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Digital twins in precision medicine provide tailored health recommendations by simulating patient-
specific trajectories and interventions. We examine the critical role of Verification, Validation, and
Uncertainty Quantification (VVUQ) for digital twins in ensuring safety and efficacy, with examples in
cardiology and oncology. We highlight challenges and opportunities for developing personalized trial
methodologies, validation metrics, and standardizing VVUQ processes. VVUQ frameworks are
essential for integrating digital twins into clinical practice.

Precisionmedicine focuses on tailoring health delivery to individuals’ unique
physiological and disease-related needs based on their unique characteristics
and circumstances. Advances in technology and engineering towards per-
sonalization have enabled remarkable discoveries across biology, fromDNA
sequencing andmapping the human genome to identifying specific immune
cell types and monitoring electrical activity in the heart. These innovations
have significantly influenced medical practice and expanded treatment
options for physicians andpatients.However, truly leveraging these advances
towards personalized medicine has remained elusive. Currently, recom-
mendations forwhether apatient should takeadrugata specificdosageoruse
a medical device are generally based on how their personal characteristics
(e.g., sex, age) and disease traits (e.g., genetic mutations, heart rhythm pat-
terns) compare to the population-level data fromclinical trials. Given the vast
amount of patient data now available, some of which is in real-time, and the
significant advances in computational science, this approach is increasingly
unsatisfactory. The framework for digital twins, with its capacity for a unique
understanding of an individual’s current health status as well as predicting
their future health trajectories, aligns with the goals of precision medicine.
Yet, building accurate digital twins for individuals’health requires confidence
in the extracted level of personalized information and the underlying pre-
dictive models. Verification, validation, and uncertainty quantification
(VVUQ)will be essential to ensuring the reliability of healthcare digital twins
and building trust in their clinical application.

Over the past decade, digital twins have gained momentum as com-
puters and algorithms have progressed in their ability to handle large-scale
simulations and data processing. The definition of a digital twin varies,

ranging from simple virtual representations to models requiring regular,
real-time updates based on incoming data1. In 2023, the National Acade-
mies of Sciences, Engineering, and Medicine (NASEM) published a report
to focus the conversation ondigital twins and identify critical research gaps2.
This report put forth a particular definition of a digital twin that we will
adopt here: A digital twin is a set of virtual information constructs that
mimics the structure, context, and behavior of a natural, engineered, or social
system (or system-of-systems), is dynamically updated with data from its
physical counterpart, has a predictive capability, and informs decisions that
realize value. The bidirectional interaction between the virtual and the
physical is central to the digital twin. This definition highlights that the
concept of digital twins goes beyond only building computational models –
they must also be tools for informed decision-making. In precision medi-
cine, this involves creating computational models tailored to individuals’
unique physiological characteristics and lifestyle behaviors, enabling precise
health assessments, accurate diagnoses, personalized treatment strategies,
and the simulation of various scenarios to predict health outcomes to
improve individualized care (see Fig. 1). Trust in the underlying processes is
criticalwhendealingwith patient health andwill influence the acceptance of
digital twins by the FDA and healthcare professionals.

Physicians routinely make decisions under conditions of uncertainty
due to the combination of incomplete data, inter-patient variability, and
evolving medical knowledge. There is growing excitement around the
promise of predictive modeling to enable safe, personalized medicine.
However, the existence of a digital twin will not eliminate uncertainty. It is
crucial that such tools should enhance, rather than undermine, the
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physicians’ ability to make clinical decisions. In fact, unquantified uncer-
taintymayprevent physicians from taking appropriate actions or any action
due to safety concerns and lack of ability to gauge confidence in the model
output. Amajor research gap identified in the NASEM report was the need
for a set of procedures to build credibility and trustworthiness in digital
twins. These proceduresmust address specific questions suchas:What is the
best way to establish clinical value and trustworthiness of a digital twin,
analogous to a clinical trial? Once established, how do we train clinical staff
to interact effectively with the tool, understanding its limitations? Once
trained, how should caretakers be informed about updates to the digital
twin? And can digital twins be updated effectively with new clinical
knowledge without compromising trust?

VVUQ was specifically highlighted in the NASEM report as essential
for building trust in the use of digital twins for risk-critical applications.
Verification, the process of ensuring that a piece of software or a system of
software components performs as expected through code solution ver-
ification, is a foundational step necessary for establishing trust in software/
system solutions. Validation, which tests models for their applicability, aids
in understanding the scenarios—such as specific cancer types or treatment
regimens—where model predictions can be trusted. Uncertainty quantifi-
cation (UQ) refers to the formal process of tracking uncertainties
throughout model calibration, simulation, and prediction. These uncer-
tainties can be epistemic (e.g., incomplete knowledge of how specific genetic
mutations affect a drug’s effectiveness) or aleatoric (e.g., natural variabilities
not captured by themodel). By quantifying these uncertainties, UQ enables
the prescription of confidence bounds, which demonstrate the degree of
confidence one should have in the predictions. TheseVVUQprocesses have
long been conceptually linked in discussions about quality management of
software, models, and predictive systems. Numerous methodologies exist
for each process, whichmust be carefully considered in the design of specific
applications. As noted in the NASEM report, it is likely that new prediction
strategies designed for digital twins in healthcare will necessitate new
methodologies for VVUQ.

Digital twinshave thepotential to significantly impact clinicalworkflows
across various domains, notably in selecting treatment plans based on pre-
dicted health trajectories.When paired with proper VVUQprocesses, digital
twins can become a powerful and reliable tool to simulate interventions and
actions that physicians advise. Current practice in medicine involves physi-
cians advising on therapy during a patient’s visit; however patient conditions
may change. Digital twins, with robust VVUQ support, can transform how
physicians consider treatment options with their patients, enabling advanced

computationalmodels to informandperhaps evendrive thedecision-making
and timely administration of interventions at the point of delivery. Therapies
and interventions grounded inmechanisticmodels of digital twinswill enable
clinicians to make informed decisions based on causal relationships, sup-
ported by VVUQ. Mechanistic models emphasize causal inferences, which
are critical for helping clinicians identify causation rather than mere corre-
lation. The integration of AI explainability, along with VVUQ and
mechanistic models, is likely to create new opportunities for risk assessment
by clinicians—opportunities that are not readily available today.

