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This work develops a scientific machine learning (SciML) approach to infer aerodynamic
parameters from measurements of the structural strain field induced by aerodynamic pressure
loads. The SciML approach provides the computational underpinning for a novel sensing
strategy for hypersonic vehicles to estimate distributed surface pressure loads, providing valuable
information for guidance, navigation, and control. The feasibility of the idea is first explored
by formulating the inference problem as a deterministic optimization problem. Numerical
studies show the effects of sensor sparsity and measurement noise on the accuracy of inferred
aerodynamic parameters. Optimal decision trees are then proposed as an interpretable, rapid
inverse mapping from the strain measurements to the aerodynamic parameters. Two types
of decision trees, optimal classification trees and optimal regression trees, are assessed. The
performance of each optimal decision tree is evaluated for the estimation of the aerodynamic
parameters and reconstruction of the distributed surface pressure loads. Using synthetic strain
data with realistic levels of noise, the pressure loads can be predicted to within an average of 2%
relative error.

I. Introduction
Key research areas in hypersonic vehicle design have recently emphasized the development of highly maneuverable,

self-aware, and autonomous systems. To meet these requirements, reliable in-flight sensing capabilities are necessary
in order to provide sufficient real-time information for guidance, navigation, and control. Conventional sensing
technologies include inertial measurement units, GPS satellites, and optical lidar sensors. However, these devices may
be dependent on several external factors such as satellite signal, visual obstructions, or adversarial action in denied
airspace environments. Additionally, direct measurements of pressure or heat flux require sensors mounted external
to the vehicle, making them susceptible to the extreme aerothermal conditions experienced during hypersonic flight.
Therefore, new paradigms in sensing strategies must be explored to collect in-flight data that are rich enough to inform a
fully autonomous, self-aware hypersonic vehicle. In this work, we seek to develop a novel vehicle-as-a-sensor strategy
that can infer aerodynamic quantities of interest from measurements of structural deformation of the vehicle airframe.

Estimating unknown quantities of interest from noisy, sparse, and indirect measurements is a task broadly explored
in the field of inverse problems. The formulation and solution of an inverse problem involves the integration of data and
predictive simulation models. A deterministic formulation of an inverse problem leads to an optimization problem
that seeks to find the parameters that best match the observed data [1]. Alternatively, a Bayesian formulation of an
inverse problem brings in the critical element of uncertainty quantification. A Bayesian inverse problem seeks to find
the posterior distribution of parameters that is informed by both observed data and prior information [2]. For systems
governed by partial differential equations, as in our target hypersonic application, the solution of an inverse problem is
typically computationally expensive because it involves repeated simulations of a physics-based model in the process of
solving the optimization problem (in the deterministic case) or sampling the posterior distribution (in the statistical
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case). This computational cost has been addressed through surrogate and reduced-order models [1], but even so the
direct solution of an inverse problem is unlikely to be feasible in real-time onboard a hypersonic vehicle.

This challenge motivates our use of scientific machine learning (SciML), which combines physics-based models and
machine learning, in order to achieve drastic reductions in the computational cost of solving an inverse problem. In
an offline phase, data produced by physics-based models are used to train a map that relates measured quantities (i.e.,
structural strain) to the target inference parameters (i.e., aerodynamic parameters). Once this inverse map is learned,
it is encoded in a machine learning model that can be queried rapidly, allowing for real-time estimates of the target
parameters. Machine learning has already demonstrated several successes in making estimates of state parameters for
aerospace applications. For example, the pitch angle of a jet wing was successfully predicted from fiber Bragg strain
measurements using a neural network [3], resulting in more accurate predictions than conventional calculations. As
another example, the damage state of a wing for an unmanned aerial vehicle (UAV) was predicted in [4] using optimal
classification trees [5, 6]. Given real-time sensor measurements, the UAV was able to estimate its level of structural
damage and dynamically alter its flight path based on the gathered information. We seek to employ similar SciML
techniques to enable the hypersonic vehicle-as-a-sensor concept.

Our proposed approach relies on the availability of high-fidelity physics-based computational models, as well as the
measurement data from which to infer the quantities of interest. Hypersonic simulation has seen many developments,
from high-fidelity simulations [7, 8] to reduced-order models [9, 10] in aerodynamics and aerothermoelasticity.
Hypersonic measurement technologies also continue to improve. Strain measurements using fiber-optic sensors can
provide information about shape changes for aerospace vehicles [11, 12]. In the laboratory, digital image correlation and
fast-response pressure-sensitive paint can measure complex aerodynamic loads and structural response of test articles
[13]. A key contribution of our work is to leverage the complementary strengths of predictive simulation and measured
data, which we achieve by exploiting the rapid estimation capability delivered by machine learning classifiers.

