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This paper presents a method to enhance data-driven reduced-order modeling with a
preprocessing step in which the training data is filtered prior to training the reduced model.
Filtering the data prior to training the reduced model has a number of potential benefits for
data-driven modeling: it attenuates (or even eliminates) frequency content that would otherwise
be difficult or impossible to capture with the reduced model, it smoothens discontinuities in the
data that would be difficult to capture in a low-dimensional representation, and it reduces noise
in the data. This leads to the reduced model learning process becoming numerically better
conditioned, less sensitive to numerical errors in the training data, and less prone to overfitting
when the amount of training data is limited. This paper first illustrates the effects of filtering in
a one-dimensional periodic inviscid Burgers’ equation with a solution characterized by a moving
shock. A second example considers a large-scale rotating detonation engine simulation with
more than 3.8million degrees of freedom for which only a few hundred down-sampled snapshots
are available from the high-fidelity simulation. A reduced-order model is derived from these
snapshots using operator inference. The results show that spatial filtering of snapshots prior
to inferring the reduced model reduces approximation accuracy over the training regime, but
improves prediction accuracy over the testing regime. This result indicates the potential benefits
of filtering to reduce overfitting, which is particularly important for complex physical systems
where the amount of training data is limited.

I. Introduction
Recent advances in computational science and high-performance computing enable the simulation of complex real-

world problems with ever-increasing accuracy; however, for many important engineering applications the computational
cost of a single simulation of the full-order model (FOM) is so large that only a limited number of cases can be studied.
This limitation makes outer-loop scenarios (i.e., scenarios that require ensembles of high-fidelity simulations, such
as design optimization, uncertainty quantification, parameter inference and control) computationally prohibitive. In
some applications, such as the numerical simulation of reactive flows in rocket engines [1], even performing a single
simulation for a sufficiently long time interval to extract meaningful information can be computationally prohibitive.
In this work we aim to address these computational cost challenges by advancing the methodologies of non-intrusive
reduced-order models (ROMs) trained on data stemming from numerical simulations.
We target reduced-order modeling of multiscale, multiphysics problems, where the data have a complex structure,

with a broadband or high frequency content. Large classes of problems (e.g., hyperbolic problems and phase-field
models) exhibit discontinuities or sharp interfaces, which pose particular challenges for creating accurate and predictive
data-driven ROMs. Building ROMs of such complex problems is made even more challenging because generally only
small data training sets are available due to the tremendous computational cost of the high-fidelity simulations, even on
large supercomputers. This sparsity of data makes data-driven ROMs prone to overfitting. Furthermore, data-driven
ROMs are known to be sensitive to noise, which means that care must be taken when the simulation code employs
discretization techniques that introduce noise into the numerical solutions.
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Our goal in this work is to enhance data-driven reduced-order modeling to overcome the aforementioned challenges
and to thus enable the construction of accurate and predictive ROMs for complex problems. We propose enhancing the
ROM learning task with a preprocessing step in which we filter the training data prior to learning the reduced model.
Using filtering in numerical simulations is not a new idea and has been considered in several settings in past research.
For example, in the context of reduced-order modeling of computational fluid dynamics (CFD) problems, [2] proposed
a data-driven filtered ROM, as follows. In the first step, an intrusive Galerkin projection is used to filter the nonlinear
PDE and construct a filtered ROM. In the second step, a data-driven model is used as a closure to the filtered ROM
by using a quadratic ansatz that models the interaction between the resolved and unresolved modes. The coefficients
of the closed filtered ROM are found by solving an optimization problem that minimizes the difference between the
FOM data and the ansatz. In [3], a robust principal component analysis (RPCA) filter [4] was employed to eliminate
experimental noise from PIV measurements prior to constructing ROMs via dynamic mode decomposition (DMD)
[5, 6] or proper-orthogonal decomposition (POD) [7]. In the context of laser Doppler vibrometry experiments conducted
to identify structural faults in frescoes, [8] employed spatial filtering to remove noise due to surface irregularities
that affect the direction in which the incident laser beam is reflected prior to perform POD. In [9], in the context of
a 3D turbulent flow behind a circular cylinder, a spatial low-pass filter was employed to precondition the snapshots
prior to constructing POD modes with the goal of separating the structures in the flow based on size. Still in the
context of turbulence and scale separation but in fusion plasmas, [10] proposed using a space-filter approach to derive
coarse-grained equations in configuration space for a quasi-neutral hybrid-kinetic plasma model. In addition, in certain
complex simulation scenarios such as the gyrokinetic Vlasov equation, discretization schemes such as finite differences
can introduce non-physical effects. To this end, [11] proposed adding hyperdiffusion terms in the gyrokinetic Vlasov
equation, acting as a numerical filter, to cancel or mitigate these effects.
Rather than focusing on specific applications or scenarios, we consider filtering here as a generic tool for making

training data more amenable to data-driven reduced-order modeling. While filtering will eliminate information from the
snapshot training data, it will not necessarily compromise the accuracy of the resulting learned ROM—in fact, we will
show that in some cases it leads to improved performance, particularly in avoiding overfitting. To learn data-driven
ROMs, we employ the Operator Inference (OpInf) approach proposed in [12] which we enhance with Gaussian filtering.
Gaussian filtering or blurring acts as a low-pass filter, making it effective in removing discontinuities in the training
data. We illustrate the effects of filtering in a one-dimensional periodic inviscid Burgers’ equation with a solution
characterized by a moving shock. We then consider a large-scale eddy simulation (LES) of a rotating detonation engine
(RDE) [1] in which we have available only a a few hundred down-sampled snapshots. We show that our filtered OpInf
approach reduces overfitting for this RDE problem, leading to improved ROM predictions beyond the training data. We
note that to the best of our knowledge, this represents one of the first studies in which data-driven ROMs are constructed
for realistic, large-scale LES RDE simulations.
The remainder of this paper is organized as follows. Section II introduces the problem setup and summarizes the

