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ABSTRACT
Verifying the correctness of a digital twin provides a formal guar-

antee that the digital twin operates as intended. Digital twin veri-

fication is challenging due to the presence of uncertainties in the

virtual representation, the physical environment, and the bidirec-

tional flow of information between physical and virtual. A further

challenge is that a digital twin of a complex system is composed

of distributed components. This paper presents a methodology to

specify and verify digital twin behavior, translating uncertain pro-

cesses into a formally verifiable finite state machine. We use the

Temporal Logic of Actions (TLA) to create a specification, an im-

plementation abstraction that defines the properties required for

correct system behavior. Our approach includes a novel weakening

of formal security properties, allowing controlled information leak-

age while preserving theoretical guarantees. We demonstrate this

approach on a digital twin of an unmanned aerial vehicle, verifying

synchronization of physical-to-virtual and virtual-to-digital data

flows to detect unintended misalignments.

CCS CONCEPTS
• Computer systems organization→ Embedded and cyber-
physical systems;Real-time system specification; •Hardware
→ Safety critical systems; • Theory of computation→ Formal

languages and automata theory.
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Digital twins, cyber-physical systems, safety-critical systems, TLA,
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Figure 1: Digital twin consisting of a physical system (un-
manned aerial vehicle), a virtual representation (structural
health models), and bidirectional connections among com-
ponents.

1 INTRODUCTION
This paper describes a formal methodology to design and model a

digital twin and prove its correctness properties using the Temporal

Logic of Actions (TLA). We employ the National Academies’ defini-

tion: “A digital twin is a set of virtual information constructs that

mimics the structure, context, and behavior of a natural, engineered,

or social system (or system-of-systems), is dynamically updated

with data from its physical twin, has a predictive capability, and

informs decisions that realize value. The bidirectional interaction

between the virtual and the physical is central to the digital twin”

[1].

An example digital twin is illustrated in Fig. 1. In this scenario,

an unmanned aerial vehicle (UAV) flies a mission while transmitting

sensor data to a digital twin. The digital twin, designed to mirror

the UAV’s structure, context and behavior, processes the incoming

sensor data, 𝒐, maintains a predictive model of the UAV’s structural

health, 𝒔, and generates control execution commands, 𝒖. Even when
individual components, like the command-generation function,

operate correctly, the system can still fail due to orchestration issues.

For instance, consider the sensor observations valA, valB, and valC,
arriving concurrently but with different timestamps t=1, t=3, and
t=2 , respectively. These readings, emitted at different intervals and

1
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with transmission delays, create orchestration challenges. To ensure

the correct state, the update function must incorporate consistent

sensor inputs, and the UAV must process incoming commands

reliably to follow its intended path. These examples highlight that

verifying individual component correctness is not enough; ensuring

the digital twin’s overall orchestration is equally important.

Various formal and technological approaches address aspects

of correctness in cyber-physical systems. For instance, verifying

control and timing is well-researched (see Sec. 2), but control verifi-

cation alone does not ensure system-level orchestration. Technolog-

ical solutions, such as RabbitMQ for asynchronous data handling,

address only specific areas of digital twin functionality. Moreover,

simply adding technological components does not offer formal

guarantees, often a crucial need in safety-critical environments

where digital twins may be deployed. This paper introduces a novel

methodology for formally reasoning about digital twins at the level

of system orchestration. We introduce the following innovations:

(1) Formal system specification: A new method to construct

formal, high-level specifications of digital twins using TLA.

Our approach derives a finite state machine model from the

digital twin probabilistic graphical model (PGM) [2], giving a

mathematically rigorous way to specify digital twins in general.

(2) Model augmentation: A novel augmentation of the digital

twin PGM framework to model distributed communication and

the corresponding state machine translation.

(3) Abstraction methodology: A set of principled guidelines for

abstracting the physical and computational complexities of

digital twins into state transition actions.

(4) Weakening of formal properties: A novel approach to re-

lax formal security properties, such as non-interference, by

bounding the utility of revealed information within digital twin

bidirectional flows, thereby limiting impact on system identi-

fication rather than relying on generic information-theoretic

bounds.

The remainder of this paper is organized as follows. Sec. 2 places

our approach in the existing literature. Sec. 3 details the state ma-

chine derivation. Sec. 4 demonstrates a practical application by

constructing and verifying a UAV digital twin, with relaxed security

properties that provide formal bounds on information leakage be-

tween the physical and digital components. Finally, Sec. 5 presents

the results of our verification efforts on the UAV digital twin.

2 RELATEDWORK
Our research contributes to the field of cyber-physical systems,

with particular focus on the expanding concept of digital twins. As

digital twin technology continues to evolve rapidly, it is important

to delineate how our approach both aligns with and diverges from

existing work.

Digital Twin frameworks. Various works have suggested digital twin
design approaches that range from informal, flow chart-based de-

sign [3], [4] to technology-specific solutions [5, 6]. Unlike these

approaches, our methodology is technology-neutral. Our approach

offers a generalizable abstraction for digital twin design that is

grounded in mathematically rigorous formal verification principles.

Verification of cyber-physical systems. Verification of cyber-physical
systems is a dynamic and expansive area of research [7], with much

work in safe autonomy and control [8–16]. There is also consid-

erable discourse on the challenges of distributed cyber-physical

systems [17–19]. For example, [20] extends the Lingua Franca co-

ordination language to handle network failures, [21, 22] discuss

the need for timing considerations in distributed environments,

and [23–25] offer methods to achieve deterministic timing in con-

trol executions. In contrast, our paper provides a methodology for

orchestrating digital twins at the system level. Aligning with the

NASEM definition of a digital twin, our approach emphasizes the

critical importance of bidirectional interactions and orchestration,

offering a broader, systemic perspective that diverges from the

control-centric emphasis found in much existing literature.

