DATA-DRIVEN REDUCED MODEL CONSTRUCTION WITH
TIME-DOMAIN LOEWNER MODELS
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Abstract. This work presents a data-driven nonintrusive model reduction approach for large-
scale time-dependent systems with linear state dependence. Traditionally, model reduction is per-
formed in an intrusive projection-based framework, where the operators of the full model are required
either explicitly in an assembled form or implicitly through a routine that returns the action of the
operators on a vector. Our nonintrusive approach constructs reduced models directly from tra-
jectories of the inputs and outputs of the full model, without requiring the full-model operators.
These trajectories are generated by running a simulation of the full model; our method then in-
fers frequency-response data from these simulated time-domain trajectories and uses the data-driven
Loewner framework to derive a reduced model. Only a single time-domain simulation is required
to derive a reduced model with the new data-driven nonintrusive approach. We demonstrate our
model reduction method on several benchmark examples and a finite element model of a cantilever
beam; our approach recovers the classical Loewner reduced models and, for these problems, yields
high-quality reduced models despite treating the full model as a black box.
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duced models; Loewner framework; black-box models; dynamical systems; partial differential equa-
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1. Introduction. Projection-based model reduction derives low-cost reduced
models with low-dimensional reduced states that approximate the high-dimensional
solutions of a large-scale system of equations [2,10,47]. Approximating full-model
solutions with reduced solutions can reduce the runtime by orders of magnitude;
however, the applicability and scope of model reduction is often limited because of
the intrusive nature of reduction algorithms. Deriving a reduced model with, e.g.,
proper orthogonal decomposition [11,49], balanced truncation [35, 36], the reduced
basis method [15,19,21,47], and projection-based interpolatory model reduction [2,3],
is intrusive in the sense that the operators of the full model are required either in an
assembled form or through a routine that provides the action of the operators on a
given vector. In many situations, however, the full model is given as a black box that
computes solutions of the full model without providing the full-model operators. We
introduce here a data-driven nonintrusive model reduction approach that constructs
a reduced model from the solutions of the full model alone, without requiring the
full-model operators.

We consider here time-dependent full models with linear time-invariant (LTT) op-
erators. In our setting, the full models map an input onto an output (quantity of
interest) that is obtained via a linear map from the state. Many time-dependent par-
tial differential equations (PDEs) lead to such LTI systems after discretization in the
spatial domain. Examples include the heat equation with time-invariant coefficients,
equations in dynamic elastic beam and plate theory, and time-dependent convection-
diffusion equations with time-invariant coefficients. LTI systems can be represented
either in the time domain or in the frequency domain, see, e.g., [2,10]. The duality
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of the time-domain and the frequency-domain representation allows one to transform
a time-domain representation into a frequency-domain representation and vice versa.
The map between time-domain representation and frequency-domain representation
is given by the Laplace- (or Z-) transform. Reduction techniques building on proper
orthogonal decomposition and the reduced basis method are typically formulated in
the time domain. In contrast, interpolatory model reduction techniques are typically
formulated in the frequency domain, where these techniques interpolate the trans-
fer function of the LTI system. Here we propose to view these frequency-domain
reduction techniques through a time-domain lens by exploiting the duality between
frequency and time domain. In doing so, we retain the often attractive properties and
the analysis of the frequency-domain techniques, but we derive algorithms that apply
directly in the time domain. In particular, we build on the Loewner framework, which
derives reduced models in the frequency domain from frequency-response data alone,
i.e., from evaluations of the transfer function [5,7,29,33]. The Loewner approach
therefore provides a nonintrusive way of building a reduced model in the frequency
domain. Building on the Laplace- (or Z-) transform to map between frequency and
time domain, we derive a nonintrusive data-driven model reduction technique that
is based on the Loewner framework and that applies directly to time-domain formu-
lations of, e.g., linear PDEs. Our time-domain Loewner approach is a data-driven
nonintrusive model reduction technique that derives a reduced model from the time-
domain outputs obtained via time stepping the full model and therefore is applicable
even if the full model is given as a black box. Only a single time-domain simulation
is required to derive a time-domain Loewner reduced model.