OpInf approach that we use here to construct data-driven ROMs. Section III presents the contribution of this paper,
which is to augment data-driven reduced-order modeling methods with snapshot filtering, and illustrates the effects of
filtering using the one-dimensional periodic inviscid Burgers’ equation. In Section IV, we demonstrate the usefulness of
the proposed filtering approach in a challenging three-dimensional RDE problem with more than 3.8 million degrees of
freedom. Section V concludes the paper.

II. Learning data-driven reduced-order models for large-scale systems via operator inference
This section first introduces the large-scale problem setup (Section II.A), then summarizes the operator inference

approach used in this paper to derive non-intrusive data-driven ROMs (Section II.B).

A. Large-scale problem setup
We consider the large-scale system of nonlinear equations defined on the time domain [𝑡i, 𝑡f], with 𝑡i the initial time

and 𝑡f the final time,
dq
d𝑡

= f (q, 𝑡), q(𝑡i) = qinit, (1)

where q(𝑡) ∈ R𝑛 is the 𝑛-dimensional vector of state variables at time 𝑡, qinit is a specified initial condition, and
f : R𝑛 × [𝑡i, 𝑡f] → R𝑛 is a nonlinear function the defines the time evolution of the system state. We write the governing
equations (1) in the form of ordinary differential equations (ODEs), where for the target problems of interest, these
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ODEs represent the large-scale system of discretized partial differential equations (PDEs) and the dimension 𝑛 scales
with the (large) dimension of the spatial discretization.
In this work, we target the derivation of predictive reduced-order models using a non-intrusive data-driven approach.

We consider the setup where training data are available over the time interval [𝑡i, 𝑡tr] with 𝑡tr < 𝑡f denoting the end of the
training time horizon. We collect 𝑛𝑡 snapshots over the training horizon by solving the high-fidelity model (1) and
recording the high-dimensional state solution at 𝑛𝑡 time instants. Note that in large-scale problems, 𝑛 ≫ 𝑛𝑡 . The state
solution at time 𝑡𝑘 is referred to as the 𝑘th snapshot and is denoted q𝑘 . The snapshot matrix Q collects the snapshots
and has snapshot q𝑘 as its 𝑘th column:

Q =


| | |

q1 q2 . . . q𝑛𝑡

| | |

 ∈ R
𝑛×𝑛𝑡 .

Given the snapshot matrix Q, the goal is to learn non-intrusive data-driven ROMs. In the following, we will summarize
the Operator Inference approach that will be used throughout this paper, noting that the presented filtering idea is readily
applicable to other data-driven approaches such as dynamic-mode decomposition (DMD) [5, 6].

B. Learning data-driven reduced models via non-intrusive discrete operator inference
Operator inference (OpInf) learns a reduced model with polynomial structure from data, where the structure is

specified by the underlying governing equations [12]. The first step is to compute the representation of the available
snapshots in a low-dimensional subspace. This is achieved by first computing the thin singular value decomposition
(SVD) of the snapshot matrix Q:

Q = U𝚺V⊤,

withU ∈ R𝑛×𝑛𝑡 , 𝚺 ∈ R𝑛𝑡×𝑛𝑡 andV ∈ R𝑛𝑡×𝑛𝑡 . 𝚺 is a diagonal matrix containing the singular values ofQ in non-decreasing
order 𝜎1 ≥ 𝜎2 ≥ . . . ≥ 𝜎𝑛𝑡 , where 𝜎𝑗 denotes the 𝑗 th singular value. The first 𝑟 ≪ 𝑛 columns of U (i.e., the left
singular vectors corresponding to the 𝑟 largest singular values) form the POD basis U𝑟 ∈ R𝑛×𝑟 . We then obtain the
low-dimensional representation of the snapshots in the reduced-order subspace spanned by U𝑟 by computing

Q̂ = U⊤𝑟 Q ∈ R𝑟×𝑛𝑡 .

First, we summarize the time-continuous or semi-discrete OpInf, in which the reduced operators of the reduced
ODE system are learned by solving a linear least-squares problem. For example, for a ROM with quadratic form

dq̂
d𝑡

= Âsdq̂ + Ĥsd (q̂ ⊗ q̂) , (2)

we must determine the reduced operators Âsd ∈ R𝑟×𝑟 and Ĥsd ∈ R𝑟×𝑟
2 , where subscript sd stands for semi-discrete.