In the meantime, the accompanying need for evolving VVUQ meth-
odologies is becoming increasingly apparent. In this paper, we initially
highlight the five components of digital twins and demonstrate the appli-
cation of the VVUQ processes through cardiology and oncology examples,
where promising models have the potential to aid physician decision-
making. We then emphasize the role of VVUQ in ensuring the safety,
efficacy, and trustworthiness of digital twins in personalized health, parti-
cularly for predicting current and future health trajectories based on various
interventions and disease models. This paper sets itself apart from previous
reviews3 by focusing onVVUQ for digital twins, highlighting innovations in
data integration, model validation, and UQ. It also explores areas for
innovation in identifying and quantifying the uncertainties in the clinical
decision-making process from a clinician’s perspective.

The concept of a digital twin emphasizes the importance of con-
tinuously updating the digital model based on its physical counterpart,
setting it apart from traditional simulation models. These dynamic updates
cannot be limited to routine clinical check-ups, as such an approach could
fail to capture the complex and evolving nature of human physiology.
Fortunately, advances in biosensor technology now allow for real-time data
collection, significantly enhancingdigital twinmodels. This includes a range
of clinical-grade in vivo and in vitro sensors capable of monitoring diverse
biomarkers. We will explore some of these innovative technologies in
greater detail later in this work.

Digital Twins for PrecisionMedicine for Cardiovascular
and Oncology
A digital twin has five main components that are shown in Fig. 2 in the
context of precision medicine.

Virtual representation
Central to the digital twin is the virtual representation, which may include
mechanistic and/or statistical models that simulate human physiological
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Fig. 1 | Personalized health trajectory predictions using healthcare digital twins for guiding clinical decisions. Digital twins are updated periodically using clinical and
ambulatory data. Compared to traditional healthcare, digital twins provide optimized interventions with quantified uncertainty, reducing decision-making uncertainty.
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phenomena. This virtual representation is tightly coupled with the physical
counterpart – i.e., the body and its physiological systems – through con-
tinuous observations and flow of information obtained from the physical
counterpart. This aspect of digital twins has been extensively studied in
healthcare. Mathematical models of cancer and cardiac mechanics, for
example, have been in the literature for over 50 years4. These models have
evolved in complexity ranging from simple ordinary differential equations
to agent-based models, stochastic models, and hybrid models, among
others. Numerous reviews have examined the variety of these models and
their intendeduse5–8.However, thesemodels alonedonot constitute adigital
twin. As detailed in additional components, these models or virtual repre-
sentations must be calibrated to their physical counterparts, regularly
updated with new information, and allow for bi-directional feedbackwith a
human in the loop. For instance, recent studies present cardiac electro-
physiological (EP) models that incorporate CT scans to personalize the
anatomical representation, enabling simulations of the heart’s electrical
behavior at the individual level. These personalized models can aid in
diagnosing arrhythmias such as atrial fibrillation (AFib)9. Additionally,
simulations of myocardial deformation and fluid-structure interactions on
an anatomical representation personalized with MRI scans have shown
promise for assessing cardiac anomalies, such as atrioventricular valve
displacement10. Similarly, for oncology, there have been numerous models
published looking at predicting overall growth and response to therapywith
the aim of identifying response and selecting effective therapies11.

As the virtual representation evolves with new data, the VVUQ
practices must also develop to maintain models’ integrity, accuracy, and
reliability. While many of these models are run via computer simulations
and likely involve some level of code verification, formal verification is
seldomdiscussed in publications12,13. Verification for computationalmodels
is emphasized in several key reports14 to ensure applicability, reliability, and
robustness of related codes and predictions. Verification involves proving
that the coded algorithms correctly solve the intendedmathematicalmodel,
supported by software quality engineering (SQE) practices15, and solution
verification, which assesses the convergence of mathematical model dis-
cretization, typically involving partial differential equations (PDEs)16.
Validation, as a crucial component alongside verification, assesses how

accurately model predictions represent the real world. Publications gen-
erally expect models to undergo validation tests, unless they are explicitly
focused on hypothesis generation. Despite significant efforts in verification
and validation, the validation of models in the context of digital twins raises
new challenges. Given the continuous updates and bidirectional data flow,
the question arises: how frequently should a digital twin be re-validated to
ensure its ongoing accuracy? The dynamic nature of digital twins requires
more flexible and iterative temporal validation approaches compared to
traditional modeling. It also amplifies the importance of UQ, as each new
piece of data can lead to different levels of uncertainties in model predic-
tions. UQ is often lacking in modeling work. Bayesian methods have been
used to quantify anatomical uncertainties from clinical data, for example,
assessing the impact of MRI data artifacts on the predictive capabilities of
electrophysiology simulations17. Ultimately, the models selected for use in a
digital twin must be ‘fit-for-purpose’, capable of reproducing the desired
quantity of interest with a certain degree of reliability. Selecting the
appropriatemodel is a research challenge in itself, closely linked toboth code
verification and model validation.

Physical counterpart
The physical counterpart encompasses all elements that interact with data.
This component involves the development andutilization of both novel and
traditional clinical and ambulatory sensors, along with systems for data
acquisition, processing, and integration. The comprehensive physiological
information gathered from the physical counterpart canmanifest in various
forms, including genetic/omic data (e.g., family history, DNA sequence)18,
demographic data (e.g., age, gender, BMI)19, clinical images (e.g., magnetic
resonance imaging, MRI)20, medical records21, and continuous data from
innovative wearable22, ingestible23, or implantable24 sensors. Typically,
imaging techniques like computed tomography (CT), MRI, and positron
emission tomography (PET) are employed to create the 3-D geometry for
the virtual representation. Advances in biochips and semiconductors now
enable clinical-quality, real-time monitoring of biomarkers across various
sensingmodalities. Semiconductor-based biochemical sensors, such as Ion-
Sensitive Field-Effect Transistor (ISFETs)25, can detect multiple biomarkers
in analytes collected from interstitial fluid or plasma. Additionally, wearable
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Fig. 2 | Digital twin elements in the context of cardiovascular health. Figure
adapted from National Academies of Sciences, Engineering, and Medicine. 2023.
Foundational Research Gaps and Future Directions for Digital Twins2. https://doi.

org/10.17226/26894. Reproduced with permission from the National Academy of
Sciences, Courtesy of the National Academies Press, Washington, D.C.
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ultrasonic sensors canmonitor bloodflowthrougharteries andprovide real-
time imaging for echocardiograms.