Our approach shares similarities with finite impulse response system identifica-
tion [1,30,34,45], where the impulse responses of an LTI system are extracted from an
input/output trajectory. In [27], the impulse response values are recovered and then
used to derive a Loewner reduced model. The number of impulse response coeflicients
grows with the number of time steps. In contrast, our time-domain Loewner frame-
work directly infers the typically small number of transfer function values, rather
than approximating the potentially large number of impulse response coefficients.
In [23], an approach to approximate the input/output map of an LTI system from
time-domain simulations is introduced. In the first step, finite-dimensional approxi-
mate bases are chosen for both the input and the output spaces of the underlying LTI
system. In the second step, the LTI system is simulated for each basis vector of the
input space and the outputs are projected onto the output basis. This process gives
a map, in the form of a finite-dimensional matrix, from the input basis to the output
basis, which is then used to approximate the action of the LTI system on other in-
puts. The construction of the map requires simulating the LTI system for every basis
vector of the input space, whereas our approach requires only a single solve of the
full model. The approach of [23] is applied to the linearized Navier-Stokes equations
in [22]. In [25], exponentials are fitted to input/output trajectories of LTI systems. A
nonlinear least-squares problem is solved to obtain the coefficients and the frequency
parameters of the exponential fitting. Our approach leads to a linear least-squares
problem and therefore avoids the potentially expensive computations required to solve
the nonlinear optimization problems as in [25].

Other system identification approaches, such as the eigensystem realization algo-
rithm (ERA), are restricted to situations where impulse responses of the full model
are available [28,44,46,51]. Our time-domain Loewner approach constructs a reduced
model from output trajectories that are derived from any input; not necessarily im-
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pulse responses. If state trajectories are available, then dynamic mode decomposition
(DMD) provides a way to find a linear operator that best-fits given state trajectories
in the Ls norm [32,42,43,50]. The work [40] best-fits operators in the Ly norm simi-
larly to DMD but is applicable also in case of low-order polynomial nonlinear terms.
In [12,42], sparsity-promoting regression techniques are used to assemble a reduced
model from a library of model components. In contrast to these techniques that con-
struct reduced models from state trajectories [12,32,40,42,43, 50], our time-domain
Loewner approach is applicable in situations where state trajectories are unavailable.

A different use of data in the model reduction context is the learning of correction
terms to account for dynamics of the full model that are missed by reduced models. In
[39,48], corrections to reduced models are inferred with Bayesian inference for several
different parameter configurations. The inferred corrections with the corresponding
parameter configurations are used as a training set to learn a map from the parameters
of the model to the corrections with supervised machine learning techniques. The
inference and learning approach presented in [39,48] is demonstrated on applications
in the context of model reduction for turbulent flow models. The work [31,52] presents
a data assimilation framework for correcting the model bias of reduced models with
data. Only corrections to available reduced models are learned, whereas our goal is
learning a reduced model in a nonintrusive way from data.

Section 2 introduces the class of linear systems considered and discusses the prob-
lem setup. Section 3 develops our time-domain Loewner approach and gives a compu-
tational procedure to construct a time-domain Loewner reduced model in Algorithm 1.
The numerical results in Section 4 demonstrate our time-domain Loewner approach
on benchmark problems and a finite element model of a cantilever beam. Section 5
gives concluding remarks.

2. Projection-based model reduction and classical Loewner. Section 2.1
briefly introduces LTI systems, and, in particular, high-dimensional LTT systems that
arise from the discretization of time-dependent linear PDEs. Section 2.2 discusses the
time-domain and the frequency-domain representation of LTI systems and Section 2.3
introduces projection-based model reduction with the classical Loewner framework.
The problem formulation is given in Section 2.4.

2.1. Discretization of time-dependent linear PDEs and LTI systems.

Our starting point is a time-continuous system of ordinary differential equations
(ODEs)

(2.1) (1) = a(@(t)) + b(u(t)),

(2(1)),

where N € N is the number of ODEs, ¢ € [0, 00) is time, « : [0,00) — C¥ is the state,
& (t) is the derivative of  in time, @ : CV — C¥ is the linear operator, and b : CV — C
is the linear input operator. The input is u : [0,00) — C. The input is bounded in
the sense that a constant o € R exists that bounds the absolute value of the input
lu(t)] < afor t € [0,00). The output is y : [0,00) — C with the linear output operator
c: CN — C. In this paper, we focus on single-input/single-output systems with zero
initial condition z(0) = 0 € RY. An extension to multiple-input/multiple-output
systems with non-zero initial conditions will be discussed in Section 3.7.

In cases where system (2.1) arises from the spatial discretization of a time-
dependent linear PDE, a arises from the discretization of the PDE operators, and
the input u imposes, e.g., the boundary conditions of the corresponding boundary
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value problem and control inputs. The output y represents the quantity of interest,
which is obtained with the linear functional ¢ from the state.

