
Educational Digital Twin: Tackling Complexity in
Educational Big Data

Luwen Huang
Department of Computer Science

University of Texas at Austin
luwen@cs.utexas.edu

Karen E. Willcox
Oden Institute for Computational Engineering & Sciences

University of Texas at Austin
kwillcox@oden.utexas.edu

Abstract—“Everything is bigger in Texas” and this includes
the big data challenges of the state’s educational system. But
just as big is the opportunity for digital twin technologies to
improve decision-making in education, with potential to improve
student outcomes. This paper formulates an Educational Digital
Twin, a novel approach to understanding, modeling, and ana-
lyzing educational data to address the complexities inherent in
student pathways. By “student pathways”, we refer to the joint
facets of student behavior—evolving dynamically over time and
encompassing not only course enrollments but also behavioral
and academic factors. Unlike traditional approaches that rely on
static analyses of historical data, the Educational Digital Twin
applies the digital twin paradigm to model these pathways as a
living construct that dynamically evolves alongside the physical
world. At the heart of the Educational Digital Twin is a knowl-
edge graph that organizes data into a semantic structure. By
employing graph-theoretic methods, we manipulate this structure
to derive multi-granular insights that inform decision-making.
Our evaluation demonstrates how the Educational Digital Twin
not only facilitates the dynamic integration of new data but also
scales efficiently to handle complex datasets covering millions
of students across hundreds of demographic and academic
dimensions.

Index Terms—Educational big data, Complex networks, Net-
work visualization, Graph modeling, Digital twin

I. INTRODUCTION

Academic trajectories are highly nonlinear and recognizing
their time-dependent dynamic nature is essential to extracting
useful data-driven insights—both at the system-wide and indi-
vidual student levels. At community colleges, which comprise
42% of first-time freshmen in the United States [1], students
take extremely diverse paths [2]–[4]. Students may drop out,
change majors, or enroll in a diverse range of classes, leading
to a variety of educational trajectories. We refer to these
sequences of actions as student pathways, which are shaped
by numerous factors, including demographics [5], coursework
[6], and institutional characteristics [7]. These pathways are
complex to navigate and model, posing challenges for students
and researchers alike [8], [9].

Modeling student pathways is important because these path-
ways encode information that relates to a student’s eventual
outcomes. For example, students completing required course-
work within four semesters at a community college are more
likely to transfer to a four-year institution than those spending
six years [10]. Moreover, mapping pathways lets institutions
predict behaviors and identify students at risk of dropping

Fig. 1: The Educational Digital Twin, a paradigm for under-
standing, modeling, and analyzing student pathways and their
dynamic evolution over time.

out early. However, modeling student pathways is challenging
because of the dynamic nature of the data: Students carry shift-
ing personal profiles, enroll in different institutions, register
for different courses, obtain grades, and earn awards, while
institutions frequently change course offerings and update
requirements. Modeling single facets of these behaviors or
treating the data as static fails to provide a comprehensive
understanding of the system.

This paper models student pathways in public higher edu-
cation on the scale of the entire state of Texas. This involves
complexities characterized by the “5 V’s” of Big Data: (1)
Variety, where a comprehensive view of student behaviors
requires diverse data sources; (2) Volume, where hundreds
of Texas public postsecondary institutions serve millions of
students every year; (3) Velocity, where data have varied
frequencies, from semester-based grade reports to to multi-
year policy changes; (4) Veracity, where data reliability varies
widely, from highly accurate course records to less reliable
self-reported student intentions; and (5) Value, where, properly
structured and modeled, the data give insights that support
student interventions and policy making across Texas.

To address these Big Data challenges in educational path-



ways, we propose adopting the Digital Twin paradigm. A
Digital Twin is “a set of virtual information constructs that
mimics the structure, context, and behavior of a natural,
engineered, or social system (or system-of-systems), is dynam-
ically updated with data from its physical twin, has a predictive
capability, and informs decisions that realize value.” [11]
Despite its growth in fields such as engineering and healthcare,
the application of digital twins in education remains largely
unexplored. Unlike traditional educational data analytics, a
Digital Twin goes beyond just simulation and modeling, and
as emphasized in [11], “the bidirectional interaction between
the virtual and the physical is central to the digital twin.”