The VVUQ processes must be adapted as data from the physical
counterpart is used to calibrate the virtual representation. The availability,
quality, and consistency of this data directly impact the ‘fit-for-purpose’
design of the digital twin. Unlike traditional models built with curated
datasets, digital twins must account for the ongoing availability of data at
required intervals, ensuring that theVVUQprocesses can adapt to potential
variability and maintain model integrity over time. Verification of sensors
and observation systems generally involves confirming that the systems are
implemented correctly according to specifications or design
requirements15,16. Changes in hardware, whether for cost reduction or
performance enhancement, as well as alterations in data structures, must be
verified to maintain integrity with the virtual twin. Regarding validation,
limitations such as resolution issues and measurement noise must be
identified, as they can lead to inaccuracies in the modeled entity. Addi-
tionally, data specific to certain disease states, particularly from the target
population, are often limited or unavailable. Consequently, digital twin
validation using this available data may not be generalizable to the intended
population or specific pathology26. Contextualizing the physiological data is
crucial for guiding the design and calibration of the virtual representation
for specific disease models3. Monitoring the uncertainties in the physical
counterpart is essential to ensure the quality of data flowing to the virtual
twin and to track the accumulation of uncertainties within the end-to-end
system. Even with abundant data, uncertainties can arise due to noise,
missingness, and variance in sensor measurements. Addressing these
uncertainties during the informationflow fromphysical todigital is essential
for the accuracy and reliability of digital twin models.

Information flow from physical to digital
The third component of a digital twin involves the transition from physical
to digital, which entails harnessing vast amounts of data to build and per-
sonalize the virtual representation based on the current state of the physical
counterpart (e.g., an individual’s physiological state) and to continually
update the virtual model to reflect changes in the physical state (e.g., aging)
and the environment. Essentially, this component ensures that the digital
twin accurately mirrors the physical counterpart. The calibration process
can vary widely, ranging from simple statistical regressions and computa-
tionally demanding inverse problems to training extensive neural networks,
depending on the model and data available. Data processing might be
necessary, dependingon themodel of interest and thedata at hand.This step
is essential as it is a primary point where errors and uncertainties can be
introduced into the system. Measurement devices may not always be
accurate, and post-processing tasks like image segmentation can introduce
additional layers of variability and uncertainty, potentially introducing
observer error or bias if any of these tasks require human input. These
uncertainties are often quantified using Bayesian inference algorithms, such
as Kalman filters and Monte Carlo methods. For example, Kalman filters
have been used for measuring uncertainties in clinical hemodynamic
observations (e.g., blood vessel diameter) from imaging data (e.g., MRI) for
circulation models27,28. Markov chain Monte Carlo methods have been
employed for estimating parameter distributions from brain MRI to tailor
patient-specific radiotherapy regimens29. Similarly, several Monte Carlo-
based methods have been proposed to manage uncertainties probabil-
istically during the calibration of electrophysiology (EP) models, such as
identifying ablation targets for atrial fibrillation (AFib) treatment from
electrocardiogram data30 and cardiac mechanics models, like determining
patient-specific parameters for estimating stroke volume, ejection fraction,
and left-ventricular ejection time from echocardiography and blood pres-
sure data31. Verification and validation processes must be continuously
implemented as the virtual twin is updated – whether periodically or con-
tinuously – to ensure that accumulated uncertainties are properly quanti-
fied. However, implementing a UQ framework at the organ level often
remains challenging due to the complexity of simulations, which require a
substantial number of model evaluations. Additionally, creatingmaps from

observables to computational model outputs might introduce further
modeling errors32.

Information flow from digital to physical
The fourth component of a digital twin is the flow of information from
digital to physical, manifesting as actionable predictions such as clinical
decision-making33, health trajectory predictions34, and optimized treatment
plans29,35. While making actionable predictions is the fundamental purpose
of digital twins, and thus may seem straightforward, the process of con-
veying these predictions is where complexity escalates and building trust
becomes crucial. Uncertainty accumulates at every stage of a digital twin –
from model to data uncertainty – but it is at this juncture that uncertainty
must be carefully communicated along with the predictions29. Rigorous
methods for UQ and visualization techniques are vital for facilitating dis-
cussions about the adoption of digital twins in healthcare and for fostering
trust36, when clinicians are the ones making decisions. However, in cases
where digital twins interact with the physical system in an autonomous
manner – such as cardiac defibrillators or closed-loop insulin pumps – the
VVUQ aspects become evenmore critical. Here, it is essential to determine
the acceptable level of uncertainty based on the ‘fit-for-purpose’ clinical
application, weighing the potential improvements against the risks of
erroneous outputs causing harm.Augmented reality37,38 orweb-based visual
interfaces39 can also be instrumental in visualizing digital twin simulations
and fostering effective human-digital twin interactions. Such technologies
can assist clinicians in making informed decisions, for example, during
surgical procedures40.

Human in the loop
The final listed component is the human in the loop. Although mentioned
last, it is a component that permeates the entire digital twin cycle, especially
in the context of healthcare digital twins.Humans are deeply involved in the
development and operation of digital twins, including tasks such as model
selection and validation, data processing, clinical decision-makers, and user
interface development41,42. While certain engineering applications of digital
twins may operate autonomously, this level of automation is far from fea-
sible in precision medicine. Healthcare digital twins by definition, require
human involvement, as predictions must be deliberately evaluated in con-
siderationof their inherent uncertainties and the complex factors that define
an optimal outcome43.

