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This work develops an efficient inverse formulation for inferring the aerodynamic surface
pressures on a hypersonic vehicle from sparse measurements of the structural strain. The
approach aims to provide accurate estimates of the aerodynamic loads acting on the vehicle
for real-time guidance, navigation, and control with quantifiable uncertainty. Specifically, the
approach targets hypersonic flight conditions where direct measurement of the surface pressures
is challenging due to the harsh aerothermal environment. For problems employing a linear
elastic structural model, we show that the inference problem can be posed as a least-squares
problem with a linear constraint arising from a finite element discretization of the governing
elasticity partial differential equation. Due to the linearity of the problem, an explicit solution
is given by the normal equations. Pre-computation of resulting inverse map enables rapid
evaluation of the surface pressure and corresponding integrated quantities, such as the force and
moment coefficients. The inverse approach additionally allows for uncertainty quantification,
providing insights for optimal sensor placement and robustness to sensor noise. Numerical
studies demonstrate the estimator performance for reconstructing the surface pressure field,
as well as the force and moment coefficients, for the Initial Concept 3.X (IC3X) conceptual
hypersonic vehicle.

I. Introduction
Modern aerospace vehicles demand robust flight control systems that can operate autonomously under dynamic,

uncertain, and extreme environments. Central to this requirement is the ability to obtain accurate information about
the aerodynamic state of the vehicle. This information enables the deployment of advanced predictive capabilities
for autonomy, digital twins, and guidance, navigation, and control (GNC). These desired capabilities become more
challenging under hypersonic flight conditions, where the harsh aerothermal environment is inhospitable to many
sensing technologies. In particular, it is difficult to obtain information about aerodynamic loads, such as the surface
pressure field on the vehicle. The hypersonic environment limits the availability of measurements such as external
pressure sensors, since they would not withstand the thermal heating effects. Other conventional sensing technologies
include inertial measurement units, GPS, satellites, and optical lidar, but these may not provide direct or sufficiently
accurate estimates of the aerodynamic quantities of interest, and often have external dependencies which may be denied
in adversarial scenarios. In this work we develop a vehicle-as-a-sensor concept [1], where the deformation of the vehicle
is used to infer the instantaneous aerodynamic surface pressures. Using this strategy to obtain accurate aerodynamic load
estimates in real time can help inform GNC systems, enhance maneuverability, and improve reliability for hypersonics.

Aerodynamic loads are characterized by their integrated quantities, namely, the force and moment coefficients.
Estimation of these aerodynamic parameters is commonly achieved using filtering methods such as the extended Kalman
filter and unscented Kalman filter [2, 3]. The measurement models rely on the availability of measurements of the
air flow angles, such as the angle of attack and sideslip angle, which are difficult to measure accurately. To mitigate
this, Morelli et al. reconstruct the air flow angles from inertial data [4] for estimating the aerodynamic parameters.
In this paper, we take the approach of using discrete strain measurements to infer the full surface pressure field, and
consequently the aerodynamic force and moment coefficients. To do this, we must obtain a (inverse) mapping from
strain to aerodynamic quantities of interest. The strain response induced by the aerodynamic loads is governed by the
partial differential equations (PDE) of linear elasticity. This PDE underpins the strain measurement model for the
inference task, leading to a PDE-constrained inverse problem.
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Solutions to PDE-constrained inverse problems have been formulated in both the deterministic [5] and statistical
(Bayesian) [6] settings. The challenges in this field come from the nature of measurements, which are often noisy,
sparse observations, as well as the smoothing effects of many PDE solution operators, both of which can result in
ill-posedness. Often, these inverse solutions often require many evaluations of the high-fidelity physics simulations,
which is computationally intractable for real-time sensing problems. However, the linearity of the elasticity PDE in this
problem allows for the formulation of a statistical least-squares problem with linear constraints, which can be solved
explicitly via the normal equations. The resulting estimator is a strain-based inverse map that can be pre-computed
and queried rapidly in real-time. Notably, using the statistical formulation of the least-squares problem, the known
uncertainty due to sensor noise in the observed data also leads to a quantifiable uncertainty for the estimated solution.
Consequently, the estimator fully captures the elastic behavior of the hypersonic vehicle described by the high-fidelity
physics, while achieving the desired goal of rapid evaluation and uncertainty quantification.

The proposed inverse approach relies on the availability and amenability of discrete, sparse strain measurements
to provide sufficient information about the structural state induced by the aerodynamic loads. Strain-based sensing,
particularly fiber-optics, has been demonstrated to be capable of recovering aeroelastic shape under both static and
dynamic loads [7], and has also been used for real-time control and monitoring applications [8, 9]. This work extends
the application of strain-based sensing to recover the full aerodynamic pressure field, as well as aerodynamic force
and moment parameters. Some additional modeling aspects of this work rely on computational fluid dynamics (CFD)
simulations for hypersonics to produce prior information for the surface pressure field. We note that the advancement of
both simulation capabilities [10–13] and measurement technologies [14] have progressed greatly, and are key enabling
factors for inverse problems which must leverage both resources.

