
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Formal Verification of Digital Twins with TLA and Information
Leakage Control

Luwen Huang

Computer Science

University of Texas at Austin

luwen@cs.utexas.edu

Lav Varshney

Electrical & Computer Engineering

University of Illinois at

Urbana-Champaign

varshney@illinois.edu

Karen E. Willcox

Oden Institute for Computational

Engineering & Sciences

University of Texas at Austin

ABSTRACT
Verifying the correctness of a digital twin provides a formal guar-

antee that the digital twin operates as intended. Digital twin veri-

fication is challenging due to the presence of uncertainties in the

virtual representation, the physical environment, and the bidirec-

tional flow of information between physical and virtual. A further

challenge is that a digital twin of a complex system is composed

of distributed components. This paper presents a methodology to

specify and verify digital twin behavior, translating uncertain pro-

cesses into a formally verifiable finite state machine. We use the

Temporal Logic of Actions (TLA) to create a specification, an im-

plementation abstraction that defines the properties required for

correct system behavior. Our approach includes a novel weakening

of formal security properties, allowing controlled information leak-

age while preserving theoretical guarantees. We demonstrate this

approach on a digital twin of an unmanned aerial vehicle, verifying

synchronization of physical-to-virtual and virtual-to-digital data

flows to detect unintended misalignments.

CCS CONCEPTS
• Computer systems organization→ Embedded and cyber-
physical systems;Real-time system specification; •Hardware
→ Safety critical systems; • Theory of computation→ Formal

languages and automata theory.

KEYWORDS
Digital twins, cyber-physical systems, safety-critical systems, TLA,

formal design and specification, formal verification, model checking

ACM Reference Format:
Luwen Huang, Lav Varshney, and Karen E. Willcox. 2018. Formal Verifi-

cation of Digital Twins with TLA and Information Leakage Control. In

Proceedings of 16th ACM/IEEE International Conference on Cyber-Physical
Systems (ICCPS ’25). ACM, New York, NY, USA, 14 pages. https://doi.org/

XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICCPS ’25, May 06–09, 2025, Irvine, CA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

Figure 1: Digital twin consisting of a physical system (un-
manned aerial vehicle), a virtual representation (structural
health models), and bidirectional connections among com-
ponents.

1 INTRODUCTION
This paper describes a formal methodology to design and model a

digital twin and prove its correctness properties using the Temporal

Logic of Actions (TLA). We employ the National Academies’ defini-

tion: “A digital twin is a set of virtual information constructs that

mimics the structure, context, and behavior of a natural, engineered,

or social system (or system-of-systems), is dynamically updated

with data from its physical twin, has a predictive capability, and

informs decisions that realize value. The bidirectional interaction

between the virtual and the physical is central to the digital twin”

[1].

An example digital twin is illustrated in Fig. 1. In this scenario,

an unmanned aerial vehicle (UAV) flies a mission while transmitting

sensor data to a digital twin. The digital twin, designed to mirror

the UAV’s structure, context and behavior, processes the incoming

sensor data, 𝒐, maintains a predictive model of the UAV’s structural

health, 𝒔, and generates control execution commands, 𝒖. Even when
individual components, like the command-generation function,

operate correctly, the system can still fail due to orchestration issues.

For instance, consider the sensor observations valA, valB, and valC,
arriving concurrently but with different timestamps t=1, t=3, and
t=2 , respectively. These readings, emitted at different intervals and

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICCPS ’25, May 06–09, 2025, Irvine, CA Trovato et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

with transmission delays, create orchestration challenges. To ensure

the correct state, the update function must incorporate consistent

sensor inputs, and the UAV must process incoming commands

reliably to follow its intended path. These examples highlight that

verifying individual component correctness is not enough; ensuring

the digital twin’s overall orchestration is equally important.

Various formal and technological approaches address aspects

of correctness in cyber-physical systems. For instance, verifying

control and timing is well-researched (see Sec. 2), but control verifi-

cation alone does not ensure system-level orchestration. Technolog-

ical solutions, such as RabbitMQ for asynchronous data handling,

address only specific areas of digital twin functionality. Moreover,

simply adding technological components does not offer formal

guarantees, often a crucial need in safety-critical environments

where digital twins may be deployed. This paper introduces a novel

methodology for formally reasoning about digital twins at the level

of system orchestration. We introduce the following innovations:

(1) Formal system specification: A new method to construct

formal, high-level specifications of digital twins using TLA.

Our approach derives a finite state machine model from the

digital twin probabilistic graphical model (PGM) [2], giving a

mathematically rigorous way to specify digital twins in general.

(2) Model augmentation: A novel augmentation of the digital

twin PGM framework to model distributed communication and

the corresponding state machine translation.

(3) Abstraction methodology: A set of principled guidelines for

abstracting the physical and computational complexities of

digital twins into state transition actions.

(4) Weakening of formal properties: A novel approach to re-

lax formal security properties, such as non-interference, by

bounding the utility of revealed information within digital twin

bidirectional flows, thereby limiting impact on system identi-

fication rather than relying on generic information-theoretic

bounds.

The remainder of this paper is organized as follows. Sec. 2 places

our approach in the existing literature. Sec. 3 details the state ma-

chine derivation. Sec. 4 demonstrates a practical application by

constructing and verifying a UAV digital twin, with relaxed security

properties that provide formal bounds on information leakage be-

tween the physical and digital components. Finally, Sec. 5 presents

the results of our verification efforts on the UAV digital twin.

2 RELATEDWORK
Our research contributes to the field of cyber-physical systems,

with particular focus on the expanding concept of digital twins. As

digital twin technology continues to evolve rapidly, it is important

to delineate how our approach both aligns with and diverges from

existing work.

Digital Twin frameworks. Various works have suggested digital twin
design approaches that range from informal, flow chart-based de-

sign [3], [4] to technology-specific solutions [5, 6]. Unlike these

approaches, our methodology is technology-neutral. Our approach

offers a generalizable abstraction for digital twin design that is

grounded in mathematically rigorous formal verification principles.

Verification of cyber-physical systems. Verification of cyber-physical
systems is a dynamic and expansive area of research [7], with much

work in safe autonomy and control [8–16]. There is also consid-

erable discourse on the challenges of distributed cyber-physical

systems [17–19]. For example, [20] extends the Lingua Franca co-

ordination language to handle network failures, [21, 22] discuss

the need for timing considerations in distributed environments,

and [23–25] offer methods to achieve deterministic timing in con-

trol executions. In contrast, our paper provides a methodology for

orchestrating digital twins at the system level. Aligning with the

NASEM definition of a digital twin, our approach emphasizes the

critical importance of bidirectional interactions and orchestration,

offering a broader, systemic perspective that diverges from the

control-centric emphasis found in much existing literature.

Distributed systems. The application of TLA in distributed comput-

ing systems is well-documented [26–29], with notable applications

including its use at Amazon Web Services for managing distributed

resources [30]. While TLA has proven effective in addressing the

complexities of distributed computing, the specification of digital

twins presents unique challenges that extend beyond traditional

distributed systems: First, digital twins require the consideration

of diverse hardware components, which goes beyond the typical

software and network considerations found in distributed systems

[17]. Second, digital twins often incorporate predictive models that

provide probabilistic outputs and may adapt dynamically based on

real-time data. Third, digital twins necessitate continual, real-time

bidirectional exchanges to maintain synchronization between the

physical and digital entities. Our research applies TLA to address

these aspects, offering a formal, verifiable system perspective for

digital twins. To our knowledge, this represents a novel applica-

tion of TLA in the context of digital twins. Moreover, we provide a

systems-theoretic approach to give formal statistical guarantees on

information leakage during communication between the physical

system and its digital twin.