We propose an approach toward an Educational Digital
Twin (depicted in Figure 1), a set of constructs designed to
reflect and evolve with an educational system dynamically. At
the core of this paradigm is a knowledge graph that orga-
nizes data into a semantic, mathematical graph structure. By
applying graph-theoretic operations, this evolving model facil-
itates information querying, self-updates, and representation of
multiple granularity levels—from individual student actions to
broader educational policy context. This is a foundational step
toward an eventual educational digital twin. Our contributions
in this paper are twofold:

• A foundational approach toward an Educational Digital
Twin, a paradigm that dynamically models big data
related to educational pathways, adapting to changes over
time.

• The Educational Digital Twin Knowledge Graph
(EDT-KG), a semantic, mathematical structure developed
to support scalable computations and bidirectional data
flow as a basis for digital twins in education.

We develop these contributions in the context of a real-world
large-scale implementation for the datasets used across the
Texas higher education system.

The remainder of the paper is organized as follows. §II
discusses prior work relating to digital twins and modeling
educational systems. §III presents the Educational Digital
Twin and §IV describes its evaluation for use cases in support
of decision-making for Texas higher education.

II. RELATED WORK

The utility of digital twins for tracking, intervention, and
improved decision-making has been widely recognized [12]–
[14] across diverse fields including healthcare [15], [16],
energy [17], and aerospace engineering [18]. Yet, digital
twins remain underexplored in education, where data are
often treated as static. Graph-based models have addressed
educational data in various contexts, such as representing
learning objectives [19]–[22] and supporting adaptive learning
[23]–[27]. Additionally, network analysis has been applied
to educational data for insights into curricular structures and
learning patterns [28]–[34]. While studies such as [35]–[37]
investigate course enrollment patterns, focusing on data within
individual institutions, they do not discuss other behavioral
patterns, intermediary achievements, and preparedness across

(a) Selected columns from Report CMB001 (“Student”)
student fice gender ethnic ecodis ...

15 1 1 2 1
16 2 0 7 1
17 2 0 7 1

(b) Selected columns from Report CMB00S (“Student Schedule”)
student course grade credit fcl ...

15 Math 1 A TRUE 1
15 Eng 1 B TRUE 0
16 Math 1 C TRUE 3
17 Eng 1 A FALSE 4
17 Econ 2 A FALSE 4

(c) Selected columns from Report CMB009 (“Graduation”):
student fice degree level major type ...

9 1 AA 1 012 Academic
13 1 ATC 2 156 Technical
25 2 CCC 5 213 Tech-Prep

TABLE I: Examples of data with Texas Higher Education
Coordinating Board structure. The structure of these files is
available in public data manuals. The data values themselves
in these examples are notional.

institutions. Our approach incorporates these essential ele-
ments to model the diverse and high-dimensional nature of
student pathways across two- and four-year institutions and
time horizons at the Texas-wide scale.

III. THE EDUCATIONAL DIGITAL TWIN

We begin by describing the structure of the Texas domain
data that inform the design of the digital twin. We then
describe the theoretical construction of the digital twin’s core
component, the knowledge graph. Subsequently, we explore
the graph-theoretic operations that enable bidirectional flow
between the digital and physical realms.

A. Data-centric Digital Twin Formulation

The semantic structure of EDT-KG is defined to reflect
the structure of the datasets curated by the Texas Higher
Education Coordinating Board (THECB). We present this
structure, noting that the structure of THECB datasets is
publicly available in published data manuals.1 To comply with
data access agreements and preserve privacy, the values of
all data entries (e.g., enrollment numbers, course outcomes)
contained within our published examples here are notional,
other than cases where the data are available publicly from
various educational websites (e.g., institutional names, course
names, course sequences, credit requirements, etc.).

The THECB dataset offers a multi-faceted view of student
and institutional data, organized into various official reports.
For example, the “Student Schedule Report” (Report CBM00S)
details student course enrollments. Each report is stored as a
binary SAS table-based file, representing data for a specific

1See, for example, https://www.texaseducationinfo.org/Home/Us/About%
20Our%20Data, accessed Sept. 2024.