An alternative approach to solving the inverse problem is to employ machine learning to train a rapid-to-evaluate
inverse mapping from the measurements to the quantities of interest. The training data can come from high-fidelity
physics simulations, which are queried over a large range of flight conditions, as well as experimental data. Our previous
work [1] has employed physics simulations to train optimal classification trees (OCTs) [15] for the inverse mapping.
The OCTs demonstrated strong prediction accuracy, in addition to being interpretable and rapid to evaluate. Neural
networks are another possible option which are fast to evaluate, but they often lack interpretability and perform poorly
in extrapolation. While the accuracy performance may be reasonable, these machine-learned inverse maps lack a strong
theoretical foundation for quantifying uncertainty and ensuring robustness in the predictions. In this paper, we seek to
offer the same evaluation speed as the machine learning tools while remaining physics-informed and providing reliable
quantification of uncertainty.

The development of the strain-based inverse map is part of a larger ongoing effort to advance the vehicle-as-a-sensor
concept, including experimental validation. Ultimately, we hope to improve vehicle design, testing, and control for
hypersonics. The remainder of this paper is outlined as follows: in Section II.A, we present the formulation of the
proposed estimator and the corresponding analytical uncertainty quantification. Section III presents the testbed problem
for demonstrating this work, along with numerical results. Finally, we discuss the conclusions and future work in
Section IV

II. Surface pressure estimation: problem statement and approaches
In this section, we present the inverse problem statement and approaches. Section II.A describes the problem

definition and the PDE forward model. Section II.B formulates the solution to the inverse problem via a least-squares
estimator, with data-driven modeling considerations outlined in Section II.C. Section II.D provides a detailed analysis of
the expected performance and uncertainty of the estimator in two possible settings.

A. Problem Definition
We consider the structural and aerodynamic state of a hypersonic vehicle to be quasi-static at a particular instant in

time. The structural state is observed through measurements of strain, with sensors placed on the interior surface of the
vehicle. We denote the observed data by an 𝑛𝑑-dimensional vector d ∈ D, where D is the space of possible strain
measurements. The quantities of interest, q ∈ Q, are an 𝑛𝑞-dimensional discrete representation of the pressure field
over the surface of the vehicle. The goal is to infer q from the observed data d. To perform the inference task, we seek
an estimator that represents the inverse mapping

T : D → Q (1)
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which can be evaluated rapidly in real-time. The relationship between the true aerodynamic surface pressure and the
vehicle strain is described by a physics-based structural forward model, which we will later exploit in performing the
inference task. Consider a discrete pressure field p(𝝁) of dimension 𝑛𝑝 which is dependent on the flight conditions
at a particular instant in time, 𝝁 = [𝑀, 𝛼, 𝛽, 𝐻]⊤, where 𝑀 is the Mach number, 𝛼 the angle of attack, 𝛽 the sideslip
angle, and 𝐻 the altitude. This pressure can be obtained, for example, by solving a computational fluid dynamics
(CFD) model. The pressure p(𝝁) is represented by q, which are the inputs to the structural forward model, denoted by
𝐹struct (ustruct; q) = 0, where ustruct is the displacement of the deformed vehicle. After solving the forward model for
ustruct, the model strain data at the sensor locations is computed through the observation equation y = 𝐺struct (ustruct).
Ultimately, the model strain response y can be compared to the measured strain data d, thus driving the formulation of
the inverse problem. Figure 1 illustrates the overview of the relationship between p, d, and intermediate quantities.
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p(!) : aerodynamic pressure

q ∈ Q: pressure quantities of interest

ustruct, y : structural state

d ∈ D : strain measurements

!struct (ustruct; q) = 0

forward model

inverse map (estimator)

T : D → Q

! = "struct (ustruct)

Fig. 1 Inverse problem overview.

To explicitly define 𝐹struct and 𝐺struct, we consider the equations of linear elasticity on the domain Ω ⊂ R3, with
exterior and interior surfaces 𝜕Ωext and 𝜕Ωint, respectively, and aft end 𝜕Ωaft. The governing partial differential equation
(PDE) and boundary conditions for the displacement u(x) for x ∈ Ω are given by

−∇ · 𝝈(u) = 0 in Ω

𝝈(u) · n = 0 on 𝜕Ωint

𝝈(u) · n = t on 𝜕Ωext

u = 0 on 𝜕Ωaft

(2)

where 𝝈 is the Cauchy stress tensor, n is the outward-pointing surface normal, and t is the traction defined on the external
boundary 𝜕Ωext. The traction boundary condition is derived from the surface pressure p. The strain-displacement
equation is given by 𝜺 = 1