3 DIGITAL TWIN AS A STATE MACHINE
Our first result is formalizing a digital twin as a state machine,

rigorously derived from the digital twin Probabilistic Graphical

Model (PGM) framework proposed in [2] and since adopted to de-

scribe digital twins in a variety of applications [31, 32]. Appendix A

provides a background of the digital twin PGM framework. Our

formalization uses TLA to describe the digital twin as a finite state

machine (FSM). Indeed, Markov models as in PGMs are a stochastic

version of FSMs. For background on TLA, see [33–35]. Through-

out this section, we use examples from our application instance

of a UAV digital twin. However, we emphasize and show that our

methodology is broadly applicable.

3.1 State Machine Derivation
Here we detail our novel derivation of a state machine represen-

tation from the digital twin PGM. We specify the digital twin as a

state machine that transitions from one state to the next, governed

by transition logic:

Digital Twin ≔ I ∧ N ∧ F (1)

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Formal Verification of Digital Twins with TLA and Information Leakage Control ICCPS ’25, May 06–09, 2025, Irvine, CA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: Derivation of state machine processes from PGM
representation. Nodes represent variables and edges between
nodes represent the dependence of the destination node on
the parent node. The subscript 𝑋𝑡 denote the variable 𝑋 ’s
state at time 𝑡 .

Here, (1) states the state machine of the digital twin is defined by a

conjunction (AND) of an initial state predicate I, a next state predi-
cateN , and a set of fairness conditions F . The initial state predicate
specifies the valid starting conditions, the next state predicate out-

lines the permissible transitions that variables can undergo, and

the fairness conditions provide assumptions about how transitions

are executed. Specifically, the next state predicate:

N ≔ 𝜔1 ∨ · · · ∨ 𝜔𝑁 ∨ T (2)

employs the logical disjunction (OR) to indicate that at any given

step in the state machine, one out of 𝑁 possible processes 𝜔𝑛 can

occur, or the system can reach a termination condition T . By allow-
ing only one process to execute at a time, we model concurrency

by considering the possible orderings, or interleavings, of process

execution, abstracting away timing specifics.

To model digital twin orchestration, we identify the specific op-

erations or “processes” through which variables within the system

alter their states. These processes are dictated by the relationships

encoded within the DT PGM. Each variable 𝑣𝑖 in the model transi-

tions based on the states of other variables that directly influence

it — the variable node’s parents in the graphical model. Formally,

the set of processes Ω is defined as:

Ω = {Define 𝜔 ≔𝑊 (𝑣𝑖) → 𝑣𝑖 | 𝑣𝑖 ∈ 𝑉 ∧𝑊 (𝑣𝑖) ≠ ∅} (3)

Here,𝑊 (𝑣𝑖) is the set comprising the parents of 𝑣𝑖 , and the transi-

tion function→ denotes the computation that updates 𝑣𝑖 based on

these influences. This definition preserves the system dependen-

cies by defining that each variable’s change is a direct result of its

process’ inputs.

Fig. 2 shows the PGM describing our example UAV digital twin

with six variables: (1) physical state 𝑆 which represents the struc-

tural health of the UAV; (2) Observational data 𝑂 representing

sensor data; (3) Digital state 𝐷 , which represents the digital twin’s

estimate of the UAV’s structural health; (4) control 𝑈 representing

Figure 3: PGM with distributed communication required for
two processes: (1) 𝑂→𝐷 and (2)𝑈→𝑆 .

the computed control; (5) Quantity of interest 𝑄 , which represents

quantities of interest computed by the digital twin; and (6) Reward

𝑅, representing metrics for success as dependent on 𝑂 , 𝐷 , 𝑈 and

𝑄 . Applying (3) to the PGM yields the set of processes Ω = 𝜔𝑆 ∨
𝜔𝑂 ∨𝜔𝑈 ∨𝜔𝐷 ∨𝜔𝑅 ∨𝜔𝑄 where 𝜔𝑆 ≔ (𝑆,𝑈) → 𝑆 , 𝜔𝑂 ≔ 𝑆 → 𝑂 ,

𝜔𝑈 ≔ (𝐷,𝑄) → 𝑈 ,𝜔𝐷 ≔ (𝐷,𝑈 ,𝑂) → 𝐷 ,𝜔𝑅 ≔ (𝑂, 𝐷,𝑈 ,𝑄) → 𝑅

and𝜔𝑄 ≔ 𝐷 → 𝑄 . Fig. 2 illustrates the mapping of PGM encodings

to state machine processes.

3.2 Modeling Distributed Communication
The second major contribution of our work is the novel augmen-

tation of the digital twin PGM to account for the challenges of

distributed comopnents, and the corresponding translation into the

state machine representation.

The graphical model in Fig. 2 assumes that variable values are

read deterministically. This is often not the case in digital twins

where components are distributed and rely on message passing

to communicate with each other. With distributed components,

there is additional uncertainty in the input values that are actually

used by a process, stemming from issues such as network reliability

and traffic. For instance, as illustrated in Fig. 3, the process 𝑂→𝐷

requires the value of 𝑂 , which is transmitted via distributed mes-

saging — in this case, a wireless network channel. The perturbation

of the distributed messaging in a PGM might even be adversarial

and so a worst-case analysis may be needed [36].

Our novel augmentation of the PGM constructs a new variable

𝑁 to represent the uncertainty of the messaging channel and a new

variable𝑋in for every variable𝑋 whose value is communicated over

the messaging channel. These noise and channel output variables

are just like in information-theoretic models of communication

[37], but considering semantics of logic [38]. First, identify the set

of variables X whose value is communicated over distributed mes-

saging, i.e. X = {𝑋𝑖 | 𝑋𝑖 ∈𝑊 (𝑣𝑖) ∧ 𝑣𝑖 ∈ 𝑉 ∧𝑋𝑖→𝑣𝑖 is distributed}.
For every 𝑋𝑖 ∈ X, we create an intermediary variable 𝑋𝑖,in and a

network variable 𝑁𝑋𝑖
to represent the value of 𝑋𝑖 actually received.

We reconfigure the incident edges of 𝑋𝑖 such that new edges point

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICCPS ’25, May 06–09, 2025, Irvine, CA Trovato et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Algorithm 1 Augment PGM for communication uncertainty

Input: PGM G
Output: Augmented PGM G′

Set 𝑉 ← set of nodes in G
Set 𝐸 ← set of edges in G
for v in V do

Define 𝑣 → 𝑤 to be the outgoing edge from 𝑣 to node𝑤

if 𝑣 → 𝑤 is distributed then
Create 𝑣in as new node, 𝑉 ← 𝑉 ∪ 𝑣in
Create 𝑛𝑣 as new node, 𝑉 ← 𝑉 ∪ 𝑛𝑣
Remove edge 𝑣 → 𝑤 from 𝐸

Create new edge 𝑣 → 𝑣in, 𝐸 = 𝐸 ∪ 𝑣 → 𝑣in
Set new edge 𝑛𝑣 → 𝑣in, 𝐸 ∪ 𝑛𝑣 → 𝑣in
Set new edge 𝑣in → 𝑤 , 𝐸 ∪ 𝑣in → 𝑤

end if
end for
return V, E

from 𝑋𝑖 to 𝑋𝑖in , 𝑁𝑋𝑖
to 𝑋𝑖in , 𝑂 to 𝑁𝑥𝑖 , and 𝑋𝑖in to 𝑉𝑖 . Algorithm 1

details the augmentation algorithm.

For example, Fig. 4 shows a subgraph of the resulting augmen-

tation applied to variable 𝑂 . The augmentation introduces three

new processes: (1) 𝜔𝑁𝑂
, which represents the optional dependence

of the messaging channel on the value of 𝑂 . For instance, some

messaging channels may be susceptible to large data payloads and

may degrade as traffic increases. (2) 𝜔𝑂in
, which represents the de-

pendency of𝑂in on both the message that was sent and the state of

the network. (3) 𝜔𝑂in
, which replaces the original process 𝑂→𝐷

to model the fact that the process input is the received variable𝑂in,

instead of sent variable 𝑂 . Our state machine formalization further

elaborates on fairness, termination, and complexity abstraction,

detailed in Appendix B.