Distributed systems. The application of TLA in distributed comput-

ing systems is well-documented [26–29], with notable applications

including its use at Amazon Web Services for managing distributed

resources [30]. While TLA has proven effective in addressing the

complexities of distributed computing, the specification of digital

twins presents unique challenges that extend beyond traditional

distributed systems: First, digital twins require the consideration

of diverse hardware components, which goes beyond the typical

software and network considerations found in distributed systems

[17]. Second, digital twins often incorporate predictive models that

provide probabilistic outputs and may adapt dynamically based on

real-time data. Third, digital twins necessitate continual, real-time

bidirectional exchanges to maintain synchronization between the

physical and digital entities. Our research applies TLA to address

these aspects, offering a formal, verifiable system perspective for

digital twins. To our knowledge, this represents a novel applica-

tion of TLA in the context of digital twins. Moreover, we provide a

systems-theoretic approach to give formal statistical guarantees on

information leakage during communication between the physical

system and its digital twin.

3 DIGITAL TWIN AS A STATE MACHINE
Our first result is formalizing a digital twin as a state machine,

rigorously derived from the digital twin Probabilistic Graphical

Model (PGM) framework proposed in [2] and since adopted to de-

scribe digital twins in a variety of applications [31, 32]. Appendix A

provides a background of the digital twin PGM framework. Our

formalization uses TLA to describe the digital twin as a finite state

machine (FSM). Indeed, Markov models as in PGMs are a stochastic

version of FSMs. For background on TLA, see [33–35]. Through-

out this section, we use examples from our application instance

of a UAV digital twin. However, we emphasize and show that our

methodology is broadly applicable.

3.1 State Machine Derivation
Here we detail our novel derivation of a state machine represen-

tation from the digital twin PGM. We specify the digital twin as a

state machine that transitions from one state to the next, governed

by transition logic:

Digital Twin ≔ I ∧ N ∧ F (1)

2
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Figure 2: Derivation of state machine processes from PGM
representation. Nodes represent variables and edges between
nodes represent the dependence of the destination node on
the parent node. The subscript 𝑋𝑡 denote the variable 𝑋 ’s
state at time 𝑡 .

Here, (1) states the state machine of the digital twin is defined by a

conjunction (AND) of an initial state predicate I, a next state predi-
cateN , and a set of fairness conditions F . The initial state predicate
specifies the valid starting conditions, the next state predicate out-

lines the permissible transitions that variables can undergo, and

the fairness conditions provide assumptions about how transitions

are executed. Specifically, the next state predicate:

N ≔ 𝜔1 ∨ · · · ∨ 𝜔𝑁 ∨ T (2)

employs the logical disjunction (OR) to indicate that at any given

step in the state machine, one out of 𝑁 possible processes 𝜔𝑛 can

occur, or the system can reach a termination condition T . By allow-
ing only one process to execute at a time, we model concurrency

by considering the possible orderings, or interleavings, of process

execution, abstracting away timing specifics.

To model digital twin orchestration, we identify the specific op-

erations or “processes” through which variables within the system

alter their states. These processes are dictated by the relationships

encoded within the DT PGM. Each variable 𝑣𝑖 in the model transi-

tions based on the states of other variables that directly influence

it — the variable node’s parents in the graphical model. Formally,

the set of processes Ω is defined as:

Ω = {Define 𝜔 ≔𝑊 (𝑣𝑖 ) → 𝑣𝑖 | 𝑣𝑖 ∈ 𝑉 ∧𝑊 (𝑣𝑖 ) ≠ ∅} (3)

Here,𝑊 (𝑣𝑖 ) is the set comprising the parents of 𝑣𝑖 , and the transi-

tion function→ denotes the computation that updates 𝑣𝑖 based on

these influences. This definition preserves the system dependen-

cies by defining that each variable’s change is a direct result of its

process’ inputs.

Fig. 2 shows the PGM describing our example UAV digital twin

with six variables: (1) physical state 𝑆 which represents the struc-

tural health of the UAV; (2) Observational data 𝑂 representing

sensor data; (3) Digital state 𝐷 , which represents the digital twin’s

estimate of the UAV’s structural health; (4) control 𝑈 representing

Figure 3: PGM with distributed communication required for
two processes: (1) 𝑂→𝐷 and (2)𝑈→𝑆 .

the computed control; (5) Quantity of interest 𝑄 , which represents

quantities of interest computed by the digital twin; and (6) Reward

𝑅, representing metrics for success as dependent on 𝑂 , 𝐷 , 𝑈 and

𝑄 . Applying (3) to the PGM yields the set of processes Ω = 𝜔𝑆 ∨
𝜔𝑂 ∨𝜔𝑈 ∨𝜔𝐷 ∨𝜔𝑅 ∨𝜔𝑄 where 𝜔𝑆 ≔ (𝑆,𝑈 ) → 𝑆 , 𝜔𝑂 ≔ 𝑆 → 𝑂 ,

𝜔𝑈 ≔ (𝐷,𝑄) → 𝑈 ,𝜔𝐷 ≔ (𝐷,𝑈 ,𝑂) → 𝐷 ,𝜔𝑅 ≔ (𝑂, 𝐷,𝑈 ,𝑄) → 𝑅

and𝜔𝑄 ≔ 𝐷 → 𝑄 . Fig. 2 illustrates the mapping of PGM encodings

to state machine processes.

3.2 Modeling Distributed Communication
The second major contribution of our work is the novel augmen-

tation of the digital twin PGM to account for the challenges of

distributed comopnents, and the corresponding translation into the

state machine representation.

The graphical model in Fig. 2 assumes that variable values are

read deterministically. This is often not the case in digital twins

where components are distributed and rely on message passing

to communicate with each other. With distributed components,

there is additional uncertainty in the input values that are actually

used by a process, stemming from issues such as network reliability

and traffic. For instance, as illustrated in Fig. 3, the process 𝑂→𝐷

requires the value of 𝑂 , which is transmitted via distributed mes-

saging — in this case, a wireless network channel. The perturbation

of the distributed messaging in a PGM might even be adversarial

and so a worst-case analysis may be needed [36].