Note that in the semi-discrete OpInf, we must also estimate the corresponding time derivatives of these projected
snapshots, 𝑑

𝑑t Q̂ ∈ R
𝑟×𝑛𝑡 . OpInf determines the reduced operators that best match the projected snapshot data in a

minimum residual sense by solving the linear least squares problem

argmin
Âsd ,Ĥsd

Q̂⊤Â⊤sd +
(
Q̂ ⊗ Q̂

)⊤
Ĥ⊤sd −

𝑑

𝑑t
Q̂⊤

2
𝐹

+ 𝜆1
Âsd2𝐹 + 𝜆2 Ĥsd2𝐹 , (3)

where 𝐹 denotes the Frobenius norm. Note that, following [13], Tikhonov regularization is introduced to (3) to avoid
overfitting and to account for model misspecification and numerical noise in the estimated time derivatives, with
𝜆1, 𝜆2 ∈ R the scalar regularization hyper-parameters.
In certain scenarios, however, it can be difficult to accurately approximate the time derivatives of the projected

snapshots, 𝑑
𝑑t Q̂, in (3). This is true for applications in which the large-scale simulation code that generates the training

data employs a small time step that prohibits saving every snapshot to disk due to the storage requirements. An inaccurate
approximation of the time-derivative introduces noise in the OpInf least-squares learning problem, which in turn can
lead to an inaccurate ROM. In such cases, we employ the discrete version of OpInf, which is used to learn the reduced
operators of a difference ROM. For a quadratic difference model

q̂[𝑘 + 1] = Âd q̂[𝑘] + Ĥd (q̂[𝑘] ⊗ q̂[𝑘]) , (4)
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where q̂[𝑘] denotes the discrete reduced state at time 𝑡𝑘 and subscript d stands for discrete, the reduced operators of the
discrete OpInf model are learned by solving

argmin
Âd ,Ĥd

Q̂⊤1 Â⊤d +
(
Q̂1 ⊗ Q̂1

)⊤
Ĥ⊤d − Q̂⊤2

2
𝐹

+ 𝜆1
Âd2𝐹 + 𝜆2 Ĥd2𝐹 , (5)

where

Q̂1 =


| | |

q̂1 q̂2 . . . q̂𝑛𝑡−1
| | |

 ∈ R
𝑟×𝑛𝑡−1 and Q̂2 =


| | |

q̂2 q̂3 . . . q̂𝑛𝑡

| | |

 ∈ R
𝑟×𝑛𝑡−1. (6)

Note that in the case of a linear system, the discrete OpInf formulation is equivalent to DMD [12].

III. Enhancing non-intrusive data-driven reduced-order modeling with filtering
This section describes the contribution of this paper, which is to introduce snapshot filtering to data-driven

reduced-order modeling methods. We first give an overview and technical motivation for the approach (Section III.A)
and then describe Gaussian filtering (Section III.B). We present one specific algorithm that instantiates the ideas,
using the OpInf model reduction approach with a Gaussian filter (Section III.C). We conclude the section through
an illustrative example that is challenging for POD-based model reduction strategies, the inviscid Burgers’ equation
(Section III.D).

A. Motivation for using filtering in data-driven reduced-order modeling
Consider the setting where the goal is to train a data-driven ROM from simulation data stemming from one of the

following scenarios: (i) simulation data characterized by discontinuities or sharp interfaces (e.g, shocks, phase-field
models); (ii) simulation data with a broadband or high frequency content; (iii) simulation data that contains noise due
to, e.g., the underlying discretization scheme (for example, particle-in-cell methods). These examples all represent
situations for which the construction of accurate and predictive data-driven ROMs is known to be challenging. This
challenge is exacerbated when the amount of simulation data available is limited, which is often the case for realistic
problems that go beyond the typical one-dimensional and two-dimensional academic problems.
Instead of training the ROMs directly using the given simulation data, we first filter the simulation data (in space)

and subsequently use the filtered data to train the reduced model. This idea is depicted in Figure 1. The goal of filtering
is to make simulation data more amenable to training data-driven ROMs. If, for example, the training snapshots have
discontinuities, filtering will make the data smoother. While this filtering eliminates information from the snapshot
training data, it will not necessarily compromise the accuracy of the resulting learned ROM—in fact, we will show that
in some cases it leads to improved performance. This is because it is generally impossible for a ROM to capture the
entire frequency spectrum of the training data. The reduction from 𝑛 to 𝑟 degrees of freedom occurs because only the
dominant dynamics (typically the lower-frequency, large-scale structures) are retained in the ROM. Thus the filtering is
a preprocessing step that attenuates (or eliminates) frequency content that would otherwise be difficult or impossible to
capture with the reduced model. In doing so, the inference problem to learn the ROM becomes numerically better
conditioned, less sensitive to numerical errors in the training data, and less prone to overfitting when the amount of
training data is limited.

B. Gaussian filtering
Consider a continuous solution field 𝑠(𝑥, 𝑦, 𝑧), where [𝑥, 𝑦, 𝑧] ∈ Ω are the spatial coordinates (here with 𝑑 = 3

dimensions) over the problem domain Ω. The field 𝑠 could be, for example, the instantaneous pressure or temperature
distribution over the problem domain. The continuous form of the Gaussian filter in 𝑑 spatial dimensions is given by

𝐺 (𝑥1, . . . , 𝑥𝑑; 𝜏1, . . . , 𝜏𝑑) =
1

(
√
2𝜋)𝑑 ∏𝑑

𝑖=1 𝜏𝑖
exp

(
−

𝑑∑︁
𝑖=1

𝑥2𝑖 /2𝜏2𝑖

)
,

where 𝑥𝑖 denotes the 𝑖th spatial coordinate direction. For 𝑑 = 3 spatial dimensions, we have [𝑥1, 𝑥2, 𝑥3] = [𝑥, 𝑦, 𝑧] and

𝐺 (𝑥, 𝑦, 𝑧; 𝜏1, 𝜏2, 𝜏3) =
1

(
√
2𝜋)3𝜏1𝜏2𝜏3

exp
(
−𝑥2/2𝜏21 − 𝑦2/2𝜏22 − 𝑧2/2𝜏23

)
.
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Mathematical
model (PDE/ODE)

Numerical discretization

Collect simulation data Filter simulation data

Learn non-intrusive
ROM from given
simulation data

Learn non-intrusive
ROM from filtered
simulation data

Fig. 1 On the left, we summarize the general steps employed in standard non-intrusive data-driven reduced-order
modeling in which the reduced models are trained directly from simulation data. In contrast, in our proposed
approach, instead of training the ROMs directly from the simulation data, we first filter the data and train the
reduced model on the filtered data, as shown on the right of the figure.