4 SPECIFICATION OF UAV DIGITAL TWIN
This section applies our proposed methodology to the design, spec-

ification, and verification of a UAV digital twin.

4.1 The UAV and its Digital Twin
The physical counterpart of this digital twin is a custom-built, fixed-

wing UAV equipped with advanced wireless sensors and power

hardware, with construction described in [39] and shown in Fig. 5.

Figure 4: Augmentation for 𝑂 , which is communicated over
a distributed channel to 𝐷 .

(a) Testbed UAV

(b) sensors on UAV wing

Figure 5: Reproducedwith permission from [39]: testbed UAV
(top) equipped with individually-transmitting Bluetooth sen-
sors (bottom)

The sensors, attached to the UAV’s wings as in Fig. 5b, measure ob-

servational data such as temperature and strain in real-time during

flight. The UAV also features an onboard computer to process in-

coming control commands from the digital twin, where commands

are executed as maneuvers. Given the potential unreliability of the

communication channel, a primary design challenge is ensuring

that delayed control messages are processed accurately to maintain

the UAV’s operational integrity.

A digital twin of this UAV would continually process incoming

observational data to generate and transmit control commands

tailored for the UAV. The digital twin would also maintain a dy-

namic predictive model of the UAV’s structural health, ensuring

synchronization with the UAV’s actual physical state. This synchro-

nization is achieved through real-time computations that integrate

new observational data into the ongoing assessment of the UAV’s

condition. A key design challenge of the digital twin is its ability to

accurately reflect the UAV’s physical state despite potential latency

issues and concurrent, incoming data streams.

Our implementation builds upon the digital twin in [2], imple-

mented as a collection of Robot Operating System (ROS2) Python

modules. However, the original implementation primarily served

as a proof-of-concept for the PGM framework and did not address

several real-world challenges such as handling concurrent incom-

ing observational messages and ensuring reliability over unstable

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Formal Verification of Digital Twins with TLA and Information Leakage Control ICCPS ’25, May 06–09, 2025, Irvine, CA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 6: PGM for UAV Digital Twin

communication channels. Our objective is to construct a design

to manage these complexities and achieve reliable orchestration

under realistic operational conditions.

4.2 The UAV State Machine
We apply our augmentation methodology from Algorithm 1 to

construct an augmented PGM that accounts for the distributed

messaging channels in the system. Because each sensor transmits

independently, we specify each sensor’s connection as separate

variables, 𝑁1 . . . 𝑁𝑚 . We also define a separate variable for the

transmission of control commands, 𝑁𝑢 . These definitions let us

reason about bidirectional flows individually. In addition to new

variables for each data transmission path, the augmentation also

introduces new nodes for received observational data𝑂1,in . . . 𝑂𝑚,in

and received control command𝑈in. The augmented PGM is depicted

in Fig. 7.

Figure 7: Augmented PGMmodeling distributed communi-
cation

4.3 System Abstraction
This subsection applies our abstraction methodology to model

concrete state transitions within the UAV digital twin’s state

machine. In abstracting complex system dynamics into simpler,

formal state transitions, our goal is to balance fidelity with

tractability: while a more granular formalization more accurately

reflects real-world dynamics, it becomes less scalable in terms

of formalization effort and verification time. We organize this

section by systematically addressing each variable involved in the

UAV system. For each variable, we first describe its real-world

characteristics and then its corresponding abstraction. Following

this, we delineate how each variable evolves in real life and how

we formulate its state transition within the state machine.

Physical state (𝑆) The physical state 𝑆 of the UAV represents its

structural health, which is influenced by the stresses of executedma-

neuvers. It is not possible for the digital twin to know the ground

truth of 𝑆 at runtime; instead, it must be inferred through sen-

sor data. The UAV’s structural integrity is subject to degradation,

quantified by 𝛿 damage, which occurs with a non-zero probability

dependent on the executed control. This probabilistic damage is

governed by the dynamics shown in (4) in Table 1.

In our abstraction, we model the structural health 𝑆 as a discrete

variable ranging from 0 (total structural failure) to 100 (perfect

health). Our model simplifies probabilistic damage to a nondeter-

ministic state transition where the structural state either remains

unchanged or is reduced by 𝛿 = 1 damage, shown in (5) in Table 1.

Finally, because damage occurs concurrently with control execu-

tion, both actions are modeled as a single atomic operation in (5) in

Table 1, where the value of the next executed control 𝑢𝑒 is assigned

the control command 𝑢in.

Table 1: Transition (𝑆,𝑈)→𝑆 : Evolution of physical state

Real-world process Abstraction

𝜙 =

{
0.05 if 𝑢 = 3

0.01 if 𝑢 = 2

(4)

∧ 𝑢′𝑒 = 𝑢in

∧ ∨ 𝑠′ = 𝑠

∨ 𝑠′ = 𝑠 − 𝛿
(5)

Observational data (𝑂) The observational data, denoted as 𝑶 =

𝑂1 . . . 𝑂𝑀 , are noisy, timestamped sensor measurements of the

UAV’s structural health, taken by𝑀 sensors, indexed as𝑚 = 1 . . . 𝑀 .

Sensor measurements inherently vary slightly from the actual struc-

tural health and each other due to sensor precision and environ-

mental interference. Empirical data (sample shown in (6)), show

typical small deviations from the ground truth value 𝑆 .

In our abstraction, each sensor measurement 𝑂𝑚 is represented

as the UAV’s structural health value perturbed by some nondeter-

ministic noise 𝜖 ∈ {−1, 0, 1}.

Distributed messaging of observational data (𝑁 , 𝑂𝑚,in) In the

UAV digital twin, the communication of observational data via

Bluetooth introduces complexities due to the potential unreliability

of the wireless channels.

In our abstraction, we construct separate variables for each Blue-

tooth channel (𝑁1 . . . 𝑁𝑀) and for the received data 𝑂1,in . . . 𝑂𝑀,in.

Because our concern is at a higher level than the details of sen-

sor and transmission operations, we treat the processes of data

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICCPS ’25, May 06–09, 2025, Irvine, CA Trovato et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Transition 𝑆→𝑂𝑚 : Generate observational data

Real-world process Abstraction

𝑜𝑚 − ℎ = [0.57, 0.66,
0.31,−0.12,
0.42,−0.93,
0.61, . . .]

(6) 𝑜′𝑚 = 𝑠 + 𝜖 (7)

Table 3: Transition 𝑂𝑚→𝑁𝑚 : Transmit observational data

Real-world process Abstraction

𝑛′𝑚 = push 𝑛𝑚, 𝑜𝑚 (8)

generation, abstracted in (7), and transmission, abstracted in (8),

as mutually-atomic. This abstracts the generation and immediate

transmission of data as a single, indivisible operation, as in (9):

ObserveEmitObsAtomic ≔ (𝑂𝑚→𝑁𝑚) ∧ (𝑆→𝑂) (9)

The received value of a sensor message 𝑂𝑚 is represented by vari-

able 𝑂𝑚,in. Per our methodology in Appendix B.1, to model the un-

reliable receiving of messages, we remove the element at randomly-

chosen index 𝑖 from queue 𝑛𝑚 , and we add it to the received mes-

sages collection 𝑜𝑚,in. We impose the strong fairness condition that

the correct message (𝑖 = 1) is always eventually delivered.

Table 4: Transition (𝑂𝑚, 𝑁𝑚)→𝑂𝑚,in: Receive observational
data

Real-world process Abstraction

Let 𝑖 ∈ [1, 𝜂]
∧ Remove 𝑛𝑚 [𝑖]
∧ 𝑜′𝑚,in = push 𝑜𝑚,in, 𝑛𝑚 [𝑖]
∧ 𝑆𝐹 (𝑖 = 1)
where 1 ≤ 𝜂 ≤ Length 𝑛𝑚

Digital state (𝐷) The digital state 𝐷 represents the estimated struc-

tural health of the UAV, modeled as a variable within the range

{1 . . . 100}. This estimation is computed by a black-box model 𝜓 ,

which outputs a predictive distribution for 𝐷 . While the internal

computations of each model remain undisclosed, output character-

istics are discovered through prior statistical analysis.