Our novel augmentation of the PGM constructs a new variable

𝑁 to represent the uncertainty of the messaging channel and a new

variable𝑋in for every variable𝑋 whose value is communicated over

the messaging channel. These noise and channel output variables

are just like in information-theoretic models of communication

[37], but considering semantics of logic [38]. First, identify the set

of variables X whose value is communicated over distributed mes-

saging, i.e. X = {𝑋𝑖 | 𝑋𝑖 ∈𝑊 (𝑣𝑖 ) ∧ 𝑣𝑖 ∈ 𝑉 ∧𝑋𝑖→𝑣𝑖 is distributed}.
For every 𝑋𝑖 ∈ X, we create an intermediary variable 𝑋𝑖,in and a

network variable 𝑁𝑋𝑖
to represent the value of 𝑋𝑖 actually received.

We reconfigure the incident edges of 𝑋𝑖 such that new edges point

3
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Algorithm 1 Augment PGM for communication uncertainty

Input: PGM G
Output: Augmented PGM G′

Set 𝑉 ← set of nodes in G
Set 𝐸 ← set of edges in G
for v in V do

Define 𝑣 → 𝑤 to be the outgoing edge from 𝑣 to node𝑤

if 𝑣 → 𝑤 is distributed then
Create 𝑣in as new node, 𝑉 ← 𝑉 ∪ 𝑣in
Create 𝑛𝑣 as new node, 𝑉 ← 𝑉 ∪ 𝑛𝑣
Remove edge 𝑣 → 𝑤 from 𝐸

Create new edge 𝑣 → 𝑣in, 𝐸 = 𝐸 ∪ 𝑣 → 𝑣in
Set new edge 𝑛𝑣 → 𝑣in, 𝐸 ∪ 𝑛𝑣 → 𝑣in
Set new edge 𝑣in → 𝑤 , 𝐸 ∪ 𝑣in → 𝑤

end if
end for
return V, E

from 𝑋𝑖 to 𝑋𝑖in , 𝑁𝑋𝑖
to 𝑋𝑖in , 𝑂 to 𝑁𝑥𝑖 , and 𝑋𝑖in to 𝑉𝑖 . Algorithm 1

details the augmentation algorithm.

For example, Fig. 4 shows a subgraph of the resulting augmen-

tation applied to variable 𝑂 . The augmentation introduces three

new processes: (1) 𝜔𝑁𝑂
, which represents the optional dependence

of the messaging channel on the value of 𝑂 . For instance, some

messaging channels may be susceptible to large data payloads and

may degrade as traffic increases. (2) 𝜔𝑂in
, which represents the de-

pendency of𝑂in on both the message that was sent and the state of

the network. (3) 𝜔𝑂in
, which replaces the original process 𝑂→𝐷

to model the fact that the process input is the received variable𝑂in,

instead of sent variable 𝑂 . Our state machine formalization further

elaborates on fairness, termination, and complexity abstraction,

detailed in Appendix B.

4 SPECIFICATION OF UAV DIGITAL TWIN
This section applies our proposed methodology to the design, spec-

ification, and verification of a UAV digital twin.

4.1 The UAV and its Digital Twin
The physical counterpart of this digital twin is a custom-built, fixed-

wing UAV equipped with advanced wireless sensors and power

hardware, with construction described in [39] and shown in Fig. 5.

Figure 4: Augmentation for 𝑂 , which is communicated over
a distributed channel to 𝐷 .

(a) Testbed UAV

(b) sensors on UAV wing

Figure 5: Reproducedwith permission from [39]: testbed UAV
(top) equipped with individually-transmitting Bluetooth sen-
sors (bottom)

The sensors, attached to the UAV’s wings as in Fig. 5b, measure ob-

servational data such as temperature and strain in real-time during

flight. The UAV also features an onboard computer to process in-

coming control commands from the digital twin, where commands

are executed as maneuvers. Given the potential unreliability of the

communication channel, a primary design challenge is ensuring

that delayed control messages are processed accurately to maintain

the UAV’s operational integrity.

A digital twin of this UAV would continually process incoming

observational data to generate and transmit control commands

tailored for the UAV. The digital twin would also maintain a dy-

namic predictive model of the UAV’s structural health, ensuring

synchronization with the UAV’s actual physical state. This synchro-

nization is achieved through real-time computations that integrate

new observational data into the ongoing assessment of the UAV’s

condition. A key design challenge of the digital twin is its ability to

accurately reflect the UAV’s physical state despite potential latency

issues and concurrent, incoming data streams.

Our implementation builds upon the digital twin in [2], imple-

mented as a collection of Robot Operating System (ROS2) Python

modules. However, the original implementation primarily served

as a proof-of-concept for the PGM framework and did not address

several real-world challenges such as handling concurrent incom-

ing observational messages and ensuring reliability over unstable

4
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Figure 6: PGM for UAV Digital Twin

communication channels. Our objective is to construct a design

to manage these complexities and achieve reliable orchestration

under realistic operational conditions.

4.2 The UAV State Machine
We apply our augmentation methodology from Algorithm 1 to

construct an augmented PGM that accounts for the distributed

messaging channels in the system. Because each sensor transmits

independently, we specify each sensor’s connection as separate

variables, 𝑁1 . . . 𝑁𝑚 . We also define a separate variable for the

transmission of control commands, 𝑁𝑢 . These definitions let us

reason about bidirectional flows individually. In addition to new

variables for each data transmission path, the augmentation also

introduces new nodes for received observational data𝑂1,in . . . 𝑂𝑚,in

and received control command𝑈in. The augmented PGM is depicted

in Fig. 7.