Inverse problems in hypersonics are increasingly important for control and design purposes, especially for quantities
of interest such as aerothermal loads and heat flux [14–17]. In this paper, the quantity of interest to be inferred is the
full-field aerodynamic pressure distribution over the surface of the vehicle. Since the pressure loads induce a structural
response in the vehicle, information about the loads are encoded in elastic response quantities, such as the strain over the
vehicle. In this case, we consider the entire vehicle as a sensor. The benefit of this approach is that we can reconstruct
pressure field information over the entire surface of the vehicle, as opposed to pointwise measurements of pressure
at sparsely distributed locations. Having distributed pressure load information is highly informative for control and
predictive purposes. An additional benefit of the approach is that the deformation of the airframe can be measured
internal to the vehicle, avoiding the harsh aerothermal conditions of hypersonic flight. In this paper, we provide the
computational underpinnings of the vehicle-as-a-sensor strategy through feasibility studies with simulation data. The
SciML methodology and studies support a larger effort to develop the sensing concept. This larger effort includes
extensive experimental validation in ongoing and future work.

The subsequent sections of the paper present the following topics. Section II states the problem formulation and
methodology for both the deterministic inverse problem and SciML approaches. Section III describes the conceptual
hypersonic vehicle testbed problem, which we employ as a case study for numerical experiments. Section IV presents
results from each inverse approach for the testbed vehicle. Finally, Section V concludes the paper.

II. Aerodynamic Parameter Inference: Problem Formulation and Approaches
This section describes the problem formulation and two main approaches. Section II.A presents the problem

formulation, and then Section II.B outlines the deterministic inverse approach, where the inverse problem is solved via
optimization. Section II.C then describes SciML approach, which employs optimal decision trees as an inverse map.

A. Problem Formulation

1. Definitions
We consider a hypersonic vehicle at an instant in time, at operating conditions of Mach number 𝑀 and angle of

attack 𝛼. The aerodynamic state of the vehicle, xaero, comprises the density, velocity, and pressure of the flow field
around the vehicle. The structural state of the vehicle, xstruct, is the displacement of the deformed vehicle. We have the
observed strain at sensor locations on the vehicle, contained in a 𝑑-dimensional observed data vector ỹ ∈ Y, where Y is
the space of possible sensor measurements. We define the quantities of interest, q, which are the surface pressures over
the vehicle. The goal is to infer q from the observed data ỹ. To approach this task, we define the parameter vector
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p = [𝑀, 𝛼]⊤ ∈ P, where the Mach number 𝑀 and angle of attack 𝛼 are intermediate quantities of interest that can be
used to predict q, and P is the space of possible operating conditions. We then approach the inference problem in two
steps: (1) solve the inverse problem from ỹ to p, and (2) use the inferred p to predict q.

Each of these quantities are related via simulation-based forward models, with the parameters p as the input
operating conditions. We denote the forward aerodynamic model by 𝐹aero (xaero; p) = 0; this represents, for example, a
computational fluid dynamics (CFD) simulation. Solving the forward aerodynamic model yields the aerodynamic state
xaero, from which we can then compute the pressure quantities of interest q = 𝐺aero (xaero). We denote the structural
forward model as 𝐹struct (xstruct; q(p)) = 0, which given the pressure loads q as inputs, is solved to yield the structural
state, xstruct. We can then compute the model strain data at the sensor locations as y = 𝐺struct (xstruct). We denote the
combined aerostructural forward model as 𝐹 (xaero, xstruct; p) = 0. Note that the model strain data y differs from the
observed strain data ỹ; we model the discrepancy with additive noise, v ∈ V, whereV is the space of possible noise
realizations. The noise can represent sensor noise, sensor bias, or model error. Here, we model the noise as a Gaussian
vector with independent, identically distributed elements with mean 𝜇 and standard deviation 𝜎.

2. Mappings and synthetic data
To solve the inverse problem via scientific machine learning, we require training data that consists of many

observations ỹ over a range of operating conditions. We produce synthetic strain measurements ỹ via a forward map,
also called the parameter-to-observable map, denoted by

�̃� : P ×V → Y (1)

This mapping encapsulates the forward models, governing equations, and noise model. To outline the steps of producing
synthetic measurements using this forward mapping, we first produce solution pairs, or snapshots, of the forward
aerostructural model, (y 𝑗 , p 𝑗 ) along with the corresponding distributed pressure load q 𝑗 , for 𝑗 = 1, 2, . . . , 𝑛, where 𝑗

denotes the 𝑗 th snapshot index, and 𝑛 is the total number of snapshots. We then generate synthetic realizations of noise
by sampling from the Gaussian noise model to obtain a noise vector v𝑠

𝑗
for 𝑠 = 1, 2, . . . , 𝑛𝑠 , where 𝑛𝑠 is the number of

random noise samples, and each element in v𝑠
𝑗

is an independent sample from the normal distribution N(𝜇, 𝜎2). A
synthetic strain measurement is then given by ỹ𝑠