Our abstraction retains the dependency of 𝐷 on previous state

𝐷𝑡−1
, last control computed𝑈 𝑡−1

and the latest observational data

𝑶 𝒕
in
. To enhance the model’s tractability, we use known charac-

teristics of 𝜙 to constrain the number of possible states for 𝐷 . For

instance, when analyzing the conditional probability for𝐷𝑂 , shown

in (10), where 𝐷 varies with 𝑶 𝒕
in
while keeping other factors con-

stant, we observe that non-positive sensor observations signifi-

cantly widen the range of possible values for 𝐷 . Otherwise, 𝐷

typically fluctuates within a normal distribution N(𝑑, 𝜎2), where
the variance 𝜎2 is influenced by the type of control executed. To

keep the abstraction tractable and focused on the most critical sce-

narios, we constrain 𝐷 to fluctuate within two standard deviations

of the mean. This constraint is reflected in our abstraction, where

𝜁2 ∈ [−1, 1] and 𝜁3 ∈ [−5, 5] are set to represent the two standard

deviation bounds for controls𝑢 = 2 and𝑢 = 3, respectively, rounded

to the nearest integers.

Table 5: Transition (𝐷,𝑈 ,𝑶𝒎,in)→𝐷: Update digital state

Real-world process Abstraction

𝐷 ∼ 𝜓 (𝐷𝑡−1,𝑈 𝑡−1,𝑶 𝒕
in
)

𝐷𝑂 ∼
{
U(0, 𝑑) ∃𝑜𝑖 ≤ 0

N(𝑑, 𝜎2) otherwise

(10)

IF ∃𝑜𝑚,in : 𝑜𝑚,in ≤ 0

𝑑′ = 0 . . . 𝑑

ELSE

IF 𝑢 = 2

𝑑′ = 𝑑 + 𝜁2
ELSE

𝑑′ = 𝑑 + 𝜁3

(11)

Control (𝑈) The control 𝑈 is a command that instructs the UAV

to execute either a 3g or 2g turn. The control is computed via a

optimization model.

In our abstraction (Table 6), the control𝑈 is simplified to decision-

making criteria based primarily on the UAV’s estimated structural

health 𝐷 . This simplification is grounded in a prior analysis of the

optimization model’s outputs [2], which reveal that the value of 𝐷

primarily dictates whether the control𝑈 can be set to 3.

Table 6: Transition 𝐷→𝑈 : Compute and transmit control

Real-world process Abstraction

𝑢 ∈
{
{3} 𝑑 ≥ 𝐷min

{2, 3} otherwise

(12)

IF 𝑑 ≥ 𝐷min

∨ 𝑢′ = 3

∨ 𝑢′ = 2

ELSE

𝑢′ = 2

Distributed messaging of control (𝑁𝑈 ,𝑈in) Handling control

messages is managed similarly to transmission and reception of

observational data. In our abstraction (Table 7), we assume that the

correct message will eventually be delivered, and we treat the pro-

cesses of computing a control decision and transmitting a control

as mutually atomic operations, combined into a single, indivisible

process to reduce complexity.

Termination. Our UAV example uses specific termination conditions

to reflect real mission parameters. Termination occurs when: (1)

UAV reaches the maximum number of executed maneuvers 𝐶max;

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Formal Verification of Digital Twins with TLA and Information Leakage Control ICCPS ’25, May 06–09, 2025, Irvine, CA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 7: Transition (𝑈 , 𝑁𝑢)→𝑈in: Receive control

Real-world process Abstraction

Let 𝑖 ∈ [1, 𝜂]
∧ Remove 𝑛𝑢 [𝑖]
∧ IF 𝑛𝑢 [𝑖] .𝑡 > 𝑢in .𝑡

𝑢′
in
= 𝑛𝑢 [𝑖]

ELSE

𝑢′
in
= 𝑢in

∧ 𝑆𝐹 (𝑖 = 1)
where 1 ≤ 𝜂 ≤ Length𝑛𝑢

(2) digital twin exceeds a predefined maximum runtime𝑇max; or (3)

digital twin estimates the UAV’s structural health as non-positive,

and all sensor readings concurrently indicate non-positive values,

suggesting critical system failure.

4.4 Specifying Properties
The core property of interest in the UAV digital twin is synchro-
nization—the continuous, bidirectional feedback loop ensuring that

the physical and digital entities reflect each other accurately. We

define our primary synchronization property as:

𝑃1: The physical and digital twins must be eventually synchronized.

We use the term “eventually” to describe that synchronization will

always be achieved, without binding it to a specific timeframe. To de-

tail what synchronization entails, we deconstruct this overarching

property into more granular sub-properties, guided by methodolog-

ical questioning —how, what, and why [40, 41] — with engineers

and stakeholders. We discuss in more detail how we specify proper-

ties in Appendix B.2. The resulting property-part diagram, depicted

in Fig. 8, illustrates a subset of these properties.

Figure 8: Partial property-part diagram showing a subset of
properties

4.5 Weakening Formal Verification with
Statistical Guarantees

Synchronization correctness require certain security properties to

be satisfied. For example, in Fig. 8, 𝑃11 requires that an adversary

cannot infer information about the digital state model, which is nec-

essary for the trustworthiness of messages exchanged between the

physical and digital twins. This property falls under a class of secu-

rity guarantees known as non-interference, a standard approach for

formalizing information flow within a system. A process 𝑟1 is non-

interfering with another process 𝑟2 across systemM if 𝑟1’s input

toM has no effect on𝑀 ’s output to 𝑟2 [42]. Different variations of

noninterference exist [43], including generalized non-interference

(GNI) which extends noninterference to probabilistic systems by

mandating that for every pair of traces 𝑏 and 𝑏′, there exists a

third trace 𝑏′′ such that 𝑏′′ agrees with the low-security inputs and

𝑏′′ agrees with the high-security outputs [44]. The practicality of

noninterference is well-known to be problematic [45], and as of

state-of-the-art, obeying GNI is still an impractical constraint on

digital twin systems. Here, we introduce a novel weakening of GNI

with respect to particular secret digital twin parameters, where

we allow some information leakage while still maintaining formal

bounds on the amount of relevant information leaked.

Notably, we measure information leakage through a system
identification perspective [46] rather than a generic information-

theoretic view [45], consideringwhat systems-theoretic understand-

ing of the digital twin is leaked rather than just the number of bits

about it, which may or may not be relevant to adversarial action.

This is different from [47] which looks at state estimation rather

than system identification, and [48], which is also quite different.

For example, consider the content of the communication involv-

ing the current health of the physical counterpart and the next

action it is going to take. The change in health depends on the

action taken and some system randomness. More concretely, let

ℎ(𝑡) ∈ N ∪ {0} denote the health of the system at time 𝑡 . The

system can take𝑚 possible actions, indexed by {1, 2, . . . ,𝑚}. Let
𝑎(𝑡) ∈ {1, 2, . . . ,𝑚} denote the action the system takes at time 𝑡 .

We assume the change in health ℎ(𝑡) −ℎ(𝑡 + 1) is a Poisson random

number drawn with rate 𝜆𝑎 (𝑡) , independent of all other changes in
health:

ℎ(𝑡) − ℎ(𝑡 + 1) = −Δℎ(𝑡 + 1) ∼ Poisson(𝜆𝑎 (𝑡)).

This essentially implies that the health model of the system is given

by (𝜆1, 𝜆2, . . . , 𝜆𝑚).
An adversary intercepts the communication between the digital

twin and the physical counterpart, and knows the values of ℎ(𝑡)
and 𝑎(𝑡). We want to determine whether the system’s health model

is compromised by this information leakage. So the estimation

problem here is that given {(ℎ(𝜏), 𝑎(𝜏)) : 1 ≤ 𝜏 ≤ 𝑡}, we want to
figure out 𝜆1, 𝜆2, . . . , 𝜆𝑚 .