Figure 7: Augmented PGMmodeling distributed communi-
cation

4.3 System Abstraction
This subsection applies our abstraction methodology to model

concrete state transitions within the UAV digital twin’s state

machine. In abstracting complex system dynamics into simpler,

formal state transitions, our goal is to balance fidelity with

tractability: while a more granular formalization more accurately

reflects real-world dynamics, it becomes less scalable in terms

of formalization effort and verification time. We organize this

section by systematically addressing each variable involved in the

UAV system. For each variable, we first describe its real-world

characteristics and then its corresponding abstraction. Following

this, we delineate how each variable evolves in real life and how

we formulate its state transition within the state machine.

Physical state (𝑆) The physical state 𝑆 of the UAV represents its

structural health, which is influenced by the stresses of executedma-

neuvers. It is not possible for the digital twin to know the ground

truth of 𝑆 at runtime; instead, it must be inferred through sen-

sor data. The UAV’s structural integrity is subject to degradation,

quantified by 𝛿 damage, which occurs with a non-zero probability

dependent on the executed control. This probabilistic damage is

governed by the dynamics shown in (4) in Table 1.

In our abstraction, we model the structural health 𝑆 as a discrete

variable ranging from 0 (total structural failure) to 100 (perfect

health). Our model simplifies probabilistic damage to a nondeter-

ministic state transition where the structural state either remains

unchanged or is reduced by 𝛿 = 1 damage, shown in (5) in Table 1.

Finally, because damage occurs concurrently with control execu-

tion, both actions are modeled as a single atomic operation in (5) in

Table 1, where the value of the next executed control 𝑢𝑒 is assigned

the control command 𝑢in.

Table 1: Transition (𝑆,𝑈 )→𝑆 : Evolution of physical state

Real-world process Abstraction

𝜙 =

{
0.05 if 𝑢 = 3

0.01 if 𝑢 = 2

(4)

∧ 𝑢′𝑒 = 𝑢in

∧ ∨ 𝑠′ = 𝑠

∨ 𝑠′ = 𝑠 − 𝛿
(5)

Observational data (𝑂) The observational data, denoted as 𝑶 =

𝑂1 . . . 𝑂𝑀 , are noisy, timestamped sensor measurements of the

UAV’s structural health, taken by𝑀 sensors, indexed as𝑚 = 1 . . . 𝑀 .

Sensor measurements inherently vary slightly from the actual struc-

tural health and each other due to sensor precision and environ-

mental interference. Empirical data (sample shown in (6)), show

typical small deviations from the ground truth value 𝑆 .

In our abstraction, each sensor measurement 𝑂𝑚 is represented

as the UAV’s structural health value perturbed by some nondeter-

ministic noise 𝜖 ∈ {−1, 0, 1}.

Distributed messaging of observational data (𝑁 , 𝑂𝑚,in) In the

UAV digital twin, the communication of observational data via

Bluetooth introduces complexities due to the potential unreliability

of the wireless channels.

In our abstraction, we construct separate variables for each Blue-

tooth channel (𝑁1 . . . 𝑁𝑀 ) and for the received data 𝑂1,in . . . 𝑂𝑀,in.

Because our concern is at a higher level than the details of sen-

sor and transmission operations, we treat the processes of data

5
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Table 2: Transition 𝑆→𝑂𝑚 : Generate observational data

Real-world process Abstraction

𝑜𝑚 − ℎ = [0.57, 0.66,
0.31,−0.12,
0.42,−0.93,
0.61, . . .]

(6) 𝑜′𝑚 = 𝑠 + 𝜖 (7)

Table 3: Transition 𝑂𝑚→𝑁𝑚 : Transmit observational data

Real-world process Abstraction

𝑛′𝑚 = push 𝑛𝑚, 𝑜𝑚 (8)

generation, abstracted in (7), and transmission, abstracted in (8),

as mutually-atomic. This abstracts the generation and immediate

transmission of data as a single, indivisible operation, as in (9):

ObserveEmitObsAtomic ≔ (𝑂𝑚→𝑁𝑚) ∧ (𝑆→𝑂) (9)

The received value of a sensor message 𝑂𝑚 is represented by vari-

able 𝑂𝑚,in. Per our methodology in Appendix B.1, to model the un-

reliable receiving of messages, we remove the element at randomly-

chosen index 𝑖 from queue 𝑛𝑚 , and we add it to the received mes-

sages collection 𝑜𝑚,in. We impose the strong fairness condition that

the correct message (𝑖 = 1) is always eventually delivered.

Table 4: Transition (𝑂𝑚, 𝑁𝑚)→𝑂𝑚,in: Receive observational
data

Real-world process Abstraction

Let 𝑖 ∈ [1, 𝜂]
∧ Remove 𝑛𝑚 [𝑖]
∧ 𝑜′𝑚,in = push 𝑜𝑚,in, 𝑛𝑚 [𝑖]
∧ 𝑆𝐹 (𝑖 = 1)
where 1 ≤ 𝜂 ≤ Length 𝑛𝑚

Digital state (𝐷) The digital state 𝐷 represents the estimated struc-

tural health of the UAV, modeled as a variable within the range

{1 . . . 100}. This estimation is computed by a black-box model 𝜓 ,

which outputs a predictive distribution for 𝐷 . While the internal

computations of each model remain undisclosed, output character-

istics are discovered through prior statistical analysis.

Our abstraction retains the dependency of 𝐷 on previous state

𝐷𝑡−1
, last control computed𝑈 𝑡−1

and the latest observational data

𝑶 𝒕
in
. To enhance the model’s tractability, we use known charac-

teristics of 𝜙 to constrain the number of possible states for 𝐷 . For

instance, when analyzing the conditional probability for𝐷𝑂 , shown

in (10), where 𝐷 varies with 𝑶 𝒕
in
while keeping other factors con-

stant, we observe that non-positive sensor observations signifi-

cantly widen the range of possible values for 𝐷 . Otherwise, 𝐷

typically fluctuates within a normal distribution N(𝑑, 𝜎2), where
the variance 𝜎2 is influenced by the type of control executed. To

keep the abstraction tractable and focused on the most critical sce-

narios, we constrain 𝐷 to fluctuate within two standard deviations

of the mean. This constraint is reflected in our abstraction, where

𝜁2 ∈ [−1, 1] and 𝜁3 ∈ [−5, 5] are set to represent the two standard

deviation bounds for controls𝑢 = 2 and𝑢 = 3, respectively, rounded

to the nearest integers.