Here, 𝜏𝑖 is the standard deviation, also referred to as the filter width, in the 𝑖th spatial direction. In general, one can
select different filter widths for different directions. The Gaussian filter is defined over a finite filtering domain, with
𝑅𝑖 the filter radius in the 𝑖th spatial dimension. This filter radius defines the size of the neighborhood over which the
filtering is applied. In this work, we set 𝑅𝑖 = 4𝜏𝑖 , which corresponds to employing 0.9999% of the full Gaussian profile.
We denote the filtered version of 𝑠 as 𝑠:

𝑠 = 𝐺 ∗ 𝑠, (7)

where ∗ denotes convolution in space. In practice, Gaussian filtering is applied to the spatially discretized snapshots,
implemented as a convolution sum over grid points falling within the filter radius.
The filter depends on hyper-parameters (𝜏1, 𝜏2, . . . , 𝜏𝑑) whose values influence the amount of performed filtering:

the larger the value of 𝜏𝑖 , the more filtering is conducted in direction 𝑥𝑖 . Note that since the 𝑑-variate Gaussian density
used to define the kernel is the product of 𝑑 one-dimensional Gaussian densities, i.e.,

𝐺 (𝑥1, . . . , 𝑥𝑑; 𝜏1, . . . , 𝜏𝑑) =
1

(
√
2𝜋)𝑑 ∏𝑑

𝑖=1 𝜏𝑖
exp

(
−

𝑑∑︁
𝑖=1

𝑥2𝑖 /2𝜏2𝑖

)
=

𝑑∏
𝑖=1

1
√
2𝜋𝜏𝑖

exp
(
−𝑥2𝑖 /2𝜏2𝑖

)
,

the 𝑑-dimensional filter can be implemented as a sequence of 𝑑 one-dimensional convolution filters. There are several
readily available Gaussian filtering implementations. Here, we employ the implementation provided by the function
scipy.ndimage.gaussian_filter∗ from the scipy.ndimage module in python.
We filter each snapshot q𝑘 ∈ R𝑛 in the given snapshot matrix Q separately. For each snapshot, we separate out the

different physical quantities (temperature, pressure, velocity, etc.) and we filter each physical field separately. We then
recombine the physical quantities to obtain a filtered version of the snapshot. Upon filtering all 𝑛𝑡 snapshots, we obtain
the filtered snapshot matrix which we denote by F ∈ R𝑛×𝑛𝑡 .
Since Gaussian filtering smooths the underlying data, it is effective in removing discontinuities in the training

data. Moreover, it is also effective in eliminating high-frequency content in data-sets stemming from complex physics
simulations, such as reactive flows. We note nevertheless that other filters, such as total variation filtering [14, 15] or
robust PCA filtering [4] can be employed as well.

∗https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html
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C. Operator Inference with filtered training data
In this section, we present one specific algorithm that instantiates the idea of filtering using the OpInf model

reduction approach summarized in Section II.B together with a Gaussian filter. In Section II.B, we have presented both
the semi-discrete (3) and discrete (5) versions of OpInf. However, the only algorithmic difference between two OpInf
learning problems consists of the projected data matrices used on the left- and right-hand sides of the corresponding
least-square minimization problems: in the semi-discrete version, the left-hand side depends on Q̂ and the right-hand
side is 𝑑

𝑑t Q̂, whereas in the discrete variant we have Q̂1 on the left-hand side and Q̂2 on the right-hand side, with Q̂1 and
Q̂2 defined in (6). Therefore, without loss of generality, we present here a generic OpInf algorithm with filtering in
which the pair (L̂, R̂) is used to generally denote the left- and right-hand side projected matrices.
We summarize the steps in Algorithm 1. The inputs are the original snapshot matrix, Q, the Gaussian filter widths

𝜏1, 𝜏2, . . . , 𝜏𝑑 and the value of the reduced dimension, 𝑟. In the first step, we apply Gaussian filtering to the snapshot
matrix Q and obtain the filtered snapshot matrix F, noting that if there are multiple physical variables (e.g., velocity,
pressure, etc.), we filter them separately. From hereon, all computations are in terms of F. We determine the rank-𝑟
POD basis U𝑟 from the singular value decomposition of the filtered matrix F. Note that the rank-𝑟 POD basis truncation
is a form of filtering as well, whereby the (typically high-frequency) modes corresponding to the singular values smaller
than the 𝑟th singular value are filtered out. Once we have determined the POD basis, we project the filtered snapshot
matrix on the subspace spanned by the column vectors of U𝑟 to obtain F̂ = U⊤𝑟 F. In the next step, we determine, from F̂,
the pair (L̂, R̂) used in the OpInf learning problem. Additionally, we determine the Tikhonov regularization parameters
𝜆1 and 𝜆2; an effective strategy was proposed in [13]. At this point, the OpInf learning problem (3) is fully specified, and
we solve it to find the reduced linear and quadratic operators, denoted Â and Ĥ, which are returned upon termination.