𝑗
= y 𝑗 + v𝑠

𝑗
. Algorithm 1 outlines the generation of training data, as well

as the formation of data matrices used for training in SciML.
The inference problem is stated as follows: for a given ỹ, we seek to infer the parameters p, or the operating

conditions, from which we can predict q. We define the inverse map, 𝑇 , from the strain data ỹ to the parameters p as

𝑇 : Y → P (2)

In Section II.B, we employ a deterministic optimization approach as the inverse map. Then, in Section II.C, we use
the training data combined with a SciML approach to produce optimal decision trees as a rapid inverse map. In both
approaches, once the parameters p have been estimated, we then predict the quantities of interest q.

Algorithm 1 Training Data Generation
1: Inputs: {p 𝑗 }𝑛𝑗=1
2: for 𝑗 = 1 to 𝑛 do
3: Solve 𝐹 (xaero, xstruct; p 𝑗 ) = 0 ⊲ solve aerostructural forward model
4: q 𝑗 ← 𝐺aero (xaero) ⊲ store surface pressures for parameters p 𝑗

5: y 𝑗 ← 𝐺struct (xstruct) ⊲ store model strain data for parameters p 𝑗

6: for 𝑠 = 1 to 𝑛𝑠 do
7: Generate random noise sample v𝑠

𝑗
⊲ sample each element of v𝑠

𝑗
from N(𝜇, 𝜎2)

8: ỹ𝑠
𝑗
← y 𝑗 + v𝑠

𝑗
⊲ store synthetic strain measurement

9: end for
10: Y 𝑗 ←

[
ỹ1
𝑗

ỹ2
𝑗

. . . ỹ𝑛𝑠
𝑗

]
⊲ collect synthetic strain measurements for each snapshot

11: end for
12: Y←

[
Y1 Y2 . . . Y𝑛

]
⊲ collect all synthetic measurements

13: return {q 𝑗 }𝑛𝑗=1,Y
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3. Surface pressure parameterization
Since the surface pressure q is high-dimensional, we parameterize the pressure field using the proper orthogonal

decomposition (POD) of the pressure snapshot matrix Q, which is assembled by concatenating each q 𝑗 column-wise
into a matrix Q. We center the snapshot matrix using the mean q̄ of the snapshots. We then compute the (thin) singular
value decomposition of the centered snapshot matrix, Q′ = U𝚺V⊤, where the columns of U are the left singular vectors,
𝚺 is the diagonal matrix containing the singular values, and the columns of V are the right singular vectors. We can then
obtain a reduced order reconstruction of a pressure field by

q ≈ q̄ +
𝑟∑︁

𝑘=1
𝑐𝑘u𝑘 (3)

where 𝑟 is the number of POD modes to be retained, u𝑘 is the 𝑘 th left singular vector, and 𝑐𝑘 are the POD coefficients,
or modal coordinates. Letting c = [𝑐1, 𝑐2, . . . , 𝑐𝑟 ]⊤, we compute c by the orthogonal projection of q onto the subspace
spanned by the first 𝑟 left singular vectors, c = U⊤𝑟 q, where U𝑟 retains the first 𝑟 columns of U. The POD allows
for the least-squares optimal rank-𝑟 representation of Q, and is employed in the next sections as a low-dimensional
representation of the pressure field.

B. Deterministic Optimization Approach
In a deterministic optimization approach, for a given (synthetic) observed data vector ỹ, we search the space of the

aerodynamic parameters P to find the optimal parameter vector p which minimizes the data misfit objective function
defined by

min
p

𝑑∑︁
𝑖=1

(
𝑦𝑖 (p) − �̃�𝑖

𝛾𝑖

)2
where 𝐹 (xaero, xstruct; p) = 0, y = 𝐺struct (xstruct) (4)

where the subscript 𝑖 denotes the 𝑖th element in y, 𝛾𝑖 is a normalization factor which is chosen to be max{3𝜎, �̃�𝑖}, and
𝐹 (xaero, xstruct; p) = 0, y = 𝐺struct (xstruct) is the forward aerostructural problem solve. This objective function represents
a least squares minimization problem, and the addition of the normalization factor provides a regularizing effect to
account for noisy measurements of small strain responses. Each evaluation of the objective function involves one
solve of the forward model for the parameters p at the current iteration to obtain y. In this paper, the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm is used to solve the minimization problem in Equation 4. In
our implementation, we simplify the forward model by computing the surface pressure for each iteration via linear
interpolation of POD coefficients of the pre-computed pressure snapshots Q, instead of solving the CFD problem at each
evaluation of the objective function. Through this, we obtain interpolated POD weights, which we use to reconstruct the
pressure field using Equation 3. Consequently, we also constrain the parameters to lie within the range of the parameters
contained in the snapshots. Once the optimal parameters are identified, the CFD model (or POD reconstruction) can be
re-evaluated at the final parameters to compute the surface pressure loads. Using the deterministic optimization approach
enables us to explore the tractability of the inverse problem, including potential ill-posedness or non-uniqueness, and
quantify expected performance of an inverse map based on the level of sensor noise.