Table 5: Transition (𝐷,𝑈 ,𝑶𝒎,in)→𝐷: Update digital state

Real-world process Abstraction

𝐷 ∼ 𝜓 (𝐷𝑡−1,𝑈 𝑡−1,𝑶 𝒕
in
)

𝐷𝑂 ∼
{
U(0, 𝑑) ∃𝑜𝑖 ≤ 0

N(𝑑, 𝜎2) otherwise

(10)

IF ∃𝑜𝑚,in : 𝑜𝑚,in ≤ 0

𝑑′ = 0 . . . 𝑑

ELSE

IF 𝑢 = 2

𝑑′ = 𝑑 + 𝜁2
ELSE

𝑑′ = 𝑑 + 𝜁3

(11)

Control (𝑈 ) The control 𝑈 is a command that instructs the UAV

to execute either a 3g or 2g turn. The control is computed via a

optimization model.

In our abstraction (Table 6), the control𝑈 is simplified to decision-

making criteria based primarily on the UAV’s estimated structural

health 𝐷 . This simplification is grounded in a prior analysis of the

optimization model’s outputs [2], which reveal that the value of 𝐷

primarily dictates whether the control𝑈 can be set to 3.

Table 6: Transition 𝐷→𝑈 : Compute and transmit control

Real-world process Abstraction

𝑢 ∈
{
{3} 𝑑 ≥ 𝐷min

{2, 3} otherwise

(12)

IF 𝑑 ≥ 𝐷min

∨ 𝑢′ = 3

∨ 𝑢′ = 2

ELSE

𝑢′ = 2

Distributed messaging of control (𝑁𝑈 ,𝑈in) Handling control

messages is managed similarly to transmission and reception of

observational data. In our abstraction (Table 7), we assume that the

correct message will eventually be delivered, and we treat the pro-

cesses of computing a control decision and transmitting a control

as mutually atomic operations, combined into a single, indivisible

process to reduce complexity.

Termination. Our UAV example uses specific termination conditions

to reflect real mission parameters. Termination occurs when: (1)

UAV reaches the maximum number of executed maneuvers 𝐶max;

6
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Table 7: Transition (𝑈 , 𝑁𝑢 )→𝑈in: Receive control

Real-world process Abstraction

Let 𝑖 ∈ [1, 𝜂]
∧ Remove 𝑛𝑢 [𝑖]
∧ IF 𝑛𝑢 [𝑖] .𝑡 > 𝑢in .𝑡

𝑢′
in
= 𝑛𝑢 [𝑖]

ELSE

𝑢′
in
= 𝑢in

∧ 𝑆𝐹 (𝑖 = 1)
where 1 ≤ 𝜂 ≤ Length𝑛𝑢

(2) digital twin exceeds a predefined maximum runtime𝑇max; or (3)

digital twin estimates the UAV’s structural health as non-positive,

and all sensor readings concurrently indicate non-positive values,

suggesting critical system failure.

4.4 Specifying Properties
The core property of interest in the UAV digital twin is synchro-
nization—the continuous, bidirectional feedback loop ensuring that

the physical and digital entities reflect each other accurately. We

define our primary synchronization property as:

𝑃1: The physical and digital twins must be eventually synchronized.

We use the term “eventually” to describe that synchronization will

always be achieved, without binding it to a specific timeframe. To de-

tail what synchronization entails, we deconstruct this overarching

property into more granular sub-properties, guided by methodolog-

ical questioning —how, what, and why [40, 41] — with engineers

and stakeholders. We discuss in more detail how we specify proper-

ties in Appendix B.2. The resulting property-part diagram, depicted

in Fig. 8, illustrates a subset of these properties.

Figure 8: Partial property-part diagram showing a subset of
properties

4.5 Weakening Formal Verification with
Statistical Guarantees

Synchronization correctness require certain security properties to

be satisfied. For example, in Fig. 8, 𝑃11 requires that an adversary

cannot infer information about the digital state model, which is nec-

essary for the trustworthiness of messages exchanged between the

physical and digital twins. This property falls under a class of secu-

rity guarantees known as non-interference, a standard approach for

formalizing information flow within a system. A process 𝑟1 is non-

interfering with another process 𝑟2 across systemM if 𝑟1’s input

toM has no effect on𝑀 ’s output to 𝑟2 [42]. Different variations of

noninterference exist [43], including generalized non-interference

(GNI) which extends noninterference to probabilistic systems by

mandating that for every pair of traces 𝑏 and 𝑏′, there exists a

third trace 𝑏′′ such that 𝑏′′ agrees with the low-security inputs and

𝑏′′ agrees with the high-security outputs [44]. The practicality of

noninterference is well-known to be problematic [45], and as of

state-of-the-art, obeying GNI is still an impractical constraint on

digital twin systems. Here, we introduce a novel weakening of GNI

with respect to particular secret digital twin parameters, where

we allow some information leakage while still maintaining formal

bounds on the amount of relevant information leaked.

Notably, we measure information leakage through a system
identification perspective [46] rather than a generic information-

theoretic view [45], consideringwhat systems-theoretic understand-

ing of the digital twin is leaked rather than just the number of bits

about it, which may or may not be relevant to adversarial action.

This is different from [47] which looks at state estimation rather

than system identification, and [48], which is also quite different.

For example, consider the content of the communication involv-

ing the current health of the physical counterpart and the next

action it is going to take. The change in health depends on the

action taken and some system randomness. More concretely, let

ℎ(𝑡) ∈ N ∪ {0} denote the health of the system at time 𝑡 . The

system can take𝑚 possible actions, indexed by {1, 2, . . . ,𝑚}. Let
𝑎(𝑡) ∈ {1, 2, . . . ,𝑚} denote the action the system takes at time 𝑡 .