2 (∇u + ∇u⊤) where 𝜺 is the infinitesimal strain tensor, and the constitutive law is given by
𝝈 = 2𝑆𝜺 + 𝑆 (𝐸−2𝑆)

3𝑆−𝐸 tr(𝜺)I, where 𝑆 is the shear modulus and 𝐸 is the Young’s modulus of the material. We consider a
finite element spatial discretization of the above elasticity equations. Upon discretization, the forward structural model
is given by 𝐹struct = Austruct − Cq = 0, where C is the mapping from the pressure quantities of interest to the nodal
forces on 𝜕Ωext due to the traction boundary condition t. The result is a large, sparse linear system with dimension 𝑛𝑠 ,
the number of degrees of freedom in the structural discretization. We also define y = 𝐺struct (ustruct) = Bustruct, where B
is a spatial observation operator that (1) maps the discrete displacements to discrete strains using the strain-displacement
relation and (2) extracts the particular strains corresponding to the direction and location of each sensor from the forward
model.
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B. Efficient Inverse Solutions via Statistical Least Squares
We formulate the inference problem of inferring pressure quantities of interest q from measurements d in general as

a regularized, weighted least-squares problem: we seek to minimize the difference between a given strain measurement
and the forward model strain predictions at the sensor locations. We choose the regularization and weights to provide
statistical information about the measurements, via the sensor noise covariance 𝚪n, as well as the quantities of interest,
in the form of a prior mean and covariance, q̄ and 𝚪pr, respectively. The objective is given by

min
q

1
2
| |Bustruct − d| |2

Γ−1
n

+ 𝜆

2
| |q − q̄| |2

Γ−1
pr

subject to Austruct − Cq = 0, (3)

where 𝜆 is a regularization parameter. The notable challenge is that the constraint is derived from a high-dimensional
finite element model, and the solution of Equation 3 typically necessitates many evaluations of this expensive forward
model. However, due to the linearity of the constraint, the least-squares problem offers an explicit solution via the
normal equations, given by

q̂ = (C⊤A−⊤B⊤𝚪−1
n BA−1C + 𝜆𝚪−1

p )−1 (C⊤A−⊤B⊤𝚪−1
n d + 𝜆𝚪−1

pr q̄) (4)

This is the general form of the regularized least squares estimator with a priori information. We note that ustruct = A−1Cq;
it follows that the parameter-to-observable map is given by y = Bustruct = BA−1Cq. We let Z = BA−1C denote the
Jacobian of the parameter-to-observable map. Substituting in Equation 4, we obtain

q̂ = (Z⊤𝚪−1
n Z + 𝜆𝚪−1

pr )−1 (Z⊤𝚪−1
n d + 𝜆𝚪−1

pr q̄). (5)

The matrix Z contains the system matrices A,B and C, which are measurement-independent, and can therefore be
constructed in advance to pre-compute Z. We additionally have a known, fixed 𝚪n, q̄, and 𝚪pr. Therefore, the matrix
T = (Z⊤𝚪−1

n Z + 𝜆𝚪−1
p )−1Z⊤𝚪−1

n can be entirely pre-computed, resulting in a matrix of size 𝑛𝑞 × 𝑛𝑑 . Similarly, the term
k = (Z⊤𝚪−1

n Z + 𝜆𝚪−1
pr )−1𝜆𝚪−1

pr q̄ can be pre-computed. Upon deployment of this estimator, for a new measurement d,
we can rapidly estimate the quantities of interest q by simply performing the matrix-vector product Td, plus a shifting
term k due to the prior mean. This computation can be realistically performed in real-time, even for large 𝑛𝑞 , since the
sensor dimension is typically moderate. Consequently, this estimator may be used as an efficient real-time sensing
strategy for hypersonic vehicles.

C. Data-Driven Modeling Considerations

1. Covariance of the noise and the prior
We must consider two important features for statistical modeling: (1) the measurement noise model, and (2) the

prior covariance. For the noise model, we consider additive Gaussian noise such that d = Bustruct + 𝜼 = y + 𝜼, where
the random variable 𝜼 is the noise discrepancy between the model strain response and the measurement. Here, we
assume independent, identically distributed sensor measurements, with zero mean and variance 𝜎2, such that 𝚪n = 𝜎2I.
This variance can be approximated through characterization of the physical sensor noise levels. Substituting 𝚪n in
Equation 4, the noise covariance-weighted least-squares solution simplifies to the ordinary least-squares solution if there
is no regularization. In practice, we can also perform a whitening transformation to normalize the variance 𝜼′ = L−1𝜼,
where L is computed through the Cholesky factorization 𝚪n = LL⊤ for ease of implementation.