C. Scientific Machine Learning Approach

1. Optimal Classification Trees
The SciML approach has two main phases: (1) the offline phase, where simulation data is used to train the inverse

map, and (2) the online phase, where the inverse map is evaluated in real-time to give in-flight estimates of the
aerodynamic parameters of the vehicle. In this paper, we focus on the training process in the offline phase. To develop
an inverse map 𝑇 using a machine learning approach, we propose the use of an optimal classification tree (OCT), which
offers a rapid method of classifying the input feature vector ỹ to a corresponding discrete output which encapsulates the
parameters of interest, p. In this case, the inverse map 𝑇 is the OCT itself. The training of the optimal classification
tree is formulated as mixed-integer optimization problem, which has been demonstrated to be efficiently solvable by
Bertsimas and Dunn [5, 6]. Learning the inverse map 𝑇 can be formally stated as a minimization problem given by

min
𝑇

𝑅(𝑇) + 𝜆 |𝑇 | (5)
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where 𝑅(𝑇) is the misclassification error of the classification tree 𝑇 given the training data, and the parameter 𝜆 is
the complexity parameter which controls the architecture of the decision tree, with constraints described in [5]. For
classification, we must assign class labels to the snapshot solution pairs (y 𝑗 , p 𝑗 ) for 𝑗 = 1, 2, . . . , 𝑛 , denoted as 𝐶ℓ for
ℓ = 1, 2, . . . , 𝑛ℓ . For sufficiently small parameter ranges, we can select 𝑛ℓ = 𝑛, meaning that we define a distinct class
for each snapshot parameter case. This is the approach we have taken in this work. However, with increasing 𝑛, we can
choose 𝑛ℓ < 𝑛 to limit the number of classes and thus the complexity requirement of the OCT. In this general case, we
define an indexing vector m with dimension 𝑛 to track the index of the class assigned to each snapshot. Once the classes
have been defined, our learning problem is to classify new, noisy realizations of strain measurements into the discrete
classes, 𝐶ℓ .

To develop the optimal classification trees, we employ the Interpretable AI software implementation [18] for training
and evaluating the models. To generate the training data required for the learning process, we must use the forward
model and noise model to produce many synthetic measurements. The choice of 𝑛𝑠, which is the number of noise
realizations, must be selected based on the expected noise level, the number of snapshots, and the number of classes 𝑛ℓ .
Algorithm 2 outlines the class assignment and training process.

Algorithm 2 OCT Training

1: Inputs: Y ⊂ R𝑑×(𝑛×𝑛𝑠) , {𝐶ℓ }𝑛ℓℓ=1,m
2: for 𝑗 = 1 to 𝑛 do
3: ℓ ← m( 𝑗) ⊲ obtain index for class corresponding to snapshot 𝑗
4: C 𝑗 =

[
𝐶ℓ repeated for 1 to 𝑛𝑠

]
⊲ repeat class label assignment for all noise realizations for snapshot 𝑗

5: end for
6: C←

[
C1 C2 . . . C𝑛

]
⊲ collect labels for all data points in Y

7: Ytrain,Ctrain ← split(Y,C) ⊲ split data into testing and training sets
8: 𝑇 ← train(Ytrain,Ctrain) ⊲ train OCT using IAI package [18]
9: return 𝑇

Once the inverse map 𝑇 is trained, it can then be invoked in the online phase to make a rapid prediction, as
demonstrated in Algorithm 3. This would enable the inverse mapping to be used as a real-time sensing strategy.

Algorithm 3 OCT Online
1: Inputs: ỹ, 𝑇, {q 𝑗 }𝑛𝑗=1, {𝐶ℓ }𝑛ℓℓ=1
2: �̂� ← 𝑇.predict(ỹ) ⊲ predict class label using trained tree 𝑇 for incoming observations ỹ
3: p̂, q̂← p 𝑗 , q 𝑗 corresponding to 𝐶ℓ = �̂� ⊲ obtain p̂, q̂ from snapshot library corresponding to the predicted class
4: return p̂, q̂