Physicians engage in a cognitive decision-making process that, similar
to digital twins, incorporates the evaluation of uncertainties and relies on
trusted models; they assess available patient data, engage in an iterative
diagnostic process by measuring risks, choose tests, interpret results, and
optimize the therapy decisions44. This process is seldom straightforward due
to the presence of uncertainties, including ambiguous or conflicting data
and limited evidence of the patient’s clinical characteristics45. Given these
common complexities and similarities in the decision-making process, the
human-centric component of digital twins and the corresponding VVUQ
processes must be evidence-based to ensure reliability. Integrating struc-
tured qualitative methods, such as Clinical Decision Rules (CDRs) is
necessary for achieving a consensus in clinical action46. Interpretability is
another important aspect. Digital twin predictions must be explainable to
gain the trust of clinicians and patients. Utilizing interpretable models is
essential for a better understanding of the causative factors leading to a
prediction, which is vital for clinical decision-making47. It is imperative to
involve multiple stakeholders within the digital twin ecosystem – ranging
frommedical practitioners to insurance providers, regulatory agencies, and
the patients themselves.

Limitations, Opportunities, Interdisciplinary Perspec-
tives and Outlook
One of the most promising aspects of digital twins in precision medicine is
their potential to support decision-making within clinical workflows. To
realize this potential, digital twins must meet the same standards of safety,
efficacy, transparency, and trust as any other clinical device or support tool.
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VVUQ provides a robust framework that ensures these standards are
upheld, facilitating the adoption of digital twins by both clinicians and
patients. In Digital Twins for Precision Medicine for Cardiovascular and
Oncology section, we discussed the application of the VVUQ processes to
individual components of digital twins. However, the expectations for
digital twins in precision medicine extend beyond predicting health tra-
jectories based on current health states. Digital twins are also expected to
facilitate effective, dynamic interactions between the virtual representation,
clinicians, and, importantly, patients. Based on the digital twin’s projections
of a patient’s health, patients, in collaboration with their clinicians, can
explore various potential interventions and treatment paradigms informed
by predicted future health trajectories through disease models. This shared
decision-making process enables patients to make informed, personalized
healthcare choices, with the guidance of their clinicians. It is essential to
ensure that the VVUQ processes remain applicable not only to the digital
twin’s current state but also to its updates, as it integrates disease progression
and treatment paradigms into its predictivemodeling, as shown in Fig. 348,49.
We acknowledge that validating future predictions is inherently challenging
due to the absence of a definitive gold standard for future events. Recent
reviews have thoroughly documented the development of digital twins in
healthcare, highlighting both their potential and limitations50–53. In this
manuscript, we emphasize the pivotal role of VVUQ in facilitating the
clinical adoption and utility of digital twins. This section discusses key
considerations, limitations, andopportunities for digital twins in the context
ofVVUQ, ensuring safety and efficacywhile emphasizing the importance of
trustworthiness for successful clinical adoption by both clinicians and
patients. Table 1 summarizes key considerations and challenges for devel-
oping safe, effective, and trustworthy digital twins for healthcare within the
VVUQ framework.

Validation in digital twins extends beyond traditional metrics,
requiring adaptive benchmarks that reflect real-world patient
variability and aging, along with the clinical objectives
At its core, clinical validation involves comparing model predictions with
ground truth data not used in training to determine the utility of these
predictions. This comparison can involve various amounts of data, using a
single test dataset or cross-validation studies. However, validation tests are
not definitive in affirming model accuracy; they merely assess whether the
model’s predictions achieve a “good enough” agreement with a finite
dataset. Consequently, a question for each digital twin is defining what
“good enough” means both for its analytical accuracy and clinical utility.
The concept of “good enough” should also encompass the broader clinical
utility of digital twins within their intended use case. This involves evalu-
ating the accuracy of the model predictions as well as how effectively the
outputs of the digital twins translate into improved clinical outcomes. For
example, in cardiac digital twins, this may mean assessing whether the
predicted outputs effectively guide treatment decisions, optimize surgical
planning, or predict adverse events54. These outputs must demonstrate
relevance, reliability, and robustness under real-world conditions, extending
beyond controlled laboratory settings. The core premise of digital twins
should be evaluated alongside randomized clinical trials (RCTs), including
personalizedorN-of-1 trials.While the full potential remains tobe explored,
robust VVUQ provides a powerful tool for clinicians to design novel
treatment strategies that ensure both safety and efficacy55. This standard, as
mentioned in the NASEM report, should be established based on “fit-for-
purpose” principles, considering multiple factors such as intended use and
potential consequences. The validation process should also account for
potential mismatches between the context in which the model is developed
and its intended use. Instances where the model is contraindicated – when
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the digital twin predictions are “out-of-specifications” for the patient due to
the patient’s condition or disease state does not match the conditions for
which the model was validated – should be identified and avoided. One
potential approach to address such “out-of-specifications” is the use of
knowledge graphs, which organize and categorize relationships between
data features and relevant knowledge bases, ensuring that digital twin pre-
dictions alignwith the clinical knowledge associatedwith the intendeduse56.
An example application of knowledge graphs is in identifying drug-drug
and drug-disease interactions before the drug is released for clinical use57.
The demand for robust data has spurred research into next-generation
sensors capable of pervasive physiological monitoring. These sensors are
being designed to frequently, if not continuously, capture personalized
physiological data across various contexts (e.g., health states, environmental
conditions)58 to inform and calibrate digital twins. The nature of the
observational systems and data characteristics may show significant varia-
tion based on the medical application that the digital twin is created for. A
particular example is digital twins for mental health, where a significant
portion of the data is sourced through surveys, questionnaires, and self-
reported symptoms of subjective markers such as pain, discomfort, or
stress59,60. This multi-sourced high-dimensional information requires a
different approach for validation and uncertainty quantification when
compared to biomarkers of specific diseased states. For example, pain is a
subjective symptom that can be associated with specific underlying
pathology. The use of digital twins enables sensitivity and causation analysis
to uncover the root causes of pain. This approach allows for tracking the
progression of pain alongside a diseased state and evaluating the response to
treatments. By doing so, personalized outcomemeasures can be developed,
benefiting both patients and physicians. The VVUQ processes should be
tailored to rigorously analyze the sources for potential biases, variances, and
measurement errors in the observational data to ensure the digital twins
establish a robust patient-specific physiological and behavioral profile,
including individuals’ emotions, perceptions, and behaviors61. This will also
ensure that the digital twin predictions are validated against both subjective
reports and objective measures and the confidence levels in the predictions
are calculated, while accounting for the variabilities in the subjective data.
Here, structured approaches, such as measurement feedback systems, are
proposed for defining valid, reliable, and standardized metrics for
validation61,62. Additionally, Bayesian approaches may allow for quantifi-
cation of uncertainties, enabling confidence estimates as new behavioral,
psychological and physiological information is obtained and used for
updating the digital twin. For example, probabilistic graphmodels, creating
a dynamic Bayesian network, are used for coupling between different data