In the general case, let us assume that 𝜆𝑖 and 𝜆 𝑗 have no relation

to each other (this may not be very practical since we often know

which actions are costlier than others, but let us nevertheless make

this simplifying assumption). So for estimating each 𝜆𝑖 , we only

consider the set of times {𝜏 : 𝑎(𝜏) = 𝑖}. In the absence of any prior,

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ICCPS ’25, May 06–09, 2025, Irvine, CA Trovato et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

a good estimator for this would be

ˆ𝜆𝑖 = −
1

|{𝜏 : 𝑎(𝜏) = 𝑖}|
∑︁

𝑡 ∈{𝜏 :𝑎 (𝜏)=𝑖 }
Δℎ(𝑡 + 1) . (13)

Using standard probability results, this estimator has the following

properties.

Theorem 1. The estimator in (13) satisfies

(i) E
[
ˆ𝜆𝑖

]
= 𝜆𝑖 .

(ii) P
(
| ˆ𝜆𝑖 − 𝜆𝑖 | ≥ 𝜖

)
≤ 𝜆𝑖

𝑁𝑖𝜖
2
, where 𝑁𝑖 = |{𝜏 : 𝑎(𝜏) = 𝑖}|.

Thus as the number of times a particular action is taken increases,

we get a more accurate estimate of the hit to health from that action

and so we directly get a statistical guarantee on information leakage

about the system properties. In general, finite-sample bounds from

system identification theory [49–51] can characterize such digital

twin-relevant information leakage. With this weakening approach,

we are able to satisfy property 𝑃11, which would otherwise fail with

a purely model-checking approach.

5 EVALUATION
Our baseline specification for the UAV digital twin encompasses

various parameters:𝑀 = 2 sensors, each with a maximum message

delay of 𝜂 = 2, a total of𝐶max = 3 possible mission maneuvers, and

a maximum system runtime of 𝑇max = 4. This specification mani-

fests as 15 distinct processes and 18 variables, including auxiliary

variables for supporting property verification, with 25 properties

covering core system behavior. The TLA code closely mirrors the

abstraction models presented in Sec. 4. An example code listing is

shown in Appendix C.

5.1 Model Checking the State Space
The state space generated by the UAV digital twin’s specification is

combinatorially large, as each distinct process introduces a different

potential interleaving, with every variable within these interleav-

ings capable of assuming various values. We visualize this state

space as a directed acyclic graph (DAG) in Fig. 9, where each vertex

represents a unique state—specific values assigned to variables—

and edges depict transitions between these states. This graph is

inherently a DAG, as it includes a model-checked guarantee of

termination. In Fig. 9, terminating states are highlighted in orange,

while ongoing states are in black. The graph’s initial state, depicted

as a blue vertex (1), bifurcates into two principal pathways: the

physical twin’s processes (2) and the digital twin’s processes (3).
To highlight one possible pathway: from state (2), the system pro-

gresses to state (4) and then to (7), culminating in state (15). This
final state indicates termination triggered by the UAV achieving

the prescribed number of maneuvers.

Model checking is resource-intensive due to the vast size of

the state space. On a hardware setup with 10 cores and 16 GB of

RAM allocated to the TLC model checker, completing a single base-

line model checking session requires approximately 15 hours. To

evaluate scalability, we vary model parameters individually while

keeping others constant. Increasing the number of sensors or the

permissible message delay notably expands the state space by in-

troducing more potential message interleavings. For example, with

Table 8: Model parameters impact state space complexity

Specification Distinct States Total States

Baseline 12 551 574 33 960 246

+1 health (𝑆 = 3) 24 668 110 66 833 826

+1 sensor (𝑀 = 3) 13 534 045 41 966 573

+1 delay (𝜂 = 3) 15 307 358 50 720 696

±1 noise (𝜖 = ±2) 15 804 834 42 619 510

+1 process (|Ω | + 1) 1 227 202 3 231 322

two sensors and a maximum message delay of 𝜂 = 2, the model

generates 13 534 045 states. Expanding to three sensors increases

the state space to 41 966 573, requiring two days to check on our

hardware. We also examine the impact of atomicity assumptions

by modifying the process (𝑆,𝑈) → 𝑆 , which asserts that the ex-

ecution of control and the incurring of damage occur atomically

(see Table 1). By splitting the process into two interleaved, non-

atomic steps, we unexpectedly observe a significant reduction in

the state space — from 12 million to just one million distinct states.

We hypothesize that this decrease results from the model checker

simplifying invariants and pruning redundant states more effec-

tively. This finding indicates that atomic assumptions do not always

lead to larger state spaces and, in some cases, may simplify speci-

fication design. Table 8 summarizes the impact of varying model

parameters.

5.2 Safety and Liveness Violations
Throughout the development of our specification, we used an iter-

ative approach that, while refining the design, also continuously

exposed gaps that led to property violations. For instance, during

a model checking session, we encountered a violation of property

𝑃8: The executed command must be the latest command seen thus far,
formalized as □[𝑢

executed
≠ ∅ ∧ 𝑢′

executed
≠ ∅ =⇒ 𝑢′

executed
.𝑡 >

𝑢
executed

.𝑡]. The sequence of state transitions leading to this viola-

tion, simplified for clarity, includes the following key steps:

(1) Initial State: The system begins in its initial configuration.

(2) Execute Command: The UAV executes a backup com-

mand (timestamped 𝑡 = 1) because no dynamic command

is available.

u_executed = {t: 1, name: "Backup", type: 2 }

(3) Compute and Emit Command: The digital twin com-

putes and emits a dynamic command (timestamped 𝑡 = 1).

u = {t: 1, name: "Dynamic", type: 3 }

n_u = [{t: 1, name: "Dynamic", type: 3}]

(4) Receive Command: The UAV receives this latest com-

puted dynamic command.

u_in = {t: 1, name: "Dynamic", type: 3 }

n_u = []

(5) Execute Command: The UAV executes the received dy-

namic command, violating 𝑃8, as the command (times-

tamped 𝑡 = 1) is stale and should not have been executed.

u_executed = {t: 1, name: "Dynamic", type: 3 }

The progression of states leading to this violation is depicted in

Fig. 10, where state (15) represents the state where the violation

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Formal Verification of Digital Twins with TLA and Information Leakage Control ICCPS ’25, May 06–09, 2025, Irvine, CA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Figure 9: Visualization of state space: nodes represents states
and edges represent transitions from state to state

occurs. This issue stems from a critical oversight in the Receive
Command process, where we had failed to implement a times-

tamp validation check for incoming command messages before

their acceptance into the 𝑢in variable. While this oversight might

seem straightforward to address in hindsight, it was easily over-

looked during the initial stages of specification development. Fig. 11

shows the specification pre- and post-fix. This example underscores

the importance of our iterative specification and model checking

approach, particularly as design complexity increases, where seem-

ingly fixes fixes can become obscured and go unnoticed.

6 DISCUSSION
This paper presents a methodology for developing formally verifi-

able DT designs using TLA by transforming the PGM framework

into a finite state machine with an augmentation for distributed

communication. This approach enables the abstraction of complex

distributed DT dynamics, allowing for the verification of synchro-

nization properties. Because traditional formal methods have lim-

itations, particularly with strict security definitions, we address

this with a novel weakening method that combines formal veri-

fication with statistical guarantees. This allows controlled infor-

mation leakage while ensuring these weakened properties align

with the property-part diagram used in model checking. Despite

the challenge of state space explosion, a common issue in model

checking [52], even models with small parameters revealed early

Figure 10: Graph visualization showing the path that leads
to safety property violation

PT_ReceiveControlDelayed(m_idx) ==

/\ IF (s > 0 /\ u_executed_count <= MaxManeuvers)

THEN /\ u_in ' = n_u[m_idx]

/\ n_u ' = Remove(n_u , m_idx)

(a) Previously: Transition action for UAV receiving commands vio-
lates property 𝑃8

PT_ReceiveControlDelayed(m_idx) ==

/\ IF (s > 0 /\ u_executed_count <= MaxManeuvers)

THEN /\ IF n_u[m_idx]["t"] > u_in["t"]

THEN /\ u_in ' = n_u[m_idx]

/\ n_u ' = Remove(n_u , m_idx)

(b) After: Transition action for UAV receiving commands with addi-
tion of a timestamp check

Figure 11: Example of a property violation and subsequent
fix

design errors. This iterative process highlights the value of formal

verification in safety-critical systems, and future work will focus

on bridging the gap between high-level formal specifications and

practical digital twin implementations.