2. Optimal Regression Trees
Another type of optimal decision tree which allows for continuous output predictions is the optimal regression tree

with linear predictions (ORT-L) [19]. Instead of discrete output cases, an optimal regression tree contains a linear
model in each of the terminal leaves of the tree, determined via least-squares regression on the training data input
and output features. This allows for continuous output predictions, while also potentially reducing the complexity of
the tree structure. Consequently, we can reduce the output prediction dimension by reconstructing the pressure from
a small subset of the POD coefficients. To make predictions for multiple POD coefficients using optimal trees, we
progress to a chain of optimal regression trees where we sequentially identify each POD coefficient, using the previous
coefficient predictions to inform the next coefficient prediction. The coefficients are identified in the order of the leading
POD modes; that is, 𝑐1 corresponding to the leading POD mode u1, then 𝑐2, up to 𝑐𝑘 where 𝑘 = 𝑟. This introduces a
conditional dependency on the prediction of higher modes, which is more informative than the independent prediction
of each POD coefficient independently. In essence, the optimal regression tree discretizes the input space into regions in
which the relation between the POD coefficient and the input features can be approximated by a linear model. The linear
model in each of the output leaves is of the form
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𝑐𝑘 =

𝑑∑︁
𝑖=1

𝑎𝑖 �̃�𝑖 +
𝑘−1∑︁
𝑖=1

𝑏𝑖𝑐𝑖 (6)

where �̃�𝑖 is the input feature (sensor measurement), 𝑐𝑖 are the previously predicted modal coefficients corresponding to
higher modes, and 𝑎𝑖 , 𝑏𝑖 are the corresponding weights computed via least squares regression. The performance metric
𝑅(𝑇) in this case is chosen to be the mean squared error of the ORT-L prediction compared to the true POD coefficient.
Algorithm 4 demonstrates how we sequentially train 𝑟 trees, 𝑇1, 𝑇2, . . . , 𝑇𝑘 , for prediction of each POD coefficient.

Algorithm 4 Sequential ORT-L Training

1: Inputs: Y ⊂ R𝑑×(𝑛×𝑛𝑠) , {q 𝑗 }𝑛𝑗=1,V𝑟

2: for 𝑗 = 1 to 𝑛 do
3: c 𝑗 ← V⊤𝑟 q 𝑗 ⊲ compute POD coefficients
4: C 𝑗 =

[
c 𝑗 repeated for 1 to 𝑛𝑠

]
⊲ collect POD coefficients for each point corresponding to snapshot 𝑗

5: end for
6: C←

[
C1 C2 . . . C𝑛

]
⊲ collect POD coefficients for all data points in Y

7: Ytrain,Ctrain ← split(Y,C) ⊲ split data into testing and training sets
8: for 𝑘 = 1 to 𝑟 do
9: ctrain ← Ctrain (𝑘, :) ⊲ isolate single POD coefficient for training

10: 𝑇𝑘 ← train(Ytrain, ctrain) ⊲ train ORT-L using IAI package [18]
11: ĉ← 𝑇𝑘 .predict(Ytrain) ⊲ predict POD coefficient for training data using newly trained ORT-L
12: Ytrain ← concatenate(Ytrain, ĉ) ⊲ augment training data matrix with predicted POD coefficient
13: end for
14: return {𝑇𝑘}𝑟𝑘=1

Similar to the OCTs, Algorithm 5 demonstrates how the sequential ORT-L would predict the surface pressure in the
online phase given a measurement ỹ.

Algorithm 5 ORT-L Online
1: Inputs: ỹ, q̄, {u𝑘}𝑟𝑘=1, {𝑇𝑘}

𝑟
𝑘=1

2: Initialize: z = ỹ ⊲ initialize feature vector to be sequentially updated
3: for 𝑘 = 1 to 𝑟 do
4: 𝑐𝑘 ← 𝑇𝑘 .predict(z) ⊲ predict POD coefficient using trained tree
5: z← append(z, 𝑐𝑘) ⊲ add predicted coefficient to feature vector
6: end for
7: q̂← q̄ +∑𝑟

𝑘=1 𝑐𝑘u𝑘 ⊲ reconstruct pressure field using Eq. 3
8: return q̂

III. Adapted IC3X Testbed Problem
An adapted version of the Initial Concept 3.X (IC3X) hypersonic vehicle is considered as the testbed problem

for proof-of-concept numerical studies in this work. The IC3X was initially proposed by Pasiliao et al. [20], and a
finite element model for the vehicle was developed by Witeof et al. [21]. The IC3X is a representative vehicle that is
air-launched, and propelled via a rocket-scramjet cycle for a three-phase nominal trajectory for a standard mission. The
geometry of the vehicle is shown in Figure 1. In this paper, we consider the outer-mold-line of the IC3X to construct an
aluminum thin-walled structural model.

To compute the aerodynamic pressure loads, we use CART3D [22] to solve the compressible Euler equations for
inviscid steady fluid dynamics on a Cartesian mesh generated as outlined in [23]. CART3D allows for rapid databasing
of large Mach and attitude input spaces as a result of the automated cutcell Cartesian mesh generation with adaptive
mesh refinement, which requires only a manifold surface mesh of the geometry. Consequently, this meshing capability
allows for complex geometries to be simulated many times over varying input conditions. To define convergence of each
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Fig. 1 IC3X geometry, with dimensions in meters.