collection sessions for the underlying dynamic physiological and psycho-
logical system59,63.

The individualized nature of digital twins challenges traditional
validation metrics, while presenting an opportunity to redefine
efficacy evaluation to measure success
Clinical trials for drugs and devices, often termed “validation studies,”
typically focus on population statistics – such as whether one patient group
statistically outperforms another. In contrast, digital twins aim to perso-
nalize therapy to optimize outcomes at an individual level, creating a
paradigm shift where each personalized digital twin functions as an indi-
vidualized experiment of N-of-1. This shift requires precise calibration to
the individual to ensure accurate predictions, without relying on traditional
control groupsused in conventionalRCTs.Anopportunity to address this is
to leverage methodologies developed for N-of-1 trials. Unlike RCTs, which
randomize groups of patients to treatments, N-of-1 trials randomize
treatment periodswithin a single patient64. This approach directly addresses
challenges associated with averaging treatment effects across populations,
ensuring external validity despite heterogeneity in treatment effects. Fur-
thermore,N-of-1 trials are particularlywell-suited for digital twins, enabling
precise representations of rare diseases or complex comorbidities when
traditional RCTs are not effective. The iterative and individualized nature of
these trials accelerates the process of treatment discovery and their imple-
mentation, offering a powerful framework for advancing personalized
treatment efficacy. Recent work has proposed a computational framework
that treats each patient as their own trial, based on four key techniques65.
First, mathematical models are calibrated with patient-specific data to
predict personalized responses. Digital twins then simulate different treat-
ment strategies, refining them using optimal control theory to maximize
outcomes. Furthermore, data assimilation continuously integrates new
clinical information, allowing the digital twin to adjust predictions and
interventions in real-time. This iterative process reduces uncertainty and
refines optimized intervention based on up-to-date data. Another oppor-
tunity, or in certain circumstances a requirement, when access to perso-
nalized data is not possible, is to use a sub-population data both for digital
twin calibration and validation. The key is to identify a representative cohort
that shares commonalitieswith thepatient-of-interest in termsof the system
inputs/outputs, boundary conditions, and model characteristics. Tradi-
tionally, this process relies on clinical experts manually defining ranges for
datapatterns (e.g., bloodpressure>140/90mmHg) for a specificoutcomeof
interest (e.g., hypertension diagnosis). However, this approach is time-
intensive, requires extensive medical knowledge, and often overlooks

Table 1 | Key Requirements for Ensuring Safety, Efficacy, and Trustworthiness of Digital Twins in Precision Medicine

Key considerations and challenges in the context of Verification, Validation, Uncertainty Quantification. Key Attribute

1 Validation assesses whether a model’s predictions are “good enough” based on a finite dataset driven from clinical outcomes.
Defining what constitutes sufficient accuracy should be driven by the application.

Efficacy & Trustworthiness

2 Validating digital twins due to their individualized nature (N-of-1) require approaches beyond conventional RCTs. The absence
of control groups canbe addressed throughpersonalized trialmethodologies that randomize treatment periodswithin apatient.
This allows for precise evaluation of safety and efficacy while directly linking predictions to clinical outcomes. Additionally, the
development of new metrics and statistical methods tailored to personalized trials is essential. Cohort-level validation can
complement this by identifying commonalities in data inputs, outputs, andmodel characteristics, ensuring broader applicability
without sacrificing individualization.

Safety, Efficacy, & Trustworthiness

3 While data-driven algorithms can create statistical models for digital twins, it is essential that models remain physiology-aware
and mechanistically grounded, preserving the underlying biology and physics. This approach is critical for accurately
quantifying uncertainty in predictions and ensuring interpretability.

Trustworthiness

4 Although uncertainty quantification is central to establishing trust, the relative weighting of digital twin predictions with the
measured uncertainty should depend on the baseline uncertainty of the clinical scenario and the specific context of its
application.

Efficacy & Trustworthiness

5 Digital twins in the clinical setting must balance the trade-off between early intervention with less data and higher uncertainty
and delayed intervention with more data and greater certainty but possibly reduced magnitude of impact due to the time delay
for action based on the prediction.

Safety, Efficacy, & Trustworthiness

6 Standardizing VVUQ processes is crucial for ensuring interoperability, quality assurance, and risk management in digital twins,
similar to clinical trials, while addressing challenges posedby the limited interpretability of statisticalmodels like AI andmachine
learning.