Associate Degree - Biology
Recommended Course Sequence
Semester I
ENGL 1301 - Composition I
BIOL 1406 Cellular and Molecular Biology
Select one of the following:

* MATH 1314 - College Algebra
* MATH 2412 - Pre-calculus MATH

...
Semester II
ENGL-1302 English Composition II
BIOL-1407 Structure and Function of Organisms
...

(a) HTML from Austin Community College’s website showing
recommended course selections for the Biology major.

Biology Field of Study (FOS)
1. BIOL 1406
Choose one of the following:
* BIOL 1306
* BIOL 1106
2. BIOL 1407
Choose one of the following:
* BIOL 1307
* BIOL 1107
...

(b) Credit requirements for the Biology Field of Study, published as
a PDF file by THECB.

Fig. 2: Unstructured educational data from public web sources.

timestep and type of institution. The frequency of these
timesteps varies—some reports are generated only during the
summer, while others are produced in the spring. Table 2
illustrates the structure of a subset of data from three selected
reports: the Student Report (Report CBM001, Table Ia), the
Student Schedule Report (Report CBM00S, Table Ib), and the
Graduation Report (Report CBM009, Table Ic). For brevity, we
display only a limited selection of columns to illustrate the
tabular form of the official data; for instance, the Student
Report in 2017 contains 61 columns. The structure and data
schema of the reports can change from one timestep to another.
In developing our digital twin, we primarily utilize four
reports: Student, Student Schedule, Texas Success Initiative,
and Graduation. The raw data from these reports are compiled
into 242 binary files encompassing the records of over six
million students over a decade.

Alongside the THECB reports, our Educational Digital Twin
incorporates publicly available data from educational websites.
These data include institutional recommendations for course
sequences by major. For instance, Fig. 2a displays unstructured
text from Austin Community College advising on course
selections for the Biology major. Additionally, we use official
published THECB guidelines that specify credit requirements
for various majors. An example of this is shown in Fig. 2b,
where the unstructured text outlines the credit requirements
for the Biology field of study.

B. Educational Digital Twin Knowledge Graph

Preliminaries: A graph, or equivalently, network, is repre-
sented by a tuple G = (V,E) where V is the set of vertices,
or nodes, and E is the set of edges E ⊆ V ×V . To denote the
edge e between vertices v and v′, we write e := (v, v′). In a
data model, vertices and edges can be given types, representing
the entities and their relationships. We use the notation v:σ and
e:ς to express that vertex v is of type σ and edge e is of type ς ,
respectively. Vertices and edges can also be further augmented
with other arbitrary data attributes. To refer to a given attribute
foo on a vertex (resp. edge), we write v.foo (resp. e.foo).

We construct EDT-KG as a typed graph model G = (V,E).
We develop the structure of the graph by identifying key
entities that are integral to the educational system. Initial
key entities include STUDENT, COURSE, ASSESSMENT, AWARD,
MAJOR, and INSTITUTION, each represented as a vertex with a
specific type. For each entity, a set of permissible attributes
is defined to carry relevant information. For example, the
STUDENT entity includes attributes such as ethnicity and
gender. Edges in EDT-KG represent relationships between
entities and, like vertices, are also typed. Each type of edge is
named using a verb that reflects the directionality and nature
of the relationship. For example, the edge type achieves is used
to denote that a STUDENT has completed an ASSESSMENT,
indicating the edge points from STUDENT to ASSESSMENT.
Similarly, a STUDENT enrolls in a COURSE, defining a directional
relationship from the student to the course.

We define queries using logical predicates that describe the
properties and relationships between vertices and edges in the
graph. A query is formally expressed as a predicate P over
the sets of vertices V and E such that

P (V,E) := {(v, e) ∈ V × E | Φ(v, e)}, (1)

where Φ(v, e) is a logical formula that specifies the conditions
vertices and edges must satisfy. This formula can incorporate
various attributes of vertices and edges, such as types, prop-
erties, and the existence of paths or subgraphs.