We assume the change in health ℎ(𝑡) −ℎ(𝑡 + 1) is a Poisson random

number drawn with rate 𝜆𝑎 (𝑡 ) , independent of all other changes in
health:

ℎ(𝑡) − ℎ(𝑡 + 1) = −Δℎ(𝑡 + 1) ∼ Poisson(𝜆𝑎 (𝑡 ) ).

This essentially implies that the health model of the system is given

by (𝜆1, 𝜆2, . . . , 𝜆𝑚).
An adversary intercepts the communication between the digital

twin and the physical counterpart, and knows the values of ℎ(𝑡)
and 𝑎(𝑡). We want to determine whether the system’s health model

is compromised by this information leakage. So the estimation

problem here is that given {(ℎ(𝜏), 𝑎(𝜏)) : 1 ≤ 𝜏 ≤ 𝑡}, we want to
figure out 𝜆1, 𝜆2, . . . , 𝜆𝑚 .

In the general case, let us assume that 𝜆𝑖 and 𝜆 𝑗 have no relation

to each other (this may not be very practical since we often know

which actions are costlier than others, but let us nevertheless make

this simplifying assumption). So for estimating each 𝜆𝑖 , we only

consider the set of times {𝜏 : 𝑎(𝜏) = 𝑖}. In the absence of any prior,
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a good estimator for this would be

ˆ𝜆𝑖 = −
1

|{𝜏 : 𝑎(𝜏) = 𝑖}|
∑︁

𝑡 ∈{𝜏 :𝑎 (𝜏 )=𝑖 }
Δℎ(𝑡 + 1) . (13)

Using standard probability results, this estimator has the following

properties.

Theorem 1. The estimator in (13) satisfies

(i) E
[
ˆ𝜆𝑖

]
= 𝜆𝑖 .

(ii) P
(
| ˆ𝜆𝑖 − 𝜆𝑖 | ≥ 𝜖

)
≤ 𝜆𝑖

𝑁𝑖𝜖
2
, where 𝑁𝑖 = |{𝜏 : 𝑎(𝜏) = 𝑖}|.

Thus as the number of times a particular action is taken increases,

we get a more accurate estimate of the hit to health from that action

and so we directly get a statistical guarantee on information leakage

about the system properties. In general, finite-sample bounds from

system identification theory [49–51] can characterize such digital

twin-relevant information leakage. With this weakening approach,

we are able to satisfy property 𝑃11, which would otherwise fail with

a purely model-checking approach.

5 EVALUATION
Our baseline specification for the UAV digital twin encompasses

various parameters:𝑀 = 2 sensors, each with a maximum message

delay of 𝜂 = 2, a total of𝐶max = 3 possible mission maneuvers, and

a maximum system runtime of 𝑇max = 4. This specification mani-

fests as 15 distinct processes and 18 variables, including auxiliary

variables for supporting property verification, with 25 properties

covering core system behavior. The TLA code closely mirrors the

abstraction models presented in Sec. 4. An example code listing is

shown in Appendix C.

5.1 Model Checking the State Space
The state space generated by the UAV digital twin’s specification is

combinatorially large, as each distinct process introduces a different

potential interleaving, with every variable within these interleav-

ings capable of assuming various values. We visualize this state

space as a directed acyclic graph (DAG) in Fig. 9, where each vertex

represents a unique state—specific values assigned to variables—

and edges depict transitions between these states. This graph is

inherently a DAG, as it includes a model-checked guarantee of

termination. In Fig. 9, terminating states are highlighted in orange,

while ongoing states are in black. The graph’s initial state, depicted

as a blue vertex (1), bifurcates into two principal pathways: the

physical twin’s processes (2) and the digital twin’s processes (3).
To highlight one possible pathway: from state (2), the system pro-

gresses to state (4) and then to (7), culminating in state (15). This
final state indicates termination triggered by the UAV achieving

the prescribed number of maneuvers.

Model checking is resource-intensive due to the vast size of

the state space. On a hardware setup with 10 cores and 16 GB of

RAM allocated to the TLC model checker, completing a single base-

line model checking session requires approximately 15 hours. To

evaluate scalability, we vary model parameters individually while

keeping others constant. Increasing the number of sensors or the

permissible message delay notably expands the state space by in-

troducing more potential message interleavings. For example, with

Table 8: Model parameters impact state space complexity

Specification Distinct States Total States

Baseline 12 551 574 33 960 246

+1 health (𝑆 = 3) 24 668 110 66 833 826

+1 sensor (𝑀 = 3) 13 534 045 41 966 573

+1 delay (𝜂 = 3) 15 307 358 50 720 696

±1 noise (𝜖 = ±2) 15 804 834 42 619 510

+1 process (|Ω | + 1) 1 227 202 3 231 322

two sensors and a maximum message delay of 𝜂 = 2, the model

generates 13 534 045 states. Expanding to three sensors increases

the state space to 41 966 573, requiring two days to check on our

hardware. We also examine the impact of atomicity assumptions

by modifying the process (𝑆,𝑈 ) → 𝑆 , which asserts that the ex-

ecution of control and the incurring of damage occur atomically

(see Table 1). By splitting the process into two interleaved, non-

atomic steps, we unexpectedly observe a significant reduction in

the state space — from 12 million to just one million distinct states.

We hypothesize that this decrease results from the model checker

simplifying invariants and pruning redundant states more effec-

tively. This finding indicates that atomic assumptions do not always

lead to larger state spaces and, in some cases, may simplify speci-

fication design. Table 8 summarizes the impact of varying model

parameters.