ACKNOWLEDGMENTS
We thank James Bornholt and Akhil Bhimaraju for their valuable

insights and feedback.

REFERENCES
[1] National Academies of Sciences, Engineering, and Medicine. Foundational Re-

search Gaps and Future Directions for Digital Twins. The National Academies

Press, Washington, DC, 2024.

[2] Michael G. Kapteyn, Jacob V.R. Pretorius, and Karen E. Willcox. A probabilistic

graphical model foundation for enabling predictive digital twins at scale. Nature
Computational Science, 1:337–347, 2021.

[3] Mariana Segovia and Joaquin Garcia-Alfaro. Design, modeling and implementa-

tion of digital twins. Sensors, 22(14), 2022.
[4] John Erkoyuncu, Iñigo Fernández del Amo Blanco, Dedy Ariansyah, Dominik

Bulka, Rok Vrabič, and Rajkumar Roy. A design framework for adaptive digital

twins. CIRP Annals, 69, 05 2020.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ICCPS ’25, May 06–09, 2025, Irvine, CA Trovato et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[5] Ayman AboElHassan, Ahmed H. Sakr, and Soumaya Yacout. General purpose

digital twin framework using digital shadow and distributed system concepts.

Computers & Industrial Engineering, 183:109534, 2023.
[6] Anastasios Temperekidis, Nikolaos Kekatos, Panagiotis Katsaros, Weicheng He,

Saddek Bensalem, Hisham AbdElSabour, Mohamed AbdElSalam, and Ashraf

Salem. Towards a digital twin architecture with formal analysis capabilities for

learning-enabled autonomous systems. InMESAS 2022: Modelling and Simulation
for Autonomous Systems., pages 163–181, 2023.

[7] Sayan Mitra. Verifying Cyber-Physical Systems: A Path to Safe Autonomy. The
MIT Press, 2021.

[8] Rajeev Alur. Principles of Cyber-Physical Systems. MIT Press, 2015.

[9] Cristian Ioan Vasile and Calin Belta. Reactive sampling-based temporal logic

path planning. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 4310–4315, 2014.

[10] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. Temporal-logic-

based reactive mission and motion planning. IEEE Transactions on Robotics,
25(6):1370–1381, 2009.

[11] Edward Ashford Lee and Sanjit Arunkumar Seshia. Introduction to Embedded
Systems, Second Edition: A Cyber-Physical Systems Approach. MIT Press, 2017.

[12] André Platzer. Logic & proofs for cyber-physical systems. In Proceedings of the
8th International Joint Conference on Automated Reasoning, pages 15–21, 06 2016.

[13] Marjan Sirjani, Edward A. Lee, and Ehsan Khamespanah. Verification of cyber-

physical systems. Mathematics, 8(7), 2020.
[14] Georgios Bakirtzis and Ufuk Topcu. Algebraicsystems: Compositional verifi-

cation for autonomous system design. In 2022 ACM/IEEE 13th International
Conference on Cyber-Physical Systems (ICCPS), pages 308–309, 2022.

[15] Tichakorn Wongpiromsarn, Mahsa Ghasemi, Murat Cubuktepe, Georgios

Bakirtzis, Steven Carr, Mustafa O. Karabag, Cyrus Neary, Parham Gohari, and

Ufuk Topcu. Formal methods for autonomous systems. Foundations and Trends®
in Systems and Control, 10(3-4):180–407, 2023.

[16] Thomas Wright, Cláudio Gomes, and Jim Woodcock. Formally verified self-

adaptation of an incubator digital twin. In TizianaMargaria and Bernhard Steffen,

editors, Leveraging Applications of Formal Methods, Verification and Validation.
Practice, pages 89–109, Cham, 2022. Springer Nature Switzerland.

[17] Edward Lee. Cyber physical systems: Design challenges. Electrical Engineering
and Computer Sciences, pages 363–369, 06 2008.

[18] Edward A. Lee. The past, present and future of cyber-physical systems: A focus

on models. Sensors (Basel), 15:4837–4869, 2015.
[19] Murat Cubuktepe, Zhe Xu, and Ufuk Topcu. Distributed policy synthesis of

multiagent systems with graph temporal logic specifications. IEEE Transactions
on Control of Network Systems, 8(4):1799–1810, 2021.

[20] Soroush Bateni, Marten Lohstroh, Hou Seng Wong, Hokeun Kim, Shaokai Lin,

Christian Menard, and Edward A. Lee. Risk and mitigation of nondeterminism

in distributed cyber-physical systems. In Proceedings of the 21st ACM-IEEE
International Conference on Formal Methods and Models for System Design, pages
1–11, 2023.

[21] Saad Mubeen, Elena Lisova, and Aneta Vulgarakis Feljan. Timing predictability

and security in safety-critical industrial cyber-physical systems: A position paper.

Applied Sciences, 10(9), 2020.
[22] Aviral Shrivastava, Patricia Derler, Ya-Shian Li Baboudr, Kevin Stanton, Mo-

hammad Khayatian, Hugo A. Andrade, Marc Weiss, John Eidson, and Sundeep

Chandhoke. Time in cyber-physical systems. In 2016 International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages 1–10,
2016.

[23] Robert Davis and Liliana Cucu-Grosjean. A survey of probabilistic timing analysis

techniques for real-time systems. Leibniz Transactions on Embedded Systems
(LITES), 6:03:1–03:60, 05 2019.

[24] Bineet Ghosh, Clara Hobbs, Shengjie Xu, Don Smith, James H. Anderson, P. S. Thi-

agarajan, Benjamin Berg, Parasara Sridhar Duggirala, and Samarjit Chakraborty.

Statistical verification of autonomous system controllers under timing uncer-

tainties. Real-Time Systems, 2024.
[25] Mohammadreza Mehrabian, Mohammad Khayatian, Aviral Shrivastava, Patricia

Derler, and Hugo Andrade. A run-time verification method with consideration

of uncertainties for cyber–physical systems. Microprocessors and Microsystems,
101:104890, 2023.

[26] Stephan Merz. The specification language TLA+. In Dines Bjørner and Martin C.

Henson, editors, Logics of Specification Languages, pages 401–451. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[27] Heidi Howard, Fritz Alder, Edward Ashton, Amaury Chamayou, Sylvan Cleb-

sch, Manuel Costa, Antoine Delignat-Lavaud, Cedric Fournet, Andrew Jeffery,

Matthew Kerner, Fotios Kounelis, Markus A. Kuppe, Julien Maffre, Mark Russi-

novich, and Christoph M. Wintersteiger. Confidential consortium framework:

Secure multiparty applications with confidentiality, integrity, and high availabil-

ity, 2023.

[28] Igor Konnov, Markus Kuppe, and Stephan Merz. Specification and verification

with the TLA+ trifecta: TLC, Apalache, and TLAPS. In Leveraging Applications of
Formal Methods, Verification and Validation. Verification Principles, pages 88–105.
Springer International Publishing, 2022.

[29] Paul Regnier, George Lima, and Aline Andrade. A TLA+ formal specification

and verification of a new real-time communication protocol. Electronic Notes in
Theoretical Computer Science, 240:221–238, 2009.

[30] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and

Michael Deardeuff. How Amazon Web Services uses formal methods. Commu-
nications of the ACM, 2015.