For the prior of the quantities of interest, we choose to model the distribution as a Gaussian, with mean p̄ and
covariance 𝚪pr. We construct the mean and covariance in a data-driven fashion by using a CFD model denoted by
𝐹aero (p; 𝝁) = 0 to compute surface pressure snapshots over a range of flight conditions 𝝁 𝑗 for 𝑗 = 1, ..., 𝑁 , where 𝑁 is
the total number of flight condition combinations of interest. The pressure snapshots are denoted by p 𝑗 , each of which
correspond to the flight conditions 𝝁 𝑗 . We define p̄ to be the mean over these snapshots. The covariance matrix over the
snapshots can be computed by

𝚪pr =
𝑁∑︁
𝑗=1

(p 𝑗 − p̄) (p 𝑗 − p̄)⊤
𝑁 − 1

. (6)

This provides prior information about what possible surface pressures may look like over the flight condition range
captured by the snapshots, including features such as smoothness or discontinuities. This is important for recovery of
these features in the estimated pressure field if they are not informed by the observed data.
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2. Dimensionality reduction
Since the surface pressure field p is high-dimensional, we may seek to represent the pressure field in a low-dimensional

subspace using the proper orthogonal decomposition (POD). The pressure snapshots described above, p 𝑗 , are collected
in a snapshot matrix P. We center the snapshot matrix by the column-wise mean, p̄, to obtain P̃. We perform the
singular value decomposition on the centered snapshot matrix, P̃ = V𝚺W⊤. We then choose to retain the first 𝑟 left
singular vectors. The reconstructed surface pressure field is then given by

p ≈ p̄ +
𝑟∑︁
𝑖=1

𝑐𝑖v𝑖 (7)

where 𝑐𝑖 and v𝑖 are the 𝑖-th POD coefficient and left singular vector, respectively. This allows us to represent the
high-dimensional pressure field using 𝑟 coefficients.

D. Analysis and Uncertainty Quantification
Up to this point, the specific representation of the surface loads q have not been detailed. In the following sections,

we outline two cases for q: first, the case where we have fewer parameters than measurements, 𝑛𝑞 ≤ 𝑛𝑑 , such that the
least squares problem is over-determined, and second, the case where there are more parameters than measurements,
𝑛𝑞 > 𝑛𝑑 , such that the inverse problem is ill-posed. We provide a discussion of uncertainty quantification for each case,
as well as the information that can possibly be recovered for a given sensor configuration.

1. Case 1: 𝑛𝑞 ≤ 𝑛𝑑
Consider the case where the number of parameters 𝑛𝑞 is less than or equal to the number of measurements, 𝑛𝑑 .

In this setting, we let q be a low-dimensional parameterization of the surface pressure field p so that 𝑛𝑞 ≤ 𝑛𝑑 . Here,
we employ the POD decomposition given in Equation 7 and define C B Vr, the left singular vectors of the snapshot
matrix, and 𝑞𝑖 B 𝑐𝑖 , the corresponding POD coefficients. We seek to estimate the coefficients q from the data to
reconstruct the pressure field. Additionally, the aerodynamic parameters we seek may be the integrated quantities from
the surface loads, such as force and moment coefficients. These coefficients can easily be computed from the pressure
field reconstruction, and may be especially useful for real-time guidance, navigation, and control applications.

To begin the analysis, we consider the weighted least squares problem without regularization (𝜆 = 0). In this case,
we seek the unique solution to the over-determined system of equations Zq = d. We consider the Gaussian random
variable 𝜼 from the noise model as a small perturbation in d, with the measurement model given by Zq = d − 𝜼. We
seek to quantify the error in the least squares solution Δq = q − q̂ with respect to the perturbation 𝜼. Standard error
analysis [16] of the ordinary least-squares solution to small perturbations in the right-hand side shows that the relative
error in the solution, given the size of the perturbation 𝜼, is bounded by

∥Δq∥
∥q∥ ≤ 𝜅(Z)

𝛼 cos 𝜃
∥𝜼∥
∥d∥ (8)

where 𝜅(Z) is the condition number of the parameter to observable map, 𝛼 = ∥Z∥ ∥q∥
∥Zq∥ , and cos 𝜃 = ∥Zq∥

∥d∥ . We observe that
the upper bound for the relative errors in the solution will be scaled by K = 𝜅 (Z)

𝛼 cos 𝜃 , so for K >> 1, we can expect large
relative errors in the solution, even if 𝜼 is small. We can improve the conditioning of the problem through the number of
sensors as well as optimal sensor placement, since the condition number is directly affected by the information gained
from the sensors in the problem. In many least squares problems, when K >> 1, it is also useful to add regularization
so that the errors due to conditioning are not magnified by the lower modes. For this problem, when 𝑛𝑞 ≤ 𝑛𝑑 , instead we
drive 𝜅(Z) to be sufficiently small through the sensor configuration, so we eliminate the need for regularization (𝜆 = 0),
since all parameters contribute independently to the observables. To further quantify the uncertainty in the estimate, the
error covariance of the estimator can be computed by var(q̂) = E[q̂q̂⊤], since our estimator is unbiased. This is given by

Γq̂q̂ = (C⊤A−⊤B⊤𝚪−1
n BA−1C)−1 (9)

This is easy to compute for low-dimensional q, and it provides an explicit quantification of the uncertainty on the
estimated parameters.
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2. Case 2: 𝑛𝑞 > 𝑛𝑑
We now consider the case where the number of parameters 𝑛𝑞 is larger than the number of measurements 𝑛𝑑 .

