve this target accu-
racy is 30.14 CPU-days for MFMC, 37.52 CPU-days for
MLMC, and 4.19 CPU-days for MLBLUE. These values are
marked with dots in Fig. 7. Compared to the 381.22 CPU-
days required by Monte Carlo sampling, these correspond
to computational speed-ups of factors 12.6 for MFMC, 10.2
for MLMC, and 91.0 for MLBLUE. Note that the speedup
for MLBLUE is smaller than its expected asymptotic value
(98.1×) because the estimator is falling into the low-budget
regime (see Fig. 7).

Theoptimal distribution of surrogatemodels and sampling
costs for achieving the target accuracy are shown in Fig. 8.
All three methods rely on information from all four surro-
gate model types (mesh coarsening, physical approximation,
extrapolation, and interpolation). The high-fidelity model is
sampled 7 times by MFMC, 12 by MLMC, and only once
by MLBLUE, illustrating how all estimators are able to shift

the computational burden onto the surrogate models. MFMC
and MLMC rely heavily on the computationally cheap but
least accurate interpolation model with more than 180,000
samples each. In contrast, MLBLUE uses the interpolation
model far less (61,573 samples), and opts for a larger variety
in models. In particular, MLBLUE uses all six SSA surro-
gatemodels (both full 2015–2050 ISSMpredictions and their
extrapolations, each for the three available meshes) and the
full 2015–2050 HO-coarse, while MFMC and MLMC only
use extrapolation and interpolation type surrogates.

We next approximate the expected high-fidelity ice mass
loss for the year 2050 E[s1(2050)] with each multifidelity
UQ method, using the optimal sample sizes from Fig. 8 to
guarantee an accuracy of at most ±1mm SLR equivalent ice
mass loss at a 95% confidence level. The predictions are pro-
vided in Table 3, with confidence levels illustrated in Fig. 9.
For comparison, we also provide Monte Carlo predictions
at the same accuracy, and at ±0.54mm SLR equivalent ice
mass loss (at 95% confidence). All five confidence intervals
overlap on the interval [15.23, 16.07].

4.3 Target budget

We next demonstrate the power of multifidelity UQ when
workingwith a restrictive computational budget. For a budget
c = 13.5CPU-days, corresponding to five solves of the high-
fidelitymodel, we compute one instance of eachmultifidelity
estimator and its 95% confidence interval for predicting the
expected 2015–2050 ice mass change. The predictions are
shown in Fig. 10. The uncertainty in all estimators increases
in time, with Monte Carlo sampling performing the worst —
as expected for the small number of high-fidelity samples.
Its final 95% confidence interval at t = 2050 is [−5132.9 ±
1913.1] Gt, or [14.19 ± 5.29] mm SLR equivalent ice mass
loss, as illustrated in Fig. 9. In contrast, the final confidence
intervals forMFMC,MLMC, andMLBLUE are [−5581.1±
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Fig. 7 Comparison of root MSE
of the multifidelity UQ methods
MFMC, MLMC, and MLBLUE,
and Monte Carlo sampling for
any given computational budget

Fig. 8 Distribution of computational budget for MFMC, MLMC, and MLBLUE for reaching a target accuracy of ±361.8Gt at 95% confidence

Table 3 Expected Greenland
ice mass loss by 2050: estimates
obtained by MC and
multifidelity UQ methods and
associated uncertainty at a 95%
confidence level

ice mass loss [Gt] SLR contribution [mm] cost
setting method estimate uncertainty estimate uncertainty [CPU-days]

MC -5511 ±360 15.2 ±1.00 381.2

target MFMC -5868 ±356 16.2 ±0.98 30.1

accuracy MLMC -5757 ±352 15.9 ±0.97 37.5

MLBLUE -5725 ±346 15.8 ±0.96 4.2

reference MC -5618 ±195 15.5 ±0.54 1297.8

MLBLUE -5572 ±193 15.4 ±0.53 13.5

target MLMC -5639 ±608 15.6 ±1.68 12.6

budget MFMC -5581 ±612 15.4 ±1.69 11.8

MC -5586 ±1913 15.4 ±5.29 13.5
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Fig. 9 Confidence intervals for expected Greenland ice mass change in 2050 relative to 2015 and control run