The design of EDT-KG is driven by considerations of ex-
pressivity, ease-of-use, and performance, particularly in decid-
ing whether data should be represented as a vertex, an attribute
on a vertex, or an attribute on an edge. For example, the edge
attribute ecodis, which indicates a student’s economically
disadvantaged status, is associated with the edge types enrolls
and transfers. Alternatively, this attribute could be modeled as
a separate vertex linked by a new edge type has status con-
necting STUDENT to a hypothetical ECODIS node. The adopted
design, as illustrated in Fig. 3a, is the culmination of multiple
iterations involving refactoring, testing, and user consultations
to ensure it meets the needs of diverse stakeholders. Fig. 3b
displays a notional instantiation of the resulting design.

C. Graph Transformations of the Educational Digital Twin
Knowledge Graph

We construct graph transformations to aggregate and ma-
nipulate data at different levels of granularity for performant,
scalable querying. Formally, graph transformations are defined



(a) The EDT-KG ontology (b) Example instantiation of EDT-KG

Fig. 3: The knowledge graph layer of our Educational Digital Twin.

Fig. 4: Original graph G, highlighting the selection Φ.

through a series of operations that operate on input graph G,
resulting in a new graph G′. The transformation process can be
described as a three-step process that involves: 1) Selection:
a selection Φ(v, e) of vertices (v ⊆ V, e ⊆ E), 2) Projection:
a projection of the selection onto a new set of vertices v′

and edges e′, and 3) Aggregation: a traversal of the graph to
aggregate quantities to form new attributes of v′ and e′ in G′.

Example: To capture aggregate patterns in course progres-
sion, we construct a graph transformation, G → G′, which
tracks course sequences across semesters. The transformation
comprises three steps (illustrated in Fig. 4):

1) Selection: Define the selection Φ(v, e), where v holds
for vertices of type STUDENT with outgoing edges of

Fig. 5: Transformed graph G′ shows four κ vertices. Students
S1 and S2 have taken ALGEBRA 1 in the first semester followed
by Biology 2 in the second semester.

types attempts and of . This selection isolates a subgraph
containing vertices of types STUDENT, COURSEATTEMPT,
and COURSE, along with their connecting edges.

2) Projection: For each COURSEATTEMPT and COURSE, create
a vertex κ:COURSEATTEMPTEDINTIMESTEP for each unique
course attempt per semester. For consecutive course pairs
(κt, κ

′t+ 1) taken across timesteps t and t+1, add a taken
before edge from κt to κt+ 1.

3) Aggregation Assign each taken before edge an ids attribute
with student IDs for (κt, κ

′
t+1) and a weight attribute for

future, frequency-based queries. The transformed graph G′

is shown in Fig. 5.

To highlight efficient graph traversal of transformed graph



Algorithm 1 Compute support of course pathways on trans-
formed graph G′

set Stack S := {}, vertices V ← {κ | (κ.id = T}, Hash
H := P → N
for vi ∈ V do

set Stack pi = {vi}; H[pi] = |r|; push S, V
while S ̸= ∅ do

v ← S.pop()
if v ∈ V then

set previous edge ids r := U
end if
for edge e ∈ {v ← w:taken before} do

compute intersection c← r ∩ e.ids
if c ̸= ∅ then

r ← e.ids
push S, w; push p, w
set H[p] = min{H[p], |c|}

else
initialize new path p′ ← p.copy()
set H[p′] = H[p]; p← p′

end if
end for

end while
end for

G′, we describe a traversal algorithm, detailed in Alg. 1,
to identify the most common course pathways of length K
for students transferring at timestep K. Starting from the
final timestep T vertices κt=K , the algorithm computes the
intersection It of each edge’s ids attribute with the previous
edge’s ids, initialized to the universal set. When It is empty,
pruning occurs by backtracking, leveraging the downward
closure property: if a sequence of courses (e.g., x1, x2) is taken
by two students, any extension (e.g., x1, x2, x3) cannot exceed
this count. This process continues until paths of length K are
recorded, maximizing pruning to compute pathway support.

Remark. The time complexity of Algorithm 1 is O(N +R×
S), where N is the number of COURSEATTEMPTEDINTIMESTEP

vertices, R is the number of taken before edges, and S is the
average size of the ids array in G′.