Algorithm 1 Operator Inference with filtered training data.
Input: Snapshot data Q ∈ R𝑛×𝑛𝑡 , Gaussian filtering hyper-parameters 𝜏1, 𝜏2, . . . , 𝜏𝑑 and reduced dimension 𝑟 ∈ N
Result: Reduced operators Â, Ĥ

1: Filter snapshot matrix Q with Gaussian filtering depending on 𝜏1, 𝜏2, . . . , 𝜏𝑑 to obtain the filtered snapshot matrix F
⊲ in problems with multiple physical variables (e.g., pressure, velocity, etc.), we filter each variable separately

2: Compute rank-𝑟 POD basis U𝑟 from the SVD of the filtered snapshot matrix F ⊲ POD truncation
3: Project snapshots onto the 𝑟-dimensional POD subspace F̂← U⊤𝑟 F
4: Determine the pair (L̂, R̂) used in the OpInf learning problem from the projected filtered snapshots F̂
5: Determine the Tikhonov regularization parameters 𝜆1 and 𝜆2 (see [13, 16])
6: Solve the corresponding regularized learning problem ((3) or (5)) to find reduced model operators Â, Ĥ
7: return Â, Ĥ

The filtering hyper-parameters 𝜏1, 𝜏2, . . . , 𝜏𝑑 are user-specified input parameters in Algorithm 1. Nevertheless, their
values can be tuned via, e.g., a grid search similar to the procedure used to determines the Tikhonov regularization
parameters 𝜆1 and 𝜆2. This hyper-parameters search can added as an outer-loop around the regularization parameters
tuning procedure. We note, however, that both these procedures can be computationally expensive if the given data set
is large. Efficient tuning strategies of the filtering hyper-parameters will be addressed in our future research.

D. Illustrative example: periodic one-dimensional inviscid Burgers’ equation
We illustrate the proposed idea in a model problem that is generally challenging for POD-based model reduction.

We consider the inviscid Burgers’ equation defined on the periodic 1D spatial domain [0, 1) and time domain [0, 1]:

𝜕𝑞

𝜕𝑡
+ 1
2
𝜕𝑞2

𝜕𝑥
= 0, 𝑞(0, 𝑥) = 1/2 + sin (2𝜋𝑥). (8)

The nonlinearity due to the convective term leads to the formation of a shock after a short time that travels from left to
right. Due to the advective nature of the shock, the snapshot matrix will have slowly decaying singular values, which
in turn means that many POD basis vectors must be retained to achieve acceptable ROMs. Furthermore, the shock
discontinuity leads to Gibbs oscillations in the reconstructed ROM solutions. Using this example, we show that filtering
reduces the accuracy of the discontinuity representation but leads to faster decaying singular values and attenuated
Gibbs oscillations in the reconstructed solution.
To solve (8) numerically, we use finite volume solvers from the Clawpack framework [17, 18]. We use 𝑛 = 500
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points for spatial discretization. The semi-discrete version of (8) is quadratic, i.e.,

dq
d𝑡

= H (q ⊗ q) , q0 = q(0).

We collect 𝑛𝑡 = 1, 001 snapshots every 10−3 seconds. We employ the semi-discrete (time-continuous) OpInf procedure
(3) and use it to learn the reduced operator Ĥsd ∈ R𝑟×𝑟

2 of the structure-preserving quadratic ROM

dq̂
d𝑡

= Ĥsd (q̂ ⊗ q̂) , q̂0 = U𝑟q0, (9)

where U𝑟 is the corresponding POD reduced basis of order 𝑟 . We employ all available 1, 001 snapshots for training and
use the OpInf reduced model to reconstruct the training data. We consider three widths in Gaussian filtering: (i) 𝜏 = 0.5,
(ii) 𝜏 = 2.0 and (iii) 𝜏 = 10.0. We note that the Gaussian filter was implemented such that it preserves the periodic
boundary condition. In all performed experiments, we have estimated the time derivatives of the projected snapshots
𝑑
𝑑t Q̂ ∈ R

𝑟×1,001 in the OpInf learning problem (3) via a fourth-order forward difference scheme.
First, we analyze the effect of filtering on the decay of the singular values of the filtered snapshot matrix. We

visualize the singular values normalized by their sum in Figure 2, on the left. Observe the faster decay with more
filtering: a small value of the filter width has little effect on the data and therefore on the singular values as well. In
contrast, using 𝜏 = 2.0 leads to a faster decay, whereas 𝜏 = 10.0 leads to a very fast decay. As a consequence, more
filtering requires fewer modes to retain the same amount of energy. For example, to retain 99.5% of the total energy,
𝑟 = 25 modes are needed when no filtering is performed. To retain the same amount of energy when filtering using
width 𝜏 = 0.5, 𝑟 = 23 modes are necessary; 𝑟 = 25 modes retain 99.58% of the total energy. Filtering using 𝜏 = 2.0
decreases the number of modes needed to retain 99.5% of the total energy to 𝑟 = 16, whereas 𝑟 = 25 modes retain
99.85% of the energy. Finally, when filtering using the largest width, 𝜏 = 10.0, we need only 𝑟 = 8 POD modes to retain
99.5% of the total energy, while 𝑟 = 25 retain more than 99.9999%.

Fig. 2 Inviscid Burgers’ equation (8): normalized singular values (left) and POD retained energy (right).