Safety
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confounding variables that influence outcomes. A robust alternative
includes leveraging machine learning and artificial intelligence models66

such as regression67 and recurrent network68 large language69,70 models, to
extract representative features and assist in cohort discovery. While these
approaches can generalize beyond the N-of-1 paradigm, challenges such as
bias amplification, confounding, and causal inference remain critical and
require careful assessment71, as well as the use of statistical methods such as
propensity scorematching72 (by calculating andmatching the probability of
an individual having specific characteristics such as disease state or treat-
ment exposure based on observed covariates) or PROCOVA (Prognostic
Covariate Adjustment) methods for additional control73. Additionally, as
digital twins update to reflect changes in the “aging”physical counterparts, a
previously validated version of a digital twin does not necessarily guarantee
the validity—such as safety and efficacy—of its subsequent updates. Here,
digital twins developed in other industries can offer valuable technical
insights. For example, in cyber-physical systems, continuous validation is
achievedby tracing the alignment between thedigital twin and its real-world
counterpart using Needleman-Wunch algorithms74,75. This approach could
potentially be adapted for precision medicine. Central to these efforts is
VVUQ ensuring a tight coupling between virtual and physical representa-
tions. The concept of “models of models” can be leveraged in digital twin
frameworks, allowingmultiple virtual representations to run in parallel and
selecting the most suitable model dynamically. Beyond classical VVUQ
approaches, incorporating data consistency checks between themodels and
the physical counterpart, as well as using benchmarks to test edge cases, can
further enhance robustness and reliability76,77. Addressing these challenges
whendefiningmetrics for successwill likely takemany forms.We anticipate
early efforts will still rely on aggregatedmeasures, but as digital twins evolve
in sophistication, able to capture many more scenarios, statistical methods
may co-evolve to better answer whether a digital twin for a particular
individual is valid.

Trustworthiness in digital twins begins with the explainability of
decisions, the factors influencing those decisions, and the
uncertainties quantified for those decisions
The interpretability of the underlying models is essential for providing
transparent decisions andunderstanding the causations behindpredictions.
While deep learning and other data-driven algorithms can serve as surro-
gates for aspects of the virtual representation where purely mechanistic
modeling is computationally prohibitive, it is crucial to prioritize inter-
pretablemodels that integrate biological and physics-based knowledge.One
promising approach is to combine the predictive power of artificial intelli-
gence with fundamental physics to develop scientific machine learning
(SciML) techniques78, including physics-informed neural networks
(PINNs)26. Moreover, reduced-order models, Gaussian process surrogates,
and regression (or classification) trees79 can provide computational effi-
ciency while ensuring that models remain interpretable and their predic-
tions are quantifiably reliable – i.e., UQ and communication to physicians
and patients. Additionally, the use of both computational and physical
phantoms can serve as benchmarks for validating digital twin predictions
and testing UQ frameworks80,81. When predictions with varying confidence
levels are presented, clinicians need clear thresholds for success and failure
based on the associated confidence levels. This helps ensure that healthcare
professionals can rely on digital twin predictions in clinical decision-
making. Furthermore, ensuring the secure and private transmission of
patient data from the physical counterpart to the digital twin remains a
critical challenge.

An equally important aspect of trustworthiness concerns the
ability of digital twins to execute within reasonable time frames,
making the quantifiably reliable decisions usable in clinical
settings
This presents a significant challenge, as the accuracy and complexity of the
underlying models often increase their computational costs. Managing
uncertainty in this context requires multiple evaluations of such costly

models, making the deployment of digital twins computationally
demanding and potentially delaying decision-making for clinicians. Recent
studies have demonstrated that high-fidelity, multi-scale cardiac model
simulations with UQ demand extensive computational resources, taking
several hours to simulate a single heartbeat and years of approximated
execution time on multi-core processors for complete global sensitivity
analysis simulations82. The same data science strategies that add interpret-
ability can be leveraged to improve computational efficiency. These include
surrogate methods83, scientific machine learning techniques82, and multi-
fidelity methods84,85. Reasonable approximations and simplifications of the
underlying complex systems may be crucial for achieving convergent pre-
dictions with quantifiable uncertainties in actionable time. For instance, in
electrophysiology models of cardiac tissue, one potential strategy might
involve constructing electric network representations of blocks of cardiac
myocytes rather thanmodeling individual cells86. This approach reduces the
computational burden of constructing and solving extensive electrical net-
works that represent the intra- and extra-cellular couplingof everyheart cell,
while still preserving modeling accuracy by leveraging tissue continuum
properties.

A trade-off in the deployment of digital twins for precision med-
icine lies in the timing of interventions versus the associated
uncertainty
Early prediction and simulation of disease trajectories and health progres-
sion due to potential future intervention paradigms, inherently come with
higher uncertainty due to the limited availability of specific data points early
in the disease progression87. As time passes andmore relevant data becomes
available, the uncertainty may decrease88,89. This dynamic presents a
dilemma: intervening early can potentially allow for more effective disease
management but carries the risk of lower certainty in the outcomes. Con-
versely, waiting until closer to the diseasemanifestation reduces uncertainty
but may limit the effectiveness of the intervention89,90. Therefore, deter-
mining the optimal decision-making point where the benefits of early
intervention outweigh the risks posed by uncertainty is crucial for max-
imizing the impact of digital twins in clinical practice. This decision is also
shaped by the baseline success rates of current clinical approaches and the
potential for improving upon them. For example, in cases where existing
outcomes are particularly poor, accepting higher uncertainty in an inter-
ventionmay still be justified, similar to the rationale used in Phase I clinical
trials, where higher risks are often deemed acceptable.

Digital twins for precision medicine are expected to provide patient-
specific recommendations to clinicians, where clinicians combine their
knowledge with the digital twin recommendations for clinical-decision
making. Given their crucial roles, digital twins must adhere to FDA reg-
ulations intended for clinical decision support (CDS) devices91. These reg-
ulations should rigorously ensure validity, safety, and efficacy of the digital
twin predictions. However, digital twins often process complex multi-
dimensional data through models and mechanisms that may lack inter-
pretability, posing challenges for analytical validation and risk assessment92.
Consequently, the traditional regulatory framework established by the FDA
for medical devices is not fully suitable for ensuring the effectiveness and
safety of digital twins93. In recent years, the FDAhas provided guidelines for
assessing the credibility of computational models and simulations used in
medical devices94. However, as digital twins require ongoing updates and
VVUQ integration to accurately reflect changes in their physical counter-
part with calculated risks, their dynamic nature represents a regulatory
challenge that the existing framework does not fully address95.