In the worst case with no pruning, the traversal may visit all
vertices and edges. For every edge, it executes an intersection
operation which can be done in linear time O(S) by comparing
two given id arrays in sorted order. Thus, the time complexity
is O(N + R × S); however, in practice, S is quite small
when starting from the last timestep and pruning consistently
eliminates a majority of pathways through the graph.

IV. EVALUATION

This section presents two demonstrations of the EDT-KG,
highlighting its impact on educational decision-making and its
scalability compared to conventional methods.

Fig. 6: EDT-KG, visualized with every node and edge.

A. Multi-scale modeling to support decision-making

Although the entirety of EDT-KG, visualized in Fig. 6, pro-
vides detailed modeling at a fine level of granularity, extracting
insights at a coarser level may be important for informing
some decisions but challenging due to the complexity and
density of the data. To address these challenges, we develop
two specific graph transformations that facilitate analysis at
varying scales of granularity.

First Transformation: Academic Readiness and Course
Enrollment: This transformation, G → G′, explores the
relationships between academic readiness and courses taken
across different majors. Academic readiness is defined through
three dimensions: “Texas Success Initiative Mathematics” (TSI
Math), “Texas Success Initiative Reading” (TSI Reading)
and “Texas Success Initiative Writing” (TSI Writing). These
dimensions reflect students’ semester-wise readiness in mathe-
matics, reading, and writing and are represented in EDT-KG as
READINESS vertices. These vertices receive incoming requires
edges from COURSE vertices and achieves edges from STUDENT

vertices, as depicted in Fig. 3a. While some courses have
prerequisite requirements of other courses, many entry-level
courses are linked to these TSI dimensions. Given the broad
array of courses available and the large number of students
who do not meet TSI requirements, it is useful to explore
how students select courses with identical requirements and
whether there are discernible patterns in course selection
relative to TSI requirements fulfilled, which may vary by
major.

To construct transformation G′, we create new nodes
typed COURSETAKENINMAJOR for each course within each
major. Each node is assigned attributes num students and
average grade, aggregated from all attempts of that course
within the specified major. We then identify all courses sharing
the same TSI requirements. For each set of courses with



Fig. 7: Graph transformation G→ G′: Exploring relationships
between academic readiness, course enrollment, and student
outcomes across majors. The three central nodes are the TSI
READINESS nodes.

identical requirements, we create has similar requirements edges
between each course pair in the group. For each course and
corresponding TSI requirement, we identify students who do
not meet the requirement and attempted the course, and create
an edge typed has students who do not meet requirement. We
assign the edge attribute ratio students, quantifying the
ratio of students not meeting the requirement for that course.

Fig. 7 depicts the resulting transformation G′. In the visual-
ization, the three central nodes are the TSI READINESS nodes.
These READINESS nodes are surrounded by the COURSETAK-
ENINMAJOR nodes, grouped into clusters that correspond to
different majors. For clarity, this visualization shows only six
of the 417 majors analyzed. In the zoom-in shown in Fig. 8, we
observe that Course 1, Course 2, and Course 3 all share iden-
tical TSI requirements. However, the proportions of students
meeting these TSI requirements vary across these courses, as
indicated by the differing thicknesses of the edges connecting
them. This variation in compliance with TSI requirements
across courses reveals important factors that influence student
course selection and adherence to academic standards. This
analysis helped guide discussions around curriculum design
and educational policies regarding readiness requirements.

Second Transformation: Student Pathways and Grad-
uation Outcomes: This second transformation explores how
graduation outcomes relate to course selection over time. We
create COURSEATTEMPTEDINTIMESTEP vertices for each course
attempted in each semester and taken before edges between
courses attempted to represent sequential course attempts.

We define three additional vertex types representing specific
instances of graduation outcomes: Dropout, Stopout, and
Transfer. A Dropout refers to students who stop enrollment
for at least two consecutive semesters, a Stopout to those who

Fig. 8: Zoomed-in portion of G → G′: Course 1, Course
2 and Course 3 have the same TSI Math requirement but
different ratios of students who do not meet the requirement.