While it is not surprising that filtering leads to more rapid singular value decay, the key question is whether the
approximation introduced to the training data has a negative effect on the accuracy inferred OpInf ROM. To assess
this question, we train OpInf reduced models using both unfiltered and filtered data. In all experiments, the reduced
models have reduced dimension 𝑟 = 25. We visualize, on the top part in Figure 3, the original and the filtered state
data at three selected time steps: 𝑡 = 0.050 (before the shock is formed; depicted on the left), 𝑡 = 0.500 (after the
shock formed; depicted in the center) and 𝑡 = 0.800 (when the shock is close to the right boundary; depicted on the
right). Since filtering using 𝜏 = 0.5 has an insignificant effect on the data, for an easier visualization we plot only
the results corresponding to 𝜏 = 2.0 and 𝜏 = 10.0. The choice 𝜏 = 2.0 leads to little spatial filtering, i.e., the shock
is slightly smoothed but it remains sharp. In contrast, as expected, 𝜏 = 10.0 smoothens the shock significantly. Note
that intuitively, Gaussian filtering here has a similar effect to adding a viscosity term into the underlying model. In the
bottom part of Figure 3, we depict the reconstructed solutions from the OpInf reduced model simulations. Without
filtering, the reduced model solution exhibits severe Gibbs oscillations around the shock. Slightly smoothing the shock
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using width 𝜏 = 2.0 decreases the amplitudes of the oscillations and leads overall to a small increase in the accuracy of
the solution. Filtering using 𝜏 = 10.0 leads to an highly accurate OpInf reconstruction of the filtered data and a solution
that does not exhibit Gibbs oscillations; however, this reconstruction is rather inaccurate with respect to the original
unfiltered data. We therefore see that filtering trades off smoothing with accuracy. In some application settings, the
smoother 𝜏 = 10.0 reduced model may be preferable and better behaved, even though it has introduced inaccuracies in
the representation of the shock.

Fig. 3 Inviscid Burgers’ equation (8). Top: original and filtered state data at three selected time steps: 𝑡 = 0.050
(left), 𝑡 = 0.500 (center) and 𝑡 = 0.800 (right). Bottom: the corresponding OpInf reduced model simulations.

Figure 4 plots the relative errors

𝜀(QFOM,QROM) =
∥QFOM −QROM∥2𝐹
∥QFOM∥2𝐹

(10)

for reduced dimensions 𝑟 ≤ 25, where QFOM denotes the original FOM data and QROM denotes the reconstruction of
the solution from the ROM simulations. We observe that filtering using 𝜏 = 2.0 leads to a small increase in accuracy
since it decreases the amplitude of Gibbs oscillations around the shock. In contrast, filtering using 𝜏 = 10.0 yields a less
accurate reduced model for which the relative error saturates around 𝑟 = 15. This saturation is not surprising since
𝑟 ≥ 15 POD modes retain more than 99.99% of the total energy of the corresponding filtered snapshot matrix. The
remaining relative error (at a value of approximately 0.02) is due to the difference between the filtered and unfiltered
snapshot data.

IV. Filtered reduced-order modeling for a rotating detonation engine simulation
This section first describes the problem setup for a challenging three-dimensional rotating detonation engine (RDE)

simulation (Section IV.A) and the associated setup for our data-driven reduced-order modeling (Section IV.B). We apply
the proposed filtering approach to derive reduced models in Section IV.C.

A. Problem setup for high-fidelity large-eddy simulation
We consider reduced-order modeling for the RDE problem presented in [1]. The physics of the problem are modelled

using the Navier-Stokes equations and a detailed chemistry model. Turbulence is modelled using a one-equation
transported eddy viscosity. The chemistry employs a modified version of the Westbrook-Dryer mechanism, originally
developed for methane-air combustion, but modified here for the purposes of methane-oxygen detonation. As described
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Fig. 4 Inviscid Burgers’ equation (8): relative reconstruction error (10) of the training set using OpInf.

in [1], the modification is implemented so as to retrieve the Chapman-Jouguet detonation speed in a one-dimensional
combustion problem. This mechanism contains a total of six species and three unique elementary reactions.
The computational domain considers a 45-degree sector of the full RDE in which a single wave travels stably in

one direction. The sector has nine injectors. Spatial discretization uses a second-order McCormack finite-volume
scheme and a second-order central difference viscous term. The results are evolved in time using a second order
McCormack scheme as well. Time steps were computed dynamically. During the steady cycle, the time step takes on
values around 1.2ns. Parallelized over 1, 672 cores, 2.0 ms of real-time simulation (which includes a start-up transient,
stabilization of the cycle, and several complete cycles of the quasi-steady state) required 100, 000 CPU hours on the
Onyx high-performance computer, a part of the DoD Supercomputing Resource Center (DSRC)[1]. We depict the
full RDE simulation domain on the left in Figure 5. Here, we build ROMs for the combustion chamber only, which
has spatial dimensions 1 < 𝑥 < 76 mm, and 𝑦 and 𝑧 such that the radius 𝑅 =

√︁
𝑦2 + 𝑧2 < 38.1 mm. The original

simulation data, performed using a non-orthogonal grid, has been interpolated onto a structured grid. This results in a
computational domain for the combustion chamber that has 𝑛𝑥 = 314, 874 spatial degrees of freedom, visualized in
Figure 5 (right).

Fig. 5 Left: full simulation domain of the 45-degree RDE sector that has been studied in [1]. In this work,
we are constructing data-driven ROMs for the combustion chamber only, depicted on the top right, which has
spatial dimensions 1 < 𝑥 < 76 mm and 𝑦 and 𝑧 such that the radius 𝑅 =

√︁
𝑦2 + 𝑧2 < 38.1 mm. The computational

domain used here, visualized on the bottom right, contains 𝑛𝑥 = 314, 874 spatial degrees of freedom.