[31] Anirban Chaudhuri, Graham Pash, David A Hormuth, Guillermo Lorenzo,

Michael Kapteyn, Chengyue Wu, Ernesto ABF Lima, Thomas E Yankeelov, and

Karen Willcox. Predictive digital twin for optimizing patient-specific radiother-

apy regimens under uncertainty in high-grade gliomas. Frontiers in Artificial
Intelligence, 6:1222612, 2023.

[32] Matteo Torzoni, Marco Tezzele, Stefano Mariani, Andrea Manzoni, and Karen E.

Willcox. A digital twin framework for civil engineering structures. Computer
Methods in Applied Mechanics and Engineering, 418:116584, January 2024.

[33] L. Lamport. Proving the correctness of multiprocess programs. IEEE Transactions
on Software Engineering, SE-3(2):125–143, 1977.

[34] Leslie Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst.,
16(3):872–923, 1994.

[35] Leslie Lamport, John Matthews, Mark Tuttle, and Yuan Yu. Specifying and

verifying systems with TLA+. In Proceedings of the 10th ACM SIGOPS European
Workshop, pages 45–48, 2002.

[36] Alexander T. Ihler, John W. Fisher, III, and Alan S. Willsky. Loopy belief propa-

gation: Convergence and effects of message errors. Journal of Machine Learning
Research, 6:905–936, 2005.

[37] Claude E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27(3/4):379–423/623–656, 1948.

[38] Yehoshua Bar-Hillel and Rudolf Carnap. Semantic information. British Journal
for the Philosophy of Science, 4(14):147–157, August 1953.

[39] Stefanie J. Salinger, Michael G. Kapteyn, Cory Kays, Jacob V. R. Pretorius, and

Karen E. Willcox. A hardware testbed for dynamic data-driven aerospace digital

twins. In Frederica Darema, Erik Blasch, Sai Ravela, and Alex Aved, editors,

Dynamic Data Driven Applications Systems, pages 37–45, Cham, 2020. Springer

International Publishing.

[40] A. Dardenne, S. Fickas, and A. van Lamsweerde. Goal-directed concept acquisi-

tion in requirements elicitation. In Proceedings of the Sixth International Workshop
on Software Specification and Design, pages 14–21, 1991.

[41] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed

requirements acquisition. Science of Computer Programming, 20(1):3–50, 1993.
[42] Heiko Mantel. Information flow and noninterference. In Henk C. A. van Tilborg

and Sushil Jajodia, editors, Encyclopedia of Cryptography and Security, pages
605–607. Springer, Boston, MA, 2011.

[43] LukeNelson, James Bornholt, Arvind Krishnamurthy, Emina Torlak, andXiWang.

Noninterference specifications for secure systems. SIGOPS Oper. Syst. Rev.,
54(1):31–39, 2020.

[44] D. McCullough. Noninterference and the composability of security properties. In

Proceedings of the 1988 IEEE Symposium on Security and Privacy, pages 177–186,
1988.

[45] Boris Köpf and David Basin. An information-theoretic model for adaptive side-

channel attacks. In Proceedings of the 14th ACM Conference on Computer and
Communications Security (CCS ’07), pages 286–296, October 2007.

[46] Lennart Ljung. System Identification: Theory for the User. Prentice Hall, 2nd

edition, 1999.

[47] Matthew Chan, Nathaniel Snyder, Marcus Lucas, Luis Garcia, Oleg Sokolsky,

James Weimer, Insup Lee, Paulo Tabuada, Saman Zonouz, and Mani Srivastava.

Let’s talk through physics! Covert cyber-physical data exfiltration on air-gapped

edge devices. arXiv:2210.07531 [cs.CR]., October 2022.

[48] Siyuan Liu, Ashutosh Trivedi, Xiang Yin, and Majid Zamani. Secure-by-

construction synthesis of cyber-physical systems. Annual Reviews in Control,
53:30–50, 2022.

[49] S. R. Venkatesh and Munther A. Dahleh. On system identification of complex

systems from finite data. IEEE Trans. Automatic Control, 46(2):235–257, 2001.
[50] Tuhin Sarkar, Alexander Rakhlin, and Munther A. Dahleh. Finite time LTI system

identification. Journal of Machine Learning Research, 22:1–61, 2021.
[51] Dalton Jones and Munther A. Dahleh. Closed loop system identification with

known feedback: A non asymptotic viewpoint. In Proceedings of the 2022 Ameri-
can Control Conference (ACC), June 2022.

[52] Edmund M. Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. Model

checking and the state explosion problem. In Bertrand Meyer and Martin Nordio,

editors, Tools for Practical Software Verification, pages 1–30. Springer, Berlin,
Heidelberg, 2012.

[53] Alon Brook, Doron Peled, and Sven Schewe. Local and global fairness in concur-

rent systems. In 2015 ACM/IEEE International Conference on Formal Methods and
Models for Codesign, pages 2–9, 2015.

[54] Rob Van Glabbeek and Peter Höfner. Progress, justness, and fairness. ACM
Comput. Surv., 52(4), 2019.

[55] Matt Luckcuck, Marie Farrell, Louise A. Dennis, Clare Dixon, and Michael Fisher.

Formal specification and verification of autonomous robotic systems: A survey.

ACM Comput. Surv., 52(5), 2019.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Formal Verification of Digital Twins with TLA and Information Leakage Control ICCPS ’25, May 06–09, 2025, Irvine, CA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

[56] Matthias Rungger and Paulo Tabuada. Abstracting and refining robustness for

cyber-physical systems. In Proceedings of the 17th International Conference on
Hybrid Systems: Computation and Control, pages 223–232, 2014.

[57] VinithMisra, Vivek KGoyal, and Lav R. Varshney. Distributed scalar quantization

for computing: High-resolution analysis and extensions. IEEE Transactions on
Information Theory, 57(8):5298–5325, August 2011.

[58] Phillip Stanley-Marbell, Armin Alaghi, Michael Carbin, Eva Darulova, Lara

Dolecek, Andreas Gerstlauer, Ghayoor Gillani, Djordje Jevdjic, Thierry Moreau,

Mattia Cacciotti, Alexandros Daglis, Natalie Enright Jerger, Babak Falsafi, Sasa

Misailovic, Adrian Sampson, and Damien Zufferey. Exploiting errors for effi-

ciency: A survey from circuits to applications. ACM Comput. Surv., 53(3):51, May

2021.

[59] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1996.

[60] Leslie Lamport. On interprocess communication. Distributed Computing, 1985.
[61] Daniel Jackson and Eunsuk Kang. Property-part diagrams: A dependence no-

tation for software systems. IEEE 31st International Conference on Software
Engineering, 01 2009.

A BACKGROUND ON THE PGM FRAMEWORK
AND TLA

A PGM encodes random variables as nodes and statistical depen-

dencies as edges between nodes. In the DT PGM framework, the

PGM governs how variables are updated in each timestep. An edge

between two nodes dictates the dependence of the destination node

on the parent node. For example, the edge 𝑆→𝑂 represents that

observational data 𝑂 depends on the physical state 𝑆 .

Figure 12: Probabilistic graphical model (PGM) describing
the UAV DT.

B STATE MACHINE FORMALIZATION
This section details additional assumptions of the finite state ma-

chine formalization.

Fairness. Fairness is crucial in scheduling processes within the state

machine framework. It ensures all processes are treated justly under

the operational rules of the system. Specifically:

F = {UF(𝜔𝑖) ∨WF(𝜔𝑖) ∨ SF(𝜔𝑖) | 𝜔𝑖 ∈ Ω} (14)

Here, (14) categorizes each process in the process set Ω into three

types: Unfair (UF), where it is allowable that a process may never

execute;Weakly Fair (WF), which guarantees that if a process is con-

tinuously enabled, it will eventually execute; and Strongly Fair (SF),

requiring that if a process is enabled intermittently, it must eventu-

ally be executed. The classification into these categories depends on

the system’s dynamic requirements and stakeholder inputs, guiding

how processes are triggered during the state machine’s operation.