Fig. 9: Graph transformation G′ visualizing the relationships
between courses and courses, and outcomes across semesters.

pause enrollment for one semester but return the following
semester, and a Transfer to those who enroll in a four-
year institution subsequently. We link COURSEATTEMPTEDIN-
TIMESTEP vertices to OUTCOME vertices with preceding edges,
which represent taking a course and resulting in an outcome
at the semester’s end. We also introduce taken together edges
to indicate groups of courses most frequently taken together
before a specific graduation outcome.

Fig. 9 visualizes this second transformation. Three OUT-
COME vertices lie at the center right, with typed edges
among COURSEATTEMPTEDINTIMESTEP vertices. Fig. 10 shows



Fig. 10: Zoom-in of G′′ with common sets of courses taken
before transfer (blue), dropout (red) and stopout (yellow).

a zoom-in of several common pathways. One consists of
courses A-B-C, leading to Stopout and another consists of
courses D-E-F, leading to Dropout. Three other pathways,
highlighted in blue, show the three groups of courses most
commonly taken together before transfer. In our discussions
with decision-makers, these insights revealed previously un-
known interactions between course attempts and outcomes.

B. Performance comparison

To assess scalability, we conduct a series of tests involving
knowledge retrieval and update. For comparative analysis, we
use conventional methods in educational research that involves
manipulating raw data with tabular structures, using tools such
as R, Stata and Python. Our objective is not a strict laboratory-
style comparison with Python and Pandas but to highlight
the practical differences one might expect when employing
EDT-KG in real-world scenarios as opposed to traditional
educational data analytics. Therefore, we follow standard
educational analytics protocols without special optimizations.

Fig. 11 shows the query times for a subset of queries
executed with EDT-KG, compared to conventional methods.
These queries are part of a broader set of over 20 queries,
selected here for illustrative purposes. These five queries
illustrate the differences between read (Queries 1–3) and write
(Queries 4 and 5) operations. Query 1 retrieves demographic
profiles of students who stop-out, where graph traversal in
EDT-KG is much more efficient. Query 2 retrieves pathways
to a student’s first certification, often spanning multiple insti-
tutions. With conventional methods, Queries 2 and 3 were so
memory-intensive that pathway searches were limited and still
took nearly three hours. These queries were also challenging
to write and debug with conventional methods, underscoring
EDT-KG’s advantage in semantic clarity. Query 3, finding
common course sequences before dropout, highlights EDT-
KG’s capability to traverse multi-timestep paths efficiently.
In Query 4, the longer time required to update EDT-KG

Fig. 11: Comparison of query times in EDT-KG versus con-
ventional methods.

compared to reading tabular data reflects the bulk data updates
involved; however, single data point updates are faster with
EDT-KG. Query 5, which modifies the ontology to accom-
modate data changes, contrasts with the conventional need
for additional dataframes. Although time-consuming, these
updates are essential in the digital twin’s physical-to-virtual
flow, preserving alignment with real-world data.

V. CONCLUSION

The digital twin paradigm presents an opportunity for
educational big data to support improved decision-making and
student outcomes. The approach introduced in this paper goes
beyond traditional educational data analytics, which tend to fo-
cus on isolated snapshots of data, typically confined to a single
institution and frozen in time. Instead, our construct integrates
diverse, large-scale and evolving data to represent the changing
physical system, capturing evolving student pathways within
larger educational contexts. Our implementation integrating
millions of student records across the Texas postsecondary
domain demonstrates how the digital twin paradigm provides
valuable insights to educational decision-makers.

Several aspects of the Educational Digital Twin go beyond
this paper’s scope. First, we are limited in the specific demon-
strations that can be published, due to privacy restrictions on
the underlying datasets. For example, while our construct has
the potential to generate personalized insights for advising
or course selection—similar to digital twins in personalized
medicine—we are not permitted to show such an analysis.
However, the graphical formulations of our methodology make
clear how such analyses could be done. Second, privacy and
security are major concerns for digital twins. Our research is
conducted within a secure data environment and our results



shared only with authorized stakeholders. There are clear
benefits to making an Educational Digital Twin more widely
accessible (for example, to students or faculty advisors) but
doing so would require guarantees that the datasets underlying
the digital twin could not be reverse-engineered. This remains
an open and pressing research area for all digital twin ap-
plications. Future directions include expanding the model to
include additional data facets and larger slices of the student
population, such as extending coverage to K-12 levels.
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