B. Filtered discrete operator inference
We have 441 snapshots available in the quasi-steady state regime, from time 𝑡 = 9.9338 × 10−4 seconds to

𝑡 = 1.3756 × 10−3 seconds. This is approximately 0.4 ms of real-time, which corresponds to roughly 22 passages of
rotating detonation waves. We are only considering a 45-degree spatial sector in this calculation; periodicity implies that
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there are eight waves present in the complete annulus. The time interval of 0.4 ms represents nearly three revolutions of
the entire wave system. The available snapshots have been down-sampled by a factor of about 720 from the original
CFD simulations, resulting in an average step size between the down-sampled snapshots of 8.6691 × 10−7 seconds.
The large down-sampling factor renders numerical approximations of the time derivative of the projected data matrix

appearing in the right-hand size in the time-continuous OpInf learning problem (3) inaccurate and noisy, which in turn
results in an inaccurate OpInf reduced model. To this end, we construct discrete non-intrusive data-driven ROMs (4) and
learn the reduced operators of the difference model via (5). Following the work in [13, 19], we build the ROMs using
the specific volume flow variables, species mass fractions and temperature. That is, we transform the data snapshots to
represent the following 12 state variables:

𝑞 = [1/𝜌 𝑝 𝑣𝑥 𝑣𝑦 𝑣𝑧 𝑤CH4 𝑤O2 𝑤H2O 𝑤CO2 𝑤H2 𝑤CO 𝑇]⊤, (11)

where 𝜌 is density, 𝑝 is pressure, 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 are the three velocity components, 𝑤 [· ] are the species mass fractions of the
six chemical species CH4, O2, H2O, CO2, H2 and CO, and 𝑇 is temperature. As discussed in [13, 19], this choice of
variables renders many terms in the governing equations quadratic, which makes it appropriate to use the OpInf ROM
with quadratic form (5). The dimension of our data snapshots is therefore 𝑛 = 314, 874 × 12 = 3, 778, 488. Table 1
shows the minimal and maximal values of the state variables in the snapshots used for learning the ROM.

Table 1 Minimal and maximal values of quantities in high-fidelity snapshots.

state variable minimum value maximum value
specific volume 𝜁 = 1

𝜌

(
𝑚3

𝑘𝑔

)
0.6285 6.3212

pressure 𝑝 (MPa) 0.2140 1.1406
velocity 𝑣𝑥 (𝑚/𝑠) −64.8222 1397.0931
velocity 𝑣𝑦 (𝑚/𝑠) −531.4510 529.4986
velocity 𝑣𝑧 (𝑚/𝑠) −985.0364 812.2877

CH4 mass fraction 𝑤CH4 0.0000 0.5376
O2 mass fraction 𝑤O2 1.6077 × 10−6 0.6163
H2O mass fraction 𝑤H2O 0.0767 0.4399
CO2 mass fraction 𝑤CO2 0.0045 0.2842
H2 mass fraction 𝑤H2 0.0008 0.0551
CO mass fraction 𝑤CO 0.0650 0.5731
temperature 𝑇 (K) 762.4429 3410.2900

We use the first 𝑛𝑡 = 294 snapshots, i.e., the first two thirds of the available dataset, to train an OpInf reduced
model. The training horizon ends at 𝑡 = 1.2488 × 10−3 seconds. Note that since the twelve physical state variables
have significantly different scales, we center and scale them variable-by-variable prior to performing OpInf: each state
variable is first centered around the mean field (over the 294 training timesteps) in that variable, and then scaled by the
maximum absolute value of that variable so that the values for each state variable do not exceed [−1, 1]. The remaining
147 snapshots beyond the training horizon are used as testing data to assess the predictive capability of the reduced
model. We note that the complexity of this problem as well as the small size of the available data set make this an
excellent scenario for ascertaining the predictive capabilities of data-driven reduced models in real-world problems.
To study the effect of filtering on the predictive power of OpInf in the RDE problem, we use two filter widths in

Gaussian filtering: one that provides little spatial filtering, i.e., 𝜏 = 1.0, and another that provides more filtering, 𝜏 = 5.0.
We filter the 12 physical variables in (11) separately using the same filter width 𝜏 in all three spatial dimensions.

C. Results
Filtering effect on the decay of the centered and scaled POD singular values. Figure 6 plots the normalized
singular values (with respect to their sum) and POD retained energy corresponding to the centered and scaled training
data set with and without Gaussian filtering. To retain 95% of the total energy of the unfiltered snapshot data, 𝑟 = 136
modes are needed. The smoothing effect of Gaussian filtering leads to a faster decay of the singular values which in turn
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requires fewer modes to retain the same of amount of energy. When using filtering width 𝜏 = 5.0, only 85 POD modes
are needed to retain 95% of the total energy (a reduction of 36%).

Fig. 6 RDE with 294 training snapshots: normalized singular values (left) and POD retained energy (right).