For instance, a process like 𝑆→ 𝑆 , representing the continuous

update of the UAV’s physical state, is deemed Strongly Fair because

its execution is essential and inevitable, reflecting the continuous

nature of physical state updates. Weak fairness is generally as-

sumed and warranted for many real-world systems [53, 54] as it is

unrealistic that a process can wait indefinitely before executing.

Initial and Termination States. The initial state of a state machine is

crucial as it sets the baseline from which all processes begin. For

the DT, this is defined by a logical predicate that assigns a starting

value to each variable in the system. This predicate ensures all

components of the DT start in a well-defined state that is consistent

with the expected initial conditions of its physical twin. For instance,

if modeling a UAV DT, the initial state may specify the UAV’s

starting health, the initial digital state, etc.

While a DT can theoretically operate indefinitely, practical ap-

plications often require defining specific conditions under which

the simulation or operation should cease. This is termed the ter-

mination state T , which is also expressed as a logical predicate.

Termination conditions can vary widely depending on the sys-

tem’s purpose but generally include achieving a goal, exhausting

resources, or encountering a specific event that requires halting

operations. For example, a UAV’s digital twin might terminate when

the UAV completes its mission objectives or when the digital twin

finishes program execution for a specified duration.

B.1 Abstraction of Digital Twin complexity
In developing the state machine for the DT, our aim was not

only to capture the dynamic interplay of components but also to

abstract complex DT behaviors into manageable and verifiable

forms. This abstraction focuses on simplifying intricate component

behaviors—whether physical phenomena or computational

complexities—while preserving the essential characteristics

necessary for accurate system modeling. Here, we outline our

methodology for abstracting these complexities, providing general

principles that are later applied in specific contexts within Sec. 4.

Asserting existence instead of computing numerical op-
erations One fundamental principle in formal methods is to

describe the outcomes of system operations rather than detailing

the specific computations that achieve these outcomes [35, 55, 56].

In line with this principle and consistent with prior literature in

other domains [57, 58], our approach simplifies the numerical

complexity inherent in DT operations, yet maintains the integrity

of the computational results in the abstracted state machine actions.

Retain probabilistic characteristics In our methodology,

simplification does not eliminate stochastic behavior inherent

to many DT processes, especially those involving predictive,

probabilistic components. However, instead of quantifying specific

probabilities, our abstraction focuses on delineating possible

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ICCPS ’25, May 06–09, 2025, Irvine, CA Trovato et al.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

behaviors by writing indeterministic actions in TLA [35].

Representing a distributed message channel as a queue with
deterministic write and nondeterministic read Recall from

Sec. 3 that we represent a messaging channel as a random variable

in the augmented PGM. Following the established practice in formal

methods of using queues to represent network communication [59],

we abstract each message channel random variable as a queue,

where messages are ‘pushed’ onto the queue as they are sent and

‘popped’ from the queue in a nondeterministic order. This reflects

potential real-world communication issues like delays, losses, or

reordering, simplifying the analysis by eliminating the need to track

details such as the timing specifics of each message.

channel← Queue[]
push 𝑥 ≔ append channel, 𝑥

pop i ≔ channel[𝑖]
remove i ≔ {channel[𝑖] ∈ 1..Length(channel) | 𝑖 ≠ 𝑗}

where 𝑖 ∈ [1, 𝜂]
with 𝑆𝐹 (𝑖 = 1)

(15)

Index 𝑖 ranges from 1 to 𝜂, a parameter representing out-of-order

message delivery constraints. For instance, a realistic and common

constraint in wireless networks is a limited buffering and process-

ing window. Index 𝑖 is randomly chosen, where 𝑖 = 1 indicates that

the correct, most recent message is being delivered. We impose the

strong fairness condition 𝑆𝐹 (𝑖 = 1) to ensure the correct message

will eventually be delivered, a realistic expectation that mirrors

guarantees provided by many network protocols such as Bluetooth.

Atomicity in system orchestration Atomicity is a fundamen-

tal consideration in formal methods, particularly when defining

specifications for complex systems [60]. In our context, two pro-

cesses are deemed mutually atomic when their state transitions are

considered simultaneous and uninterruptible, essentially occurring

within the same atomic slice of time. In designing the orchestration

for the DT, we strategically treat certain groups of operations as

atomic to simplify the model and enhance tractability. This decision

helps manage complexity by reducing the granularity of interac-

tion between components, focusing on high-level system behavior

rather than the minutiae of inter-process communication.

B.2 Specifying Properties
In the process of specifying properties, initial analysis identifies two

critical aspects of synchronization: (1) Consistency between the

digital and physical states, and (2) Execution of control commands

by the physical twin as issued by the DT. These insights lead to the

development of properties 𝑃2 and 𝑃7, visualized in Fig. 8. Further

decomposition of 𝑃2 reveals that the digital state’s update relies on

consistent sensor data and computed control inputs, reflected in

property 𝑃4: Sensor and control inputs to update digital state must be
consistent. We observe that for consistent sensor inputs to be feasi-

ble, the DT must effectively receive and process incoming sensor

data, a requirement captured in property 𝑃5. This analysis contin-

ues, breaking down each goal into finer-grained sub-properties,

eventually organizing them using goal structuring notation [61].

Correct orchestration naturally requires component correctness

as well. For example, property 𝑃3 articulates that the predictive

model within the digital twin must be correct to ensure that the

digital state accurately twins the physical state over time. We de-

scribe these critical functionalities as explicit sub-properties within

our framework. For instance, we configure our design to simulate

scenarios where 𝑃3 is false, allowing us to explore and verify the

system’s behavior under conditions of component failure. This

transformation of potentially implicit assumptions into concrete,

testable elements within our specification not only crystallizes the

verifiable state of each component but also elucidates their role and

relationship to the system’s overall behavior.

C TLA CODE
The TLA code is written and model-checked with the TLA+ toolkit.

Fig. ?? shows a portion of this code, specifically modeling the pro-

cedure DT_ReceiveObsDelayed(s, m). This process represents
actions taken for a specific sensor s with a particular delay index m.

In this snippet, DT_ReceiveObsDelayed checks if there are any

queued observations for sensor s (by verifying n_obs[s] is not

empty). If observations exist, it then checks if the delay index m
corresponds to an entry within the domain of n_obs[s]. If so,
it evaluates whether the timestamp n_obs[s][m]["t"] is recent

enough, as determined by the function OM!IsMessageUpToDate.
If the message is up-to-date, it appends this observation to the

list of received observations obs_in[s] and removes it from the

observation queue n_obs[s]. If the timestamp is outdated, the

entry is removed from n_obs[s], leaving obs_in[s] unchanged.
In cases where the delay index m is not present, both obs_in[s]
and n_obs[s] remain unchanged.

The full TLA+ specification, including this process and others

within the DT model, is published on GitHub.

Received 7 November 2024

12

https://github.com/luwen-huang/uav_dt

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Formal Verification of Digital Twins with TLA and Information Leakage Control ICCPS ’25, May 06–09, 2025, Irvine, CA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508
13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

ICCPS ’25, May 06–09, 2025, Irvine, CA Trovato et al.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624
14

	Abstract
	1 Introduction
	2 Related Work
	3 Digital Twin as a State Machine
	3.1 State Machine Derivation
	3.2 Modeling Distributed Communication

	4 Specification of UAV Digital Twin
	4.1 The UAV and its Digital Twin
	4.2 The UAV State Machine
	4.3 System Abstraction
	4.4 Specifying Properties
	4.5 Weakening Formal Verification with Statistical Guarantees

	5 Evaluation
	5.1 Model Checking the State Space
	5.2 Safety and Liveness Violations

	6 Discussion
	Acknowledgments
	References
	A Background on the PGM framework and TLA
	B State Machine Formalization
	B.1 Abstraction of Digital Twin complexity
	B.2 Specifying Properties

	C TLA Code