Particularly, we seek to estimate the distributed loads without restrictions to a particular low-dimensional parameterization
using POD or otherwise. Instead, we would like to directly infer the surface load parameter field. This can be used for
estimating the distributed aerodynamic loads during wind tunnel or flight testing. In this setting, we let q = p, and
let C be the mapping from surface pressure to the nodal forces in the full structural forward model. This formulation
results in an under-determined system of linear equations, for which there are many solutions. Of these solutions,
it is sometimes sufficient to choose the solution of minimum-norm. This solution, which lies in the row space of Z,
represents the data-informed subspace of the parameter field, and is the best we can hope to achieve with no prior
information. However, we can improve upon this result using regularization: here, it is highly important to choose the
prior and regularization parameter.

We compute the covariance matrix as in Equation 6. We note that this data-driven covariance will be rank-deficient
when the number of snapshots 𝑁 used to construct the covariance is less than 𝑛𝑞 (the rank of this matrix will be at most
𝑁). Thus, it is not feasible to compute 𝚪−1

pr in the explicit solution in Equation 4. However, this can be mitigated by
adding a very small perturbation 𝜖I to the prior covariance. Then, the Woodbury matrix identity can be used for cheap
computation of the inverse of the regularized Hessian, under the assumption that 𝚪pr and 𝚪n are invertible, given by

H−1 = (Z⊤𝚪−1
n Z + 𝜆𝚪−1

pr )−1 =
1
𝜆
(𝚪pr + 𝚪prZ⊤ (𝜆𝚪n + Z𝚪prZ⊤)−1Z𝚪pr) (10)

Substitution of this matrix inversion identity into Equation 5 shows that the solution will lie within the range of 𝚪pr. This
can be viewed as constraining the solution to the 𝑁-dimensional subspace spanned by the snapshots used to construct
the prior covariance, in consequence eliminating the higher frequency modes that are not informed by the prior or the
data. These modes span the null space of the regularized Hessian, which yields the subspace of the parameter field that
is unrecoverable through neither the data nor the prior. Since we expect our parameter field to be mostly smooth, this
elimination results in a more physically tractable solution. The regularization parameter 𝜆 also plays an important role
in determining the influence of the prior in relation to the data misfit in the estimator. Tuning 𝜆 is critical to obtaining
accurate estimates of the parameter field.

III. Application: IC3X Testbed Problem
To demonstrate the inverse approaches outlined above, we consider the Initial Concept 3.X (IC3X) hypersonic

vehicle. The IC3X was initially proposed by Pasiliao et al. [17], and a detailed finite element model for the vehicle was
developed by Witeof et al. [18]. The IC3X is a representative hypersonic vehicle with boost, cruise, and terminal phases
in a nominal trajectory. The vehicle is propelled by a scramjet in the cruise phase. The geometry of the vehicle is shown
in Figure 2. In this paper, we conduct an initial study using a modified version of the IC3X vehicle with removed fins
(fuselage only), and a hollow internal structure.
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Fig. 2 IC3X geometry.

A. IC3X modeling
The forward aerodynamics for the IC3X are solved using CART3D [19], which solves the compressible Euler

equations for inviscid steady fluid dynamics. CART3D allows for rapid databasing of surface pressure solutions over a
wide range of flight conditions. The structural model is constructed and solved using FEniCS[20], which is a software
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project providing a collection of packages, including DOLFIN[21], that can be used for solving PDEs with the finite
element method. Specifically, FEniCs enables the explicit construction of the required system matrices B,A,C that
appear in Equation 4. We note that the estimator can also be implemented with access to only the system matrix actions
on a vector, which may be needed for large-scale problems where it is computationally infeasible to store the system
matrices explicitly. We produce the 2D surface mesh for the CFD solver and the 3D volume mesh for the structural
model using Gmsh [22]. The resulting surface mesh contains 𝑛𝑝 = 60,538 degrees of freedom, and the resulting
structural mesh contains 𝑛𝑠 = 461,664 degrees of freedom. The boundary surfaces for the structural model, with
boundary conditions given in Equation 2, are illustrated in Figure 3.
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!Ωext !Ωint

!Ωaft

Fig. 3 Boundary surfaces of the modified IC3X. We seek to predict the pressure field on the exterior surface
𝜕𝛀ext. Sensors are placed on the interior surface 𝜕𝛀int, with fixed aft end 𝜕𝛀aft.