While each digital twin will necessitate its own testing scenario,
standardizing theVVUQprocessesasmuchaspossible iscritical
for ensuring interoperability, quality assurance, andeffective risk
management, especially given the high-stakes nature of clinical
decision-making often involved with digital twins53

Thoughtful standardization will also facilitate communication with audi-
ences familiar with previous digital twins, enabling them to quickly grasp
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new concepts. This approach mirrors the standardized phases of clinical
trials: Phase 1 focuses on safety with a small group, Phase 2 expands slightly
to evaluate both safety and efficacy, and Phase 3 tests for statistical sig-
nificance in outcomes at the population level. Existing standards and
guidelines from computational modeling, simulation, and data sciences
offer valuable reference points. For instance, the 2018 Validation and
Verification for Medical Devices (V&V 40) standard by the American
Society of Mechanical Engineers (ASME) provides a framework for asses-
sing the efficacy of computationalmodels94,96. However, there remains a gap
in properly standardizingVVUQ implementation and reporting specifically
tailored to digital twins. This gap is partly due to the increasing reliance on
statistical modeling techniques, such as machine learning and artificial
intelligence, which introduce challenges in interpretability and validity
compared to traditional mechanistic models. Addressing this gap will
require active engagement with medical communities of practice, which
play a crucial role in defining consensus standards and establishing para-
meters for the clinical adoption of digital twins. These communities act as
gatekeepers, ensuring that digital twin outputs align with evidence-based
standards and thresholds necessary for establishing clinical guidelines. Such
consensus-building is critical for integrating digital twins into clinical
workflows, as it ensures outputs are actionable and trusted by clinicians. By
collaborating with these communities, VVUQ processes can evolve to
bridge the gap between technological innovation and practical imple-
mentation, fostering widespread adoption and confidence in digital twin
technologies. Effective standardization of VVUQ will be essential for inte-
gratingdigital twins seamlessly into clinicalworkflows, ensuring their design
and continual updates maintain reliability, efficacy, and safety at all times.
While the standardization of VVUQ processes is crucial for the successful
integration of digital twins into clinical workflows, real-world examples that
meet regulatory approval remain limited. One of the most notable cases of
validated UQ and regulatory acceptance in digital twin technology is
HeartFlow’swork in diagnosing andplanning treatment for coronary artery
disease (CAD)97. HeartFlow’s platform combines anatomical and physio-
logical data from coronary computed tomography angiography (CCTA)
with AI-driven analysis to create patient-specific models. In 2022, Heart-
Flow became the first company to receive FDA 510(k) clearance for its AI-
powered Plaque and RoadMap analyses, in addition to its established
physiology analysis based on CCTA98. A key factor in HeartFlow’s FDA
approval was the ability to ensure the safety and efficacy of the proposed
technology through formal mathematical modeling and VVUQ. Heart-
Flow’s success underscores the critical role of VVUQ frameworks in
achieving regulatory acceptance and integration into clinical practice,
ensuring not only safety and efficacy but also practical, real-world appli-
cation. In addition to the HeartFlow platform, other advanced computa-
tional platforms such asMedis QFR andCathWorks FFRangio integrate AI
to enhance cardiovascular care.MedisQFR offers a noninvasive assessment
of angiography-derived physiological simulations for patients with epi-
cardial artery disease, integrating AI to ensure accurate evaluations of the
coronary arteries. Similarly, CathWorks employs its AI-driven FFRangio
technology to calculate functional flow reserve values from coronary
angiogram images, guiding clinical decision making99,100. Collectively, these
platforms align with the goals of the Living Heart Project, a collaborative
initiative to advance patient-specific cardiovascular simulations. This pro-
ject highlights the shared commitment to leveraging advanced modeling
and AI to improve diagnosis, risk assessment, and treatment planning101.
There are also noteworthy examples of complex purely data driven AI
models for clinical diagnostics, where the performance depends heavily on
thequality andquantity of inputdata.Meeting these requirements can result
in models that potentially match, or in certain instances, outperform clin-
ician assessments. For example, AI models for diagnosing mammograms
reduce the false positive rates102, enhance sensitivity for classifying patients
with breast cancer103, and can detect diabetic retinopathy104. AI algorithms
can also help reduce errors in the clinical decision making while providing
faster diagnostic results by analyzing subtle patterns inhistorical and current
medical data105. However, human oversight is essential to assess the

effectiveness of the model’s diagnosis for at-risk patients, along with
ensuring access to large volumes of high-quality data. Challenges such as
data privacy, patient data security, and model hallucination, where models
generate false yet plausible results with high confidence, remain significant
concerns106,107. Further obstacles arise from the conditions under which AI
models are validated. For instance, model accuracies are often tested in
controlled settings that do not reflect clinical environments, with limited
external validation and few real-world studies conducted108,109.Due to lackof
interpretability in most AI algorithms, the rationale behind AI-driven
diagnoses or recommendations is often unclear leading to mistrust among
clinicians110. Addressing these limitations, which are also essential to sup-
porting VVUQ for digital twins, could involve enhancing literacy of the
models and trust amongclinicians, incorporatingmorediverse datasets, and
establishing standardized testing and interpretability procedures to properly
verify and validate the models111.

An innovative direction for regulatory bodies could involve uti-
lizing digital twins to conduct virtual clinical trials before pro-
ceeding to Phase 1 trials
Currently, clinical trials rely heavily on experiments with animal or human
subjects, restricting the scope of interventions and often limited to small
cohorts that may not fully represent the target population. By integrating
digital twins in the clinical trial process, regulatorybodies like theFDAcould
conduct virtual (pre-)clinical trials on simulated patient cohorts. This
approachwould significantly accelerate the trial process and reduce risks by
enabling the preliminary evaluation of interventions on a diverse and
extensive virtual population. For instance, AI-driven digital twin models
incorporating PROCOVA technique – used for reducing the variances
included for the population selection– qualified by the EuropeanMedicines
Agency (EMA) demonstrates augmentation of the control groups in clinical
trials, reducing the need for large placebo groups while maintaining scien-
tific validity73. Moreover, these virtual trials could swiftly identify potential
failure candidates and extensively assess the safety of drugs or medical
devices, enhancing overall efficiency and effectiveness in drug and device
development.