Filtering effect on the accuracy of the reduced model. We now assess the impact of filtering on the accuracy of
the discrete OpInf reduced model. The small size of the training set (294 snapshots) limits the maximum reduced
dimension of a quadratic OpInf reduced model to 𝑟 = 22, because this sets the maximum number of operator coefficients
that can be inferred via the OpInf regression problem. In the following we study the accuracy of the OpInf reduced
models for reduced dimensions 𝑟 ≤ 22. Without filtering, 22 modes retain only 66.7% of the total energy, whereas
filtering increases this amount up to 77.6% when 𝜏 = 5.0.
Figure 7 plots the relative errors (10) in the ROM predictions of the training set for four state variables: pressure

(upper left), temperature (upper right), fuel (CH4) mass fraction (bottom left) and oxidizer (O2) mass fraction (bottom
right). Overall, with or without filtering, the OpInf reduced model simulated solutions accurately predict the training
set, with errors smaller than 6%. Using the smaller filtering width 𝜏 = 1.0 has almost no effect on the accuracy of the
discrete OpInf model, except for reduced dimension 𝑟 = 19 where we observe a small improvement. Using the larger
filtering width 𝜏 = 5.0 introduces more error into the ROM predictions of the training set, because of the smoothing
approximations introduced into the snapshot set.
We next use the OpInf ROMs to simulate into the prediction regime. Figure 8 plots the resulting relative solution

errors (10). All prediction errors plotted in Figure 8 are smaller than 8%, indicating that the OpInf ROMs with reduced
dimensions 𝑟 ≤ 22 provide accurate predictions in the complex scenario under consideration. For pressure prediction
we observe a clear improvement when using more filtering. For example, for reduced dimension 𝑟 = 22, the error is
44% smaller than when using the unfiltered data to train the reduced model. Moreover, we see that while filtering does
not necessarily improve the prediction power of the reduced model for the other three state variables, performing more
filtering using 𝜏 = 5.0 leads to a smoother error. In contrast, the errors corresponding to the other two cases show some
deterioration for reduced dimensions 𝑟 ≥ 19. These results illustrate that one benefit of filtering is to prevent overfitting
of the reduced model, which is particularly important with limited snapshot data as we have here. Although the filtered
reduced model showed a small increase in error over the training regime, it provides a more predictive reduced model
beyond the training horizon.

Pressure traces at two selected spatial probes. To further illustrate the enhanced prediction accuracy of the
reduced model trained using data filtered with width 𝜏 = 5.0, Figure 9 plots pressure traces at two selected spatial
probes within the combustion chamber. The probes have coordinates (𝑥, 𝑦, 𝑧) = (0.03, 0.035, 0.000) for probe 1 and
(𝑥, 𝑦, 𝑧) = (0.04, 0.035, 0.000) for probe 2. The reduced dimension of the OpInf reduced models is 𝑟 = 22. The vertical
dashed line at 𝑡 = 1.2488 × 10−3 seconds separates the training from the prediction regimes. We depict the predicted
pressure trace values using dashed lines. We see that both OpInf ROM solutions match well the frequency of the FOM
pressure traces. However, as observed in the prediction error figure (Figure 8), filtering using width 𝜏 = 5.0 leads to
more accurate predictions, which here translates into a more accurate matching of amplitudes.
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Fig. 7 Relative ROM reconstruction error (10) of the training set (294 snapshots) for four state variables:
pressure (top left), temperature (top right), CH4 mass fraction (bottom left) and O2 mass fraction (bottom right).

Fig. 8 Relative ROM solution errors (10) in the prediction regime (147 snapshots) for four state variables:
pressure (top left), temperature (top right), CH4 mass fraction (bottom left) and O2 mass fraction (bottom right).

Pressure field at a selected cross section. We visualize the ROM pressure field solution at the cross section located at
radius 𝑅 = 37 mm, which is a cylindrical sector located about 1 mm within the outer radius of the combustion chamber.
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Fig. 9 Pressure traces at probes located at (𝑥, 𝑦, 𝑧) = (0.03, 0.035, 0.000) (probe 1) and (𝑥, 𝑦, 𝑧) =

(0.04, 0.035, 0.000) (probe 2). The vertical dashed line at 𝑡 = 1.2488 × 10−3 seconds separates the train-
ing from the prediction regimes.

Figure 10 compares the FOM and ROM solutions with reduced dimension 𝑟 = 22, and plots the results at two time
instances in the training regime: 𝑡 = 1.1150 × 10−3 seconds (50th snapshot) and 𝑡 = 1.2026 × 10−3 seconds (240th
snapshot), and two instances in the prediction regime: 𝑡 = 1.2894×10−3 seconds (355th snapshot) and 𝑡 = 1.3756×10−3
seconds (410th snapshot). The four time instances correspond to the pressure wave at four different locations in its
periodic cycle. The figure shows that the reduced model solutions capture the pressure field remarkably well, with the
filtered ROM being more accurate than the unfiltered ROM in the prediction regime. Figure 11 shows the corresponding
point-wise relative errors in the pressure fields for these four snapshots.

V. Conclusions
This paper proposes an approach to enhance data-driven reduced-order modeling with a preprocessing step in which

the training data is filtered prior to training the reduced model. A key benefit of filtering is seen to be preventing
overfitting of the ROM. This is particularly important when the amount of training data is limited, as is often the case
when the data are produced by high-fidelity multiscale, multiphysics simulations. This is the situation for the problem
considered here, where the high-fidelity training simulations of an RDE are limited to short time horizons due to their
computational expense, and, further, due to the dataset size, not all snapshot data can be stored. For this RDE problem,
the results in this paper show that even though the ROM has been trained using only 294 snapshots, the discrete operator
inference model is accurate and predictive, with relative prediction errors in pressure, temperature, fuel and oxidizer
fields shown to be less than 8%. Applying Gaussian filtering to the snapshot set resulted in a tradeoff between reducing
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Fig. 10 ROM pressure field predictions at the cross section located at radius 𝑅 = 37 mm at four time instances.
The first two snapshots are in the training regime and the latter two are in the prediction regime.

the accuracy of the ROM over the training regime and improving the prediction power of the ROM in the testing regime.
While further investigations are necessary to fully characterize the effects of training data filtering, these promising
results indicate the potential benefits of the approach for scientific machine learning.
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