1. Sensor configuration and noise statistics
In this work, the strain sensor configurations consist of strain gauges placed in rows on the inner surface of the hollow

IC3X vehicle structure. Each row consists of nine evenly spaced strain gauges. The in-plane strain of the inner surface
can be measured in a particular direction. Measuring the strain in the stream-wise direction (i.e., x-direction) captures
the bending strain, which dominates the strain response when the total angle of attack is non-zero. The circumferential
strain can also be measured, capturing the strain due to hoop stresses. Figure 4 depicts the sensor placement for two and
four rows of sensors, which we will refer to as Configuration 1 and 2, respectively. Configuration 1 contains 27 sensors,
of which 18 sensors measure the x-direction strain, and 9 sensors measure the circumferential strain. Configuration 2
contains 54 sensors, which are mirrored across the x-axis. The observation operator B is constructed for each of these
configurations to map the forward model displacement to the strain in the corresponding direction and location as the
physical sensors. As described in Section II.C, we assume independent, identically distributed Gaussian noise for each
sensor with zero mean and standard deviation 𝜎 = 2.5e−6. This choice of 𝜎 is approximately 2% of the expected strain
magnitude.
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Fig. 4 Strain sensor configurations, with arrows denoting the direction of the strain measurement.
(Top) Configuration 1 with 27 sensors, (bottom) Configuration 2 with 54 sensors.
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2. Flight conditions and surface pressure
For a nominal trajectory of the IC3X, we consider the following flight condition ranges of interest: Mach number

5 – 7, angle of attack 0°– 10°, sideslip angle 0°– 10°, and altitude 20 km. For dimensionality reduction in Case 1,
we solve the forward aerodynamics for the set 𝑃1 of all combinations of the parameters 𝑀 = {5.0, 5.5, 6.0, 6.5, 7.0},
𝛼 = {0, 2, 4, 6, 8, 10}, 𝛽 = {0, 5, 10} at 𝐻 = 20km altitude, and collect the corresponding pressure snapshots. This
results in a total of 𝑁 = 90 snapshots. We compute the POD using the centered snapshots as in Equation 7. For the
data-driven prior in Case 2, we use the set 𝑃2 of all combinations of the parameters 𝛼 = {−8,−6,−4,−2, 0, 2, 4, 6, 8}
and 𝛽 = {−8,−6,−4,−2, 0, 2, 4, 6, 8}, at Mach number 𝑀 = 5 and 𝐻 = 20km altitude. The corresponding 𝑁 = 81
snapshots are then used to compute the prior mean and covariance as in Equation 6. Figure 5 gives a visualization of the
pressure at flight conditions 𝑀 = 5, 𝛼 = 8, and 𝛽 = 0. At the axial station 𝑥 = 1.75m where the angle of the fuselage
changes, there is a clear discontinuity in the surface pressure, which is caused by the geometry and occurs at all flight
conditions. Additionally, at larger angles of attack, there exists a shock due to counter-rotating vortices that occurs
on the leeward side of the vehicle, visible in the top right view of the figure. These types of features are common for
hypersonic vehicles, and we seek to accurately estimate these surface pressure fields.
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Fig. 5 Pressure visualization at conditions M = 5,𝜶 = 8, 𝜷 = 0. Left: Side view of non-dimensional pressure
over 2D fluid domain slice. Right: (top) leeward, (middle) side, and (bottom) windward views of the surface
pressure field.

B. Case 1 : Numerical Results
In this section, we provide numerical results for the scenario where 𝑛𝑞 ≤ 𝑛𝑑 . The quantities of interest q we seek to

estimate are the POD coefficients parameterizing the surface pressure. For the pressure snapshots corresponding to
𝑃1, the cumulative energy retained by the first five modes is 99.4%, thus we choose to retain 𝑟 = 5 singular vectors.
First, we demonstrate the impact of the sensor configuration on the upper bound for the relative errors in q as in
Equation 8, assuming 𝜂𝑖 = 𝜎 and ∥q∥ = 100. The table below shows the resulting upper bound for each configuration.
Configuration 2 has a smaller upper bound on the error in the estimated coefficients since the parameter-to-observable
map results in a lower conditioning K for noise perturbations in the least-squares problem.

Number of Sensors ∥Δq∥
∥q∥ upper bound

Configuration 1 27 0.3307
Configuration 2 54 0.1908

To numerically demonstrate the performance of the estimator, we produce synthetic noisy measurements by sampling
the noise model 𝜼 ∼ (0,𝚪𝑛), and adding the realization of noise to the model strain response. The estimated POD
coefficients q̂ = Td with 𝜆 = 0 are computed for each synthetic measurement. Each estimated coefficient 𝑞𝑖 is compared
to the reference POD coefficient 𝑞𝑖 at a particular flight condition using the normalized difference computed as

𝑒POD
𝑖 =

𝑞𝑖 − 𝑞𝑖
range(𝑞𝑖) (11)