5.2 Safety and Liveness Violations
Throughout the development of our specification, we used an iter-

ative approach that, while refining the design, also continuously

exposed gaps that led to property violations. For instance, during

a model checking session, we encountered a violation of property

𝑃8: The executed command must be the latest command seen thus far,
formalized as □[𝑢

executed
≠ ∅ ∧ 𝑢′

executed
≠ ∅ =⇒ 𝑢′

executed
.𝑡 >

𝑢
executed

.𝑡]. The sequence of state transitions leading to this viola-

tion, simplified for clarity, includes the following key steps:

(1) Initial State: The system begins in its initial configuration.

(2) Execute Command: The UAV executes a backup com-

mand (timestamped 𝑡 = 1) because no dynamic command

is available.

u_executed = {t: 1, name: "Backup", type: 2 }

(3) Compute and Emit Command: The digital twin com-

putes and emits a dynamic command (timestamped 𝑡 = 1).

u = {t: 1, name: "Dynamic", type: 3 }

n_u = [{t: 1, name: "Dynamic", type: 3}]

(4) Receive Command: The UAV receives this latest com-

puted dynamic command.

u_in = {t: 1, name: "Dynamic", type: 3 }

n_u = []

(5) Execute Command: The UAV executes the received dy-

namic command, violating 𝑃8, as the command (times-

tamped 𝑡 = 1) is stale and should not have been executed.

u_executed = {t: 1, name: "Dynamic", type: 3 }

The progression of states leading to this violation is depicted in

Fig. 10, where state (15) represents the state where the violation
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Figure 9: Visualization of state space: nodes represents states
and edges represent transitions from state to state

occurs. This issue stems from a critical oversight in the Receive
Command process, where we had failed to implement a times-

tamp validation check for incoming command messages before

their acceptance into the 𝑢in variable. While this oversight might

seem straightforward to address in hindsight, it was easily over-

looked during the initial stages of specification development. Fig. 11

shows the specification pre- and post-fix. This example underscores

the importance of our iterative specification and model checking

approach, particularly as design complexity increases, where seem-

ingly fixes fixes can become obscured and go unnoticed.

6 DISCUSSION
This paper presents a methodology for developing formally verifi-

able DT designs using TLA by transforming the PGM framework

into a finite state machine with an augmentation for distributed

communication. This approach enables the abstraction of complex

distributed DT dynamics, allowing for the verification of synchro-

nization properties. Because traditional formal methods have lim-

itations, particularly with strict security definitions, we address

this with a novel weakening method that combines formal veri-

fication with statistical guarantees. This allows controlled infor-

mation leakage while ensuring these weakened properties align

with the property-part diagram used in model checking. Despite

the challenge of state space explosion, a common issue in model

checking [52], even models with small parameters revealed early

Figure 10: Graph visualization showing the path that leads
to safety property violation

PT_ReceiveControlDelayed(m_idx) ==

/\ IF (s > 0 /\ u_executed_count <= MaxManeuvers)

THEN /\ u_in ' = n_u[m_idx]

/\ n_u ' = Remove(n_u , m_idx)

(a) Previously: Transition action for UAV receiving commands vio-
lates property 𝑃8

PT_ReceiveControlDelayed(m_idx) ==

/\ IF (s > 0 /\ u_executed_count <= MaxManeuvers)

THEN /\ IF n_u[m_idx]["t"] > u_in["t"]

THEN /\ u_in ' = n_u[m_idx]

/\ n_u ' = Remove(n_u , m_idx)

(b) After: Transition action for UAV receiving commands with addi-
tion of a timestamp check

Figure 11: Example of a property violation and subsequent
fix

design errors. This iterative process highlights the value of formal

verification in safety-critical systems, and future work will focus

on bridging the gap between high-level formal specifications and

practical digital twin implementations.
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A BACKGROUND ON THE PGM FRAMEWORK
AND TLA

A PGM encodes random variables as nodes and statistical depen-

dencies as edges between nodes. In the DT PGM framework, the

PGM governs how variables are updated in each timestep. An edge

between two nodes dictates the dependence of the destination node

on the parent node. For example, the edge 𝑆→𝑂 represents that

observational data 𝑂 depends on the physical state 𝑆 .

Figure 12: Probabilistic graphical model (PGM) describing
the UAV DT.

B STATE MACHINE FORMALIZATION
This section details additional assumptions of the finite state ma-

chine formalization.

Fairness. Fairness is crucial in scheduling processes within the state

machine framework. It ensures all processes are treated justly under

the operational rules of the system. Specifically:

F = {UF(𝜔𝑖 ) ∨WF(𝜔𝑖 ) ∨ SF(𝜔𝑖 ) | 𝜔𝑖 ∈ Ω} (14)

Here, (14) categorizes each process in the process set Ω into three

types: Unfair (UF), where it is allowable that a process may never

execute;Weakly Fair (WF), which guarantees that if a process is con-

tinuously enabled, it will eventually execute; and Strongly Fair (SF),

requiring that if a process is enabled intermittently, it must eventu-

ally be executed. The classification into these categories depends on

the system’s dynamic requirements and stakeholder inputs, guiding

how processes are triggered during the state machine’s operation.

For instance, a process like 𝑆→ 𝑆 , representing the continuous

update of the UAV’s physical state, is deemed Strongly Fair because

its execution is essential and inevitable, reflecting the continuous

nature of physical state updates. Weak fairness is generally as-

sumed and warranted for many real-world systems [53, 54] as it is

unrealistic that a process can wait indefinitely before executing.

Initial and Termination States. The initial state of a state machine is

crucial as it sets the baseline from which all processes begin. For

the DT, this is defined by a logical predicate that assigns a starting

value to each variable in the system. This predicate ensures all

components of the DT start in a well-defined state that is consistent

with the expected initial conditions of its physical twin. For instance,

if modeling a UAV DT, the initial state may specify the UAV’s

starting health, the initial digital state, etc.

While a DT can theoretically operate indefinitely, practical ap-

plications often require defining specific conditions under which

the simulation or operation should cease. This is termed the ter-

mination state T , which is also expressed as a logical predicate.