While the VVUQ processes are fundamental for ensuring the
safety, efficacy, and trustworthiness of digital twins in precision
medicine, several limitations must be acknowledged
These include: i) complexity versus time requirements: The VVUQ pro-
cesses, particularly the UQ component, are computationally intensive. For
example, conducting comprehensive sensitivity analyses across extensive
parameter spaces demands significant computational resources, whichmay
not be feasible within tight time constraints for the target clinical
application82. ii) Data demand: The validation process for patient-specific
digital twin necessitates the availability of control data collected from the
patient. In most clinical settings, such as for rare conditions or certain acute
events (e.g., heart failure), such representative data is not available. In certain
cases, a systematic broader patient cohort analysis may address this short-
coming by identifying representative sub-population control groups,
leveraging commonalities in data inputs, model functionalities, and
outcomes112. Additionally, personalized trials (N-of-1) could serve as a
valuable strategy to generate personalized control data in cases where
broader cohort analyses are infeasible55. Digital twin technologywith robust
VVUQ will enable the realization of personalized trials. Strong VVUQ
ensures predictive safety and efficacy in testing treatment strategies. With
personalized models, RCTs with group- or phenotype-based designs can
shift to individualized trial approaches, allowing for safer, more effective,
and faster evaluation of treatment strategies. iii) Scalability: the need for
digital twins to be ‘fit-for-purpose’ for specific clinical applications may
complicate the scalability and standardization of theVVUQprocess, as each
unique application may require unique adjustments to the VVUQ process.
iv) Interpretability and usability: The complexity of the VVUQ processes
may pose interpretability challenges for patients and clinicians, making it
difficult to be utilized in the clinical workflow for assisting clinical decisions.
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Several tools have been proposed to communicate quantified uncertainties
and risks to patients and clinicians, leveraging statistical techniques such as
the Kaplan-Meier curves used for optimizing patient-specific radiotherapy
regimens29, or explainable artificial intelligence (XAI) methods designed to
visualizehead andneck cancer locations and spread113, v)Dynamicnatureof
digital twins causing operational burden: As digital twins evolve alongside
their physical counterparts, integrating a continuous VVUQ processes to
accommodate updates can impose significant operational challenges. This
may result in periods where the digital twins operate under increased
uncertainty or without proper validation. vi) Ethical concerns: Rigorously
applying VVUQ processes requires continual access to highly personalized
and potentially sensitive data, such as medical records and genomic infor-
mation. This raises significant ethical concerns, including issues related to
patient consent and data privacy, which can complicate the implementation
of digital twinswith integratedVVUQprocesses. These challenges highlight
the need for ongoing research to refine VVUQmethodologies and address
these limitations to enhance the practicality, applicability, and privacy of
digital twins in clinical settings.

Incorporating patient-level health data into digital twins for pre-
cision health pose several privacy challenges
Particularly, medical records and genetic information used for design,
calibration and updates of digital twins contain highly sensitive patient
information, where an unauthorized or unconsented access or breach can
lead to significant privacy violations. Moreover, combining multi-level
personalized data to enhance the accuracy and utility of predictions, along
with adding interpretability to model predictions to improve trustworthi-
ness, may inadvertently increase the risk of re-identification. To address
these challenges, the VVUQ framework must incorporate robust data
governance strategies, protecting patient confidentiality and complying
with data protection regulations. Potential solutions include the imple-
mentation of advanced encryption techniques, ensuring secure data storage,
and establishing clear protocols for data access and sharing114,115. Addi-
tionally, adopting federated learning approaches can enhance privacy by
allowing model training across decentralized data sources without trans-
ferring sensitive patient information116. Such methodologies enable the
development of accurate and personalized digital twins while minimizing
privacy risks. Acknowledging and proactively addressing these privacy
concerns is essential for the successful implementation of digital twins in
precision health while maintaining patient trust and ensuring compliance
with ethical and legal standards.

Conclusion
Digital twins represent a transformative approach in precision medicine,
offering the potential to revolutionize health delivery by optimally tailoring
interventions to improve a patient’s current and future health states.
However, the successful integration of digital twins into clinical workflows
hinges on the rigorous application of the VVUQ process. By systematically
addressing the challenges of model accuracy, computational efficiency, and
the quantification and interpretation of the involved uncertainties, VVUQ
will serve as the foundational framework that ensures safety, efficacy, and
trustworthiness of digital twins.

To realize the full potential of digital twins in precision medicine, it is
imperative that all stakeholders take concerted action. Researchers and
developers need not only to incorporate robust VVUQ processes into the
design and implementation of digital twins but also to invest in enhancing
the interpretability of digital twin predictions and associated uncertainties
for clinicians and patients. Clinicians, who guide the considerations around
high-stakes decisions of their patients on a daily basis amid many uncer-
tainties, possess valuable experienceandexpertise that are essential in setting
expectations and standards for establishing confidence in digital twin pre-
dictions. The involvement of regulatory bodies is crucial to establish clear
guidelines and standards for theVVUQprocesses in digital twins, similar to
those existing for clinical devices and trials. These guidelines must account
for the unique characteristics of digital twins, including their dynamic

nature that demands regulatory oversight to ensure safety and efficacy
throughout their entire lifespan, not just at their initial deployment.

In this work, we examined the applications and implications of
VVUQ processes for digital twins of precision medicine through spe-
cific examples in cardiology and oncology. We note that the scope of
digital twins for precision medicine goes beyond these two key clinical
application areas, where for instance, digital twins for psychiatry117,
orthopedics118, pharmacy119, or behavioral sciences120, the findings and
assessments may require adjustment. Additionally, the role for digital
twins - as clinical decision rules versus clinical decision support -
within the clinical workflow may vary across different focus areas in
precision medicine. This variation requires a comprehensive survey,
analyses and further research into the regulatory landscape, involving
all stakeholders, including the FDA. Such efforts should also consider
the digital twin’s inputs, outputs, and the intended use. The integration
of the VVUQ processes for ensuring accuracy and integrity of digital
twin predictions should also maintain data security, protect individual
privacy and address ethical demands at all stages.

By embracing these collective efforts, we can accelerate the adoption of
digital twins in precision medicine and establish patient-specific health
delivery as the norm rather than the exception.
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