8



where range(𝑞𝑖) is the range of the 𝑖-th POD coefficient over the POD representations of the pressure snapshots. Figure 6
shows the normalized difference metric in the predicted coefficients over 50 samples from each flight condition in 𝑃1,
resulting in a total of 4500 samples. We also show the 4𝜎 uncertainty bounds for each POD coefficient, where 𝜎𝑖 is the
square root of the 𝑖-th diagonal of the covariance matrix from Equation 9. The results show that the median difference
for both sensor configurations is zero, however, the distribution of Configuration 2 has a smaller variance. This again
arises from the improved conditioning in the least-squares problem for Configuration 2, resulting in lower uncertainty
in the estimated coefficients. From these estimated POD coefficients, we reconstruct the surface pressure field p̂ as
in Equation 7. Figure 7 shows the relative L2 errors in the reconstructed pressure field with respect to the reference
pressure field, computed by

𝑒recon =
∥p − p̂∥
∥p∥ (12)

We observe that Configuration 1 has a number of outliers in the reconstruction error, while Configuration 2 has few
outliers with all estimated pressure reconstructions lower than 15% relative error.

Fig. 6 Normalized difference in estimated POD coefficients for Configuration 1 and 2 with 4𝝈 uncertainty
bounds denoted by the triangle markers.

Fig. 7 Relative L2 error in reconstructed pressure field for sensor configuration 1 and 2.
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To visualize the reconstructed pressure fields, Figure 8 and Figure 9 each show an example reconstructed surface
pressure from the estimated POD coefficients with a high and low relative error, respectively. The flight conditions in
Figure 8 are 𝑀 = 5, 𝛼 = 6, 𝛽 = 5, which is in the set 𝑃1. The reconstruction error was 19.5% using a synthetic noise
realization for Configuration 1. The flight conditions in Figure 8 are 𝑀 = 7, 𝛼 = 2, 𝛽 = 8, which is a testing condition
not in 𝑃1. The reconstruction error was 3.9% using a synthetic noise realization for Configuration 2. We see that in both
cases, the general surface pressure pattern compared to the reference pressure is recovered well. In the testing flight
condition, we note that the errors primarily arise from the leeward shock, which is a result of the POD surface pressure
parameterization, since the shock is outside of the range space of the pressure snapshots.
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Fig. 8 Visualization of estimated surface pressure compared to the reference surface pressure at conditions
M = 5,𝜶 = 6, 𝜷 = 5. (Left) Positive and (right) negative xz-plane view of reference, estimate, and absolute error
in pressure, from top to bottom.
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Reference
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Absolute Error

Reference

Estimate

Absolute Error

Fig. 9 Visualization of estimated surface pressure compared to the reference surface pressure at test conditions
M = 7,𝜶 = 2, 𝜷 = 8. (Left) Positive and (right) negative xz-plane view of reference, estimate, and absolute error
in pressure, from top to bottom.
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Furthermore, we compute the aerodynamic force and moment coefficients (parameters) from the estimated
quantities of interest. We first map q to the nodal forces on the surface, and consequently use the distributed force
information to compute the aerodynamic parameters. The force and moment coefficient parameters are denoted by
C𝐹 = [𝐶𝐷 , 𝐶𝐿 , 𝐶𝑆 , 𝑀𝑃 , 𝑀𝑌 ]⊤, the elements of which are the coefficients of drag, lift, and side force coefficients, and
the pitch and yaw moment coefficients, respectively. The conversion to nodal forces from quantities of interest is given
by f̂ = Cq + f̄, where f̄ are the nodal forces corresponding to p̄. Then, the aerodynamic parameters are computed by

C𝐹 = Gf̂ = GCq + Gf̂ (13)

where G is the mapping between the nodal forces and the force and moment coefficients. Note that GC can be
precomputed, and will only be of size 5 × 𝑟. Figure 10 shows the normalized difference for the estimated force and
moment coefficients over the same measurement sample set for Configuration 2, computed by

𝑒coeff
𝑘 =

𝐶𝑘 − �̂�𝑘

max{𝜖𝑘 , 𝐶𝑘} (14)

where 𝐶𝑘 denotes the 𝑘-th parameter in C𝐹 , and 𝜖𝑘 is the tolerance for which the 𝑘-th parameter is considered very
close to zero. We see that the median of the estimates for all parameters have very small differences to the reference
values. We also note that the parameters corresponding to lift forces, 𝐶𝐿 and 𝑀𝑃 , have a smaller variance in comparison
to the side or drag forces. This is due to the strain measurement configuration being more informative towards these
parameters.

Fig. 10 Normalized difference in estimated force and moment coefficients compared to reference values.