Termination conditions can vary widely depending on the sys-

tem’s purpose but generally include achieving a goal, exhausting

resources, or encountering a specific event that requires halting

operations. For example, a UAV’s digital twin might terminate when

the UAV completes its mission objectives or when the digital twin

finishes program execution for a specified duration.

B.1 Abstraction of Digital Twin complexity
In developing the state machine for the DT, our aim was not

only to capture the dynamic interplay of components but also to

abstract complex DT behaviors into manageable and verifiable

forms. This abstraction focuses on simplifying intricate component

behaviors—whether physical phenomena or computational

complexities—while preserving the essential characteristics

necessary for accurate system modeling. Here, we outline our

methodology for abstracting these complexities, providing general

principles that are later applied in specific contexts within Sec. 4.

Asserting existence instead of computing numerical op-
erations One fundamental principle in formal methods is to

describe the outcomes of system operations rather than detailing

the specific computations that achieve these outcomes [35, 55, 56].

In line with this principle and consistent with prior literature in

other domains [57, 58], our approach simplifies the numerical

complexity inherent in DT operations, yet maintains the integrity

of the computational results in the abstracted state machine actions.

Retain probabilistic characteristics In our methodology,

simplification does not eliminate stochastic behavior inherent

to many DT processes, especially those involving predictive,

probabilistic components. However, instead of quantifying specific

probabilities, our abstraction focuses on delineating possible
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behaviors by writing indeterministic actions in TLA [35].

Representing a distributed message channel as a queue with
deterministic write and nondeterministic read Recall from

Sec. 3 that we represent a messaging channel as a random variable

in the augmented PGM. Following the established practice in formal

methods of using queues to represent network communication [59],

we abstract each message channel random variable as a queue,

where messages are ‘pushed’ onto the queue as they are sent and

‘popped’ from the queue in a nondeterministic order. This reflects

potential real-world communication issues like delays, losses, or

reordering, simplifying the analysis by eliminating the need to track

details such as the timing specifics of each message.

channel← Queue[]
push 𝑥 ≔ append channel, 𝑥

pop i ≔ channel[𝑖]
remove i ≔ {channel[𝑖] ∈ 1..Length(channel) | 𝑖 ≠ 𝑗}

where 𝑖 ∈ [1, 𝜂]
with 𝑆𝐹 (𝑖 = 1)

(15)

Index 𝑖 ranges from 1 to 𝜂, a parameter representing out-of-order

message delivery constraints. For instance, a realistic and common

constraint in wireless networks is a limited buffering and process-

ing window. Index 𝑖 is randomly chosen, where 𝑖 = 1 indicates that

the correct, most recent message is being delivered. We impose the

strong fairness condition 𝑆𝐹 (𝑖 = 1) to ensure the correct message

will eventually be delivered, a realistic expectation that mirrors

guarantees provided by many network protocols such as Bluetooth.

Atomicity in system orchestration Atomicity is a fundamen-

tal consideration in formal methods, particularly when defining

specifications for complex systems [60]. In our context, two pro-

cesses are deemed mutually atomic when their state transitions are

considered simultaneous and uninterruptible, essentially occurring

within the same atomic slice of time. In designing the orchestration

for the DT, we strategically treat certain groups of operations as

atomic to simplify the model and enhance tractability. This decision

helps manage complexity by reducing the granularity of interac-

tion between components, focusing on high-level system behavior

rather than the minutiae of inter-process communication.

B.2 Specifying Properties
In the process of specifying properties, initial analysis identifies two

critical aspects of synchronization: (1) Consistency between the

digital and physical states, and (2) Execution of control commands

by the physical twin as issued by the DT. These insights lead to the

development of properties 𝑃2 and 𝑃7, visualized in Fig. 8. Further

decomposition of 𝑃2 reveals that the digital state’s update relies on

consistent sensor data and computed control inputs, reflected in

property 𝑃4: Sensor and control inputs to update digital state must be
consistent. We observe that for consistent sensor inputs to be feasi-

ble, the DT must effectively receive and process incoming sensor

data, a requirement captured in property 𝑃5. This analysis contin-

ues, breaking down each goal into finer-grained sub-properties,

eventually organizing them using goal structuring notation [61].

Correct orchestration naturally requires component correctness

as well. For example, property 𝑃3 articulates that the predictive

model within the digital twin must be correct to ensure that the

digital state accurately twins the physical state over time. We de-

scribe these critical functionalities as explicit sub-properties within

our framework. For instance, we configure our design to simulate

scenarios where 𝑃3 is false, allowing us to explore and verify the

system’s behavior under conditions of component failure. This

transformation of potentially implicit assumptions into concrete,

testable elements within our specification not only crystallizes the

verifiable state of each component but also elucidates their role and

relationship to the system’s overall behavior.

C TLA CODE
The TLA code is written and model-checked with the TLA+ toolkit.

Fig. ?? shows a portion of this code, specifically modeling the pro-

cedure DT_ReceiveObsDelayed(s, m). This process represents
actions taken for a specific sensor s with a particular delay index m.

In this snippet, DT_ReceiveObsDelayed checks if there are any

queued observations for sensor s (by verifying n_obs[s] is not

empty). If observations exist, it then checks if the delay index m
corresponds to an entry within the domain of n_obs[s]. If so,
it evaluates whether the timestamp n_obs[s][m]["t"] is recent

enough, as determined by the function OM!IsMessageUpToDate.
If the message is up-to-date, it appends this observation to the

list of received observations obs_in[s] and removes it from the

observation queue n_obs[s]. If the timestamp is outdated, the

entry is removed from n_obs[s], leaving obs_in[s] unchanged.
In cases where the delay index m is not present, both obs_in[s]
and n_obs[s] remain unchanged.

The full TLA+ specification, including this process and others

within the DT model, is published on GitHub.

Received 7 November 2024
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