CART3D solution, an estimated error tolerance of at least 10−3 was met for the output functional defined as the sum of
the aerodynamic body force coefficients with equal weight [24], indicating that the pressure solutions were sufficiently
converged. Figure 2 shows an example of the pressure solution for input parameters (𝑀 = 6, 𝛼 = 2).

Fig. 2 Pressure (non-dimensionalized) on the surface of IC3X at (𝑀 = 6, 𝛼 = 2).

Once the CFD solutions are computed, the resultant pressure loads are then applied to a structural finite element
model, which is a shell element model of the thin-walled structure used for preliminary computational studies and
proof-of-concept analysis. A fixed boundary condition is enforced on the body at 𝑥 = 2.6 m, at the vehicle’s approximate
center of gravity. The strain response is computed using the ANSYS Mechanical Static Structural solver [25]. We obtain
the model strain response at nodal points which we define to be strain sensor locations. For the IC3X, 44 nodal points in
the model are defined as the locations of the strain sensors. The sensors are placed in four rows of eleven, spatially
distributed in both the axial and azimuthal directions, for a total of 44 sensors. The strain is measured in the streamwise
direction. Figure 3 shows the placement of the 44 sensors, as well as a subset of 20 sensors which are considered as an
additional limited-sensor case study.
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Fig. 3 Strain sensor placement with 44 sensors (top) and 20 sensors (bottom).

IV. Results
In the following sections, we present the results for the IC3X testbed problem for each of the described approaches:

the deterministic optimization approach from Section II.B and the SciML approach via optimal classification trees from
Section II.C. We consider the discrete parameter set of Mach numbersM = {5, 5.2, 5.4, 5.6, 5.8, 6, 6.2, 6.4, 6.6, 6.8, 7}
and angles of attack A ∈ {0, 1, 2, 3}, which are selected based on the expected operating parameters for a nominal
cruise trajectory of the IC3X during a standard flight mission. Evaluating the vehicle aerostructural response at all
combinations of Mach number and angle of attack results in 𝑛 = 44 total snapshots of the model sensor strain response y
and the corresponding pressure q. To represent many realizations of noisy sensor data for numerical studies, we assume
an additive Gaussian noise model as described in Section II.A with zero mean and standard deviation of 1.67% of the
maximum sensor strain response over all of the snapshots of model sensor strains.

A. Deterministic Optimization
For demonstrative purposes, we examine the operating state case of (𝑀 = 6, 𝛼 = 2) as the true aerodynamic

parameters. We generate 𝑛𝑠 = 30 synthetically produced noisy reference measurements, and then solve the minimization
problem in Equation 4 to estimate 𝑀 and 𝛼. The resulting output estimates are shown in Figure 4. We observe that
90% of the test sample estimates lie within 2.8% and 6.9% of the true Mach number and angle of attack, respectively.
These results show the feasibility of estimating aerodynamic parameters from indirect measurements of strain via a
deterministic inverse approach, and that the aerodynamic loads can be reconstructed through the predictions of Mach
number and angle of attack. However, each solve of the optimization problem incurs a large computational cost, which
inhibits the optimization approach from being informative in real-time. Therefore, we must learn a rapid inverse
mapping between the measurements and state parameters to implement the vehicle-as-a-sensor concept as an online
sensing strategy.
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Fig. 4 Parameter estimates for 30 data points via optimization for the IC3X vehicle at (𝑀 = 6, 𝛼 = 2).

B. Scientific Machine Learning
To produce sufficient training data for the optimal decision trees, 𝑛𝑠 = 200 noise samples are drawn for each snapshot

to produce a total of 8800 data points. We define one class label 𝐶ℓ for each snapshot, so that our 44 snapshots define
𝑛ℓ = 44 different classes. We train the optimal classification trees using Algorithm 2 with 50% of the dataset for training,
and 50% of the dataset for testing.

1. Optimal Classification Trees
We begin discussion of the results with illustrative examples that demonstrate the mechanisms of the optimal

classification trees. Consider a subset of the parameter cases: (𝑀 = 6, 𝛼 = 1), (𝑀 = 6, 𝛼 = 2), (𝑀 = 6, 𝛼 = 3), and
consider a subset of two sensors: Sensor 1 and Sensor 2. We observe in Figure 5 the distribution of observed strain for
each case, along with the OCT which classifies the cases using axis-aligned splits — i.e., splits which are dependent
on the observed strain from a single sensor. Clearly, each of these cases are distinguishable simply from Sensor 1,
indicating that axis-aligned splits are sufficient for this classification problem. Now, consider a different subset of the
parameter cases: (𝑀 = 6, 𝛼 = 1), (𝑀 = 7, 𝛼 = 3), as well as a different subset of two sensors. Now, we observe in
Figure 6 that the classes may still be distinguishable via a series of axis-aligned splits, but another option is to use a
single hyperplane split, which is a linear combination of both input features. Using hyperplane splits decreases the tree
complexity, but can also decrease the interpretability of the results in more complex cases. In this work, we employ
optimal classification trees with both the standard axis-aligned splits (OCT) and with hyperplane splits (OCT-H) to
demonstrate the performance, as well as the interpretability, of the results.
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Fig. 5 Strain (synthetic) measurements for two sensors and three output classes, alongside the corresponding
optimal classification tree with axis-aligned splits (OCT).