C. Case 2: Numerical Results
For the case where 𝑛𝑞 > 𝑛𝑑 , we seek to estimate the full surface pressure field. Here, we focus on sensor configuration

2 with 𝑛𝑑 = 54 sensors. First, we illustrate the ill-posedness of the problem by observing the minimum-norm solution,
where 𝜆 → 0. We consider the noise-free measurement d corresponding to p at flight conditions 𝑀 = 5, 𝛼 = 6,
and 𝛽 = 6. The minimum-norm surface pressure estimate is shown in Figure 11. We observe the estimate contains
oscillatory features, due to the high-frequency modes of the parameter-to-observable map. Additionally, we obtain
non-negligible negative pressure estimates, which are unphysical. We seek to use regularization via a data-driven prior
to obtain better estimates of the surface pressure field.

We compute the prior mean and covariance using Equation 6 for the set of flight conditions given by 𝑃2. This
results in a rank-81 matrix. The regularization is tuned for the assumed noise level, 𝜎 = 2.5e−6. The regularization
was selected using a Morozov-like criterion, where the parameter 𝜆 is tuned such that data misfit between the model
strain and the measurement, ∥Zq − d∥, is as close to the noise level as possible. Here, we define the noise level
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Fig. 11 Minimum-norm surface pressure estimate for flight conditions M = 5,𝜶 = 6, 𝜷 = 6. (Top) Leeward view,
and (bottom) windward view.

𝛿 = E[∥𝜼∥] = 𝜎
√
𝑛𝑑 . We observe that the data misfit is closest to the noise level when 𝜆 ≈ 1.25 × 106, which we use as

the regularization parameter.
To illustrate the prediction errors, we consider two flight conditions: 𝑀 = 5, 𝛼 = 6, 𝛽 = 6, which is within the

set 𝑃1, as well as a testing flight condition where 𝝁2 = 𝑀 = 5, 𝛼 = 5, 𝛽 = 3, which was not used as a snapshot for
constructing the covariance. Figure 12 shows the reference surface pressure and estimated surface pressure for a
synthetic measurement for each flight condition. The relative L2 errors for each flight condition were 22.3% and 16.4%,
respectively. We observe that the predicted surface pressures are smooth except at the geometric discontinuity, since the
prior covariance restricts the estimated solution to lie within the range space of the pressure snapshots, thus eliminating
the high-frequency modes in the parameter-to-observable map. However, the leeward shock feature is not captured by
the inverse solution because the data do not inform this feature. To further illustrate, Figure 13 shows a front view of the
reference and estimated surface pressure for the same flight conditions, as well as the absolute difference. In this view,
we can see symmetric structure in the absolute error across the plane perpendicular to the total angle of attack. This
results in a very similar bending moment in comparison to the reference pressure field, which dominates the strain
response. Specifically, the relative error in the pitch and yaw moment coefficients for noisy synthetic measurements
were all within 4% and 12% for the flight condition in 𝑃1, respectively. For the testing flight condition, the pitch and
yaw moment coefficients were within 11% and 2%, respectively. In summary, the estimates of the pressure field remain
as consistent with the data as possible under regularization; though the data do not inform certain features such as the
leeward shock. This differs from the pressure field estimates in Case 1, where the shock was recovered, but slightly
offset from the true location due to sensor noise.
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Fig. 12 Visualization of estimated surface pressure compared to the reference pressure. Left: Reference and
estimate for M = 5,𝜶 = 6, 𝜷 = 6. Right: Reference and estimate for M = 5,𝜶 = 5, 𝜷 = 3 (testing flight condition).
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Fig. 13 Front view of surface pressures. Top: Reference, estimate and absolute error for M = 5,𝜶 = 6, 𝜷 = 6.
Bottom: Reference, estimate and absolute error for M = 5,𝜶 = 5, 𝜷 = 3 (testing flight condition).

IV. Conclusion
We have formulated a strain-based estimator for aerodynamic loads that is informed by a high-fidelity structural

model and can be evaluated rapidly for real-time sensing applications. Given sensor noise statistics, we also provide
uncertainty quantification and analysis. In the case where the number of unknown pressure quantities is smaller than
the number of measurements (i.e., 𝑛𝑞 ≤ 𝑛𝑑), the variance of the estimated parameters is explicitly computed, and is
dependent on the conditioning of the parameter-to-observable map. In the case where the number of pressure quantities
exceeds the number of measurements (i.e., 𝑛𝑞 > 𝑛𝑑), we show that a data-driven prior can inform the estimator by
restricting the solution to lie within the range space of the prior covariance. Consequently, the contributions of the
higher frequency modes in the parameter-to-observable map are eliminated, and the data misfit corresponding to the
regularization is minimized.

In this paper, we demonstrated the impact of sensor number and configuration on the performance and uncertainty
of the estimator. Future work will consider the optimal sensor placement problem, where the goal is to minimize the
number of sensors and determine their placement so that the uncertainty is reduced to within the desired tolerance. The
uncertainty quantification in this paper can be used as as a metric for solving this type of problem. Additionally, we seek
to consider aerothermal heating effects, since the hypersonic environment causes additional thermal loads that will
impact the strain response of the vehicle. Finally, experimental verification and validation studies for this work are
planned, including both benchtop and wind tunnel testbeds.
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