611.6]Gt, [−5639.4±607.7]Gt, and [−5572.2±193.1]Gt,
corresponding to an accuracy of ±1.69, ±1.68, and ±0.53
mm SLR equivalent ice mass loss at 95% confidence. For
MonteCarlo sampling to achieve these accuracies at this level
of confidence, we would require a computational budget of
132.5, 135.2 and 1327.5 CPU-days (49, 50, and 491 high-
fidelity model solves).

We note that for Fig. 10 the sample sizes and weights
of the multifidelity UQ estimators were chosen to minimize
the error incurring throughout the 2015–2050 prediction

regime. This stands in contrast to the values reported in
Fig. 7, where the estimators were optimized for the single
prediction at t = 2050. In particular, in Fig. 10, MLMC
performed better than MFMC with up to 5% smaller confi-
dence intervals. However, after rounding the sample sizes,
neither method fully exploited the computational budget but
only used 87.348% (MFMC) and 92.882% (MLMC), while
MLBLUE used 99.998%. Thus, the performance of both
methods can still be improved by redistributing the remain-
ing computational budget, e.g., via [81].

Fig. 10 Estimates of the 2015-2050 ice mass change and 95% confidence interval (shaded) for a computational budget of 324.44 CPU-h.
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4.4 Conclusion

In this paper we have explained three multifidelity UQ tech-
niques — MFMC, MLMC, and MLBLUE — and applied
them to compute the expected 2050 ice mass loss of the
Greenland ice sheet. Despite strong variability in individual
high-fidelity predictions caused by uncertain basal friction
and geothermal heat flux fields, the multifidelity UQ esti-
mators achieve an approximation accuracy of ±1mm SLR
equivalent ice mass loss at a 95% confidence level with up
to 91× speed-up compared to Monte Carlo sampling. In the
low-budget regime, the MLBLUE estimate for a computa-
tional budget of five high-fidelity solves has a variance that
would require 491 Monte Carlo samples. Overall, the three
multifidelity UQ estimators have proven to be well-suited
for computing the output expectations of highly expensive
ice sheet simulations.

In our numerical experiments, MFMC and MLMC have
performed similarly well to each other but have been outper-
formed byMLBLUE. This result was expected as MLBLUE
guarantees by construction an estimator variance that is
smaller or equal to that of both the MFMC and the MLMC
estimator. We still recommend both MFMC and MLMC
for UQ in ice sheet simulations, primarily because both
methods have a strong foundation in the literature with
extensions beyond forward UQ (e.g., Markov chain Monte
Carlo and sensitivity analysis). In contrast, similar exten-
sions forMLBLUEare still in active development.Moreover,
while MFMC and MLMC are generally robust against
against approximation bias in the input covariancematrix, the
MLBLUE sample size optimization can be challenging. Our
recommended procedure after computing the input covari-
ance matrix is to first evaluate the potential benefit of each
method (e.g., in the form of Fig. 7) before committing to
one. In either case, the results show clearly that the existing
surrogate models in the ice sheet literature are sufficient to
enable UQ even for highly expensive high-fidelity ice sheet
models.

Naturally, the performance of the multifidelity UQ meth-
ods depends on the high-fidelity model and its surrogates.
We have chosen our modeling setup here to be as close to
the ISMIP6 protocol [43] as possible while still permitting
comparisons with Monte Carlo sampling to allow an easy
transfer of techniques to other models and codes. In addi-
tion, we have employed surrogate models that are readily
available and do not require expert-level surrogate modeling
implementations. We consequently might expect even better
performance of the multifidelity UQ methods if specialized
reduced-order models are employed among the surrogates.
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