Fig. 6 Strain (synthetic) measurements for two sensors and two output classes, alongside the corresponding
optimal classification tree with hyperplane splitting (OCT-H).

Returning to the full parameter set for training, we present a subset of results for operating conditions (𝑀 = 6,
𝛼 = 2). We consider both the 44 sensor set and the 20 sensor set for comparison. Figure 7 shows the histogram of
predictions from the OCT for each sensor case for 100 test data points. We observe that in the 44 sensor case, 79% of
the points were correctly classified as Mach 6, and 96% of the points were correctly classified as 2° angle of attack.
Meanwhile, in the 20 sensor case, 71% of the points were correctly classfied as Mach 6, and 81% of the points were
correctly classified as 2° angle of attack. We see that arbitrarily decreasing the number of sensors detracts from the
robustness of the classifier, since the information gain is reduced.
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Fig. 7 OCT prediction histogram with 44 sensors (left) and 20 sensors (right) at parameters (𝑀 = 6, 𝛼 = 2).

This result can be improved by allowing hyperplane splitting using OCT-H. Figure 8 shows the OCT and OCT-H
comparison for the 44 sensor case and Figure 9 shows the comparison for the 20 sensor case. The addition of hyperplane
splitting in the 44 sensor case increases the correct predictions in Mach number by 14% of the total number of test
samples, and enables the correct prediction of all of the test samples for angle of attack. In the 20 sensor case, the
hyperplane splits improve the correct Mach number and angle of attack predictions by 15% of the total number of test
samples. We also observe that in both cases, the majority of the outlier predictions have been removed, resulting in a
more robust classifier in the presence of noise.
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Fig. 8 Prediction histogram for OCT (left) and OCT-H (right) with 44 sensors at parameters (𝑀 = 6, 𝛼 = 2).

Fig. 9 Prediction histogram for OCT (left) and OCT-H (right) with 20 sensors at parameters (𝑀 = 6, 𝛼 = 2).
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By analyzing the tree splits and features corresponding to the splits in the previous classifiers, we can determine the
set of sensors which are the most informative with respect to differentiating between parameter cases. As a result, we
choose the optimal 10 sensors to train an additional optimal classification tree with fewer input features. Figure 10 shows
the predictions from the 10 sensor OCT and OCT-H classifiers. We see that with a selective choice of 10 sensors, the
number of correctly identified test samples were 90% and 93% for the OCT and OCT-H classifiers, respectively. For the
angle of attack, all test samples were correctly identified as 𝛼 = 2 in both cases. It is also noteworthy that a well-chosen
subset of sensors can be more informative than a larger sensor set. This indicates that noise in uninformative sensors, or
sensors with a small strain response, can have substantial effects on the performance results. Consequently, sensor
placement is a critical consideration to maximize the performance of the indirect sensing strategy.

Once the Mach number and angle of attack have been estimated, we can easily obtain the distributed pressure
loads. For a estimate p̂ of Mach and angle of attack made by the classifier, the predicted pressure distribution is the
corresponding pressure snapshot q 𝑗 , which can be queried rapidly online from a stored library of snapshots as in
Algorithm 3. By our choice of the discrete class definitions𝐶ℓ , we note that the classes should be chosen with sufficiently
small parameter spacing in order to make accurate pressure predictions within a particular tolerance. However, as
the state parameter range to be considered increases, a different choice of classes 𝐶ℓ may be better suited to reduce
misclassification and tree complexity. This is a topic to be investigated in further studies.

Fig. 10 Prediction histogram for OCT (left) and OCT-H (right) with 10 optimal sensors at parameters (𝑀 = 6,
𝛼 = 2).
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2. Optimal Regression Trees
Instead of considering p = [𝑀, 𝛼]𝑇 state parameters for prediction, we seek to predict the leading 𝑟 = 2 modal

coefficients for pressure field reconstruction using ORT-L with linear regression models contained in each of the
output leaves such that the output prediction space is continuous rather than discrete. In this setting, we first train an
independent optimal regression tree to predict the modal coefficient corresponding to the leading POD mode, 𝑐1. We
then use the ORT-L to predict 𝑐1 for each training data point, and use this to augment the input features for training the
second ORT-L to identify the second modal coefficient, 𝑐2. We then reconstruct the pressure load using the predictions
via Equation 3. To begin, the thin singular value decomposition of the centered snapshot matrix Q′ is computed to
obtain the 𝑟 left singular vectors, which form the columns of U𝑟 . Figure 11 shows the leading five POD modes, {u𝑘}5𝑘=1,
which are the first 5 left singular vectors. The cumulative energy captured in the first two modes is 99.9%.

Fig. 11 Depiction of leading five modes of surface pressure snapshot matrix, Q.

Again, we consider the operating state case of (𝑀 = 6, 𝛼 = 2). For this case, the relative L2 error from the low-rank
pressure field approximation with 𝑟 = 2 to the true pressure snapshot is 1.28%. The true reconstruction coefficients
are denoted as 𝑐1 and 𝑐2, and the reconstructed pressure field using the true coefficients is considered as the reference
pressure field, qref. To assess the accuracy of the ORT-L predictions, we define a normalized difference metric for
coefficient predictions, given by

𝑒𝑘 =
𝑐𝑘 − 𝑐𝑘

max{𝑐𝑘} −min{𝑐𝑘}
(7)

The difference between the true and predicted coefficients is normalized by the range of the parameters for the given
snapshot matrix, to account for the scaling of the non-dimensional coefficients. Figure 12 shows the distribution of the
normalized differences 𝑒1 and 𝑒2 for 100 test samples, along with the relative L2 error from the reference pressure field
to the pressure reconstructions q̂ using each pair 𝑐1 and 𝑐2. The results show that within this range, our coefficient
predictions are accurate, resulting a median relative L2 error of 2%, and a maximum relative L2 error of below 9%. To
visualize the results, Figure 13 shows the comparison of the reference pressure against the reconstructed pressure field
using the predicted coefficients corresponding to the median error, as well as the absolute difference, |qref − q̂|. We see
that the reference pressure and predicted pressure fields are not visibly different, since the relative L2 error is small
(< 2%). The absolute difference shows the regions of the surface where the difference is largest; in this case, the largest
difference in pressure occurs at the nose of the vehicle.
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Fig. 12 Distribution of normalized difference metric for ORT-L POD coefficient predictions, along with relative
L2 error for pressure reconstructions, for 100 test samples.

Fig. 13 Pressure visualization of the reference pressure field (top), the reconstructed pressure field using
predicted POD coefficients (middle), and the absolute difference (bottom).

We repeated the study for an expanded parameter set to assess the performance with a larger set of angles of attack,
A ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}. For this expanded parameter set, the cumulative energy associated with the leading two
pressure POD modes is 99.0%, and the reconstruction error associated with the true coefficients is 2.1%. Figure 14
shows the distribution of the normalized differences 𝑒1 and 𝑒2 for 100 test samples, along with the relative L2 error from
the reference pressure field to the pressure reconstructions q̂ using each pair 𝑐1 and 𝑐2. We observe that consideration
of the larger parameter set results in larger relative L2 reconstruction errors, with a median of 5.6%, and a maximum
below 20%. In this case, we may require the identification of more modes in order to capture more features of the
pressure field, and consequently produce more accurate pressure reconstructions. Future studies will further investigate
an expanded parameter range.
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Fig. 14 Distribution of normalized difference metric for ORT-L POD coefficient predictions, along with relative
L2 error for pressure reconstructions, for 100 samples using expanded parameter set snapshot modes.

V. Conclusion
This work presents numerical studies that indicate the feasibility of inferring quantities of interest from indirect

measurements via SciML for surface pressure estimation in hypersonic vehicles. With synthetically generated noisy
data, the optimal decision tree methodology results in a map from the observed strain data to the estimated aerodynamic
parameters with reasonable accuracy for the considered parameter range. The study also demonstrates that predictions
from the optimal decision trees are influenced by sensor noise and sensor placement, which must be considered in the
training process in order to produce improved results. The SciML mapping process results in a large computational
speed-up compared to solving a deterministic inverse problem via optimization, which gives the concept the potential
to inform a hypersonic control system in real-time. An additional advantage is that the optimal decision trees offer a
high level of interpretability in the training process, allowing for simple analysis and diagnostics of the results. This is
particularly helpful in engineering applications where an understanding of the physics can guide hyperparameter tuning
for training, and performance analysis for predictions.

Future work will consider a larger parameter range for the aerodynamic operating conditions, in addition to thermal
effects. Consideration of thermal effects will require distinguishing the strain response due to aerodynamic loads from
the strain due to thermal loads. Further considerations regarding sensors, including sensor bias, drift, and malfunction,
as well as optimal sensor placement, are also part of future work. Reduced-order models may also provide computational
cost reductions in the training process. Finally, demonstration and validation of the approach with experimental data is
an important next step to establish the concept as a potential practical sensing strategy.
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