Consider now a time step size 0 < 6t € R and the time steps 0 = t; < t; <
s <t < ... with ty = kdt for k € N. Discretizing system (2.1) in time leads to a
time-discrete linear time-invariant (LTT) system of order N

(2 2) oF { FExy, 1 = Az + Buy

yr = Czy

where E € CN*N_ A € CN*N B ¢ CVN*1 and C € C**¥ are linear operators. For
k € N, the input, the output, and the state at time step t; are ux € C, y € C, and
x;, € CV, respectively. The initial condition of the LTI system is &g = 0. In the
following, we assume the matrix E has full rank and the system X is asymptotically
stable, i.e., all eigenvalues of E~'A have absolute value less than 1. Note that it is
important to choose the time discretization of the time-continuous LTI system (2.1)
such that the resulting LTI system (2.2) is asymptotically stable. If an explicit scheme
is used, this means that the time step size dt has to be chosen adequately small. We
restrict the following discussion to time-discrete LTI systems that are derived via an
equidistant discretization in time, i.e., via a uniform time step size.

2.2. Time-domain and frequency-domain representation of LTI sys-
tems. In the time domain, the output y, at time step k € N is the convolution
of the impulse response of the system 3 and the inputs ug, ..., ug

k
(2.3) Yk = Z hiug—; ,
i=0
where the impulse response is

(2.4)

. _[cE A BB, k>0
o, k<0’

The output in the time domain can be transformed into the frequency domain
with the Z-transform [37, p. 23]. Note that X is a time-discretized LTI system and
therefore the Z-transform is used, instead of the Laplace-transform. The Z-transform
of the time-domain output {yx},, in (2.3) is the formal power series

o
Y(z)= Zykz_k .
k=0

Similarly, the Z-transform of the impulse response {hj},., in (2.4) is the transfer
function

(2.5) H(z) = i hz7".
k=0

Let U(z) denote the Z-transform of the time-domain input {uy},.,. Then, Y (z) is
the multiplication of the transfer function H(z) and U(z), i.e.,

Y(z) = H(2)U(z).
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2.3. Data-driven nonintrusive construction of reduced models from
frequency-response data. The Loewner approach [5, 7,29, 33] is a data-driven
model reduction technique that derives a reduced model > of order n < N,n € N,
from frequency-response data, i.e., from values of the transfer function H of the full
model 3. The Loewner approach is therefore a nonintrusive model reduction tech-
nique. If transfer function values are available, the Loewner reduced model is derived
directly from the transfer function values and does not require access to the operators
of the full model.

Let {z1,...,2m} C C be a set of m = 2n interpolation points with an arbitrary
partition

(2.6) {z1, -y zm}t =41, U{V1, -, Vn}

into two sets of equal size. Let further H(z1), ..., H(z,) be the values of the transfer
function—the frequency-response data—at the m interpolation points z1, ..., z,,. The
Loewner approach constructs the Loewner matrix

H(pa)—H (1) H(p1)—H(yn)
H1—71 H1—"Vn
L = - c onxn
H(Mn)_H('Yl) . H(/"Ln)_H("/n)
Hn—71 Hn—Yn

and the shifted Loewner matrix

piH@p) = H(n) 1 H(pa) =vn H(vn)
Hr1—m e H1—Yn
ILS — E .. ) - E C’VLXTL ,
P H (pin ) —v1 H (71) P H (pin) —yn H(¥n)
Hn—71 e Hn—Yn

from the frequency-response data and the interpolation points. The Loewner reduced
model is

(2 7) 5: ' {Eik—i-l = Aik + Buk

g = Ciy,
with the operators

E=-L, A=-L,, B=[H(m) ... H(uw)]
and €= [H(m) ... Hiw)

the reduced state ¢ € C™ and the reduced output g, € C at time step k € N. It
is shown in [5,29,33] that the transfer function H of the Loewner reduced model
interpolates the transfer function H of the full model at the interpolation points
Z1, ..., %m- This construction assumes that the Loewner pencil zIL —L; is invertible at
every sampling point {z1, ...,z }. If this is not the case, i.e., in the case of abundant
data, a post-processing step can be applied to resolve this issue by projecting the
reduced operators further using a truncated singular value decomposition (SVD), see,
e.g. [33] and [26, p. 150]. In [18], a post-processing step for stabilizing Loewner reduced
models is presented. Moreover, if the underlying model has a singular E term, i.e.,
it is a system of differential algebraic equations, as shown in [4], this structure can
be also recovered assuming enough data is collected. Additional regularization can
become necessary if the Loewner matrices are ill-conditioned [13].
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The error of the reduced transfer function H in the Ho norm,

HH—HHHOo = sup |H(z) — H(2)|,

|z|=1

can be directly related to the error of the reduced output ¢ = [fo, 71,72, - -] in the
lo-norm

ly = 9lly, < 1H = Hlplwlle,

where y = [yo,¥1,Y2,---]7 and u = [ug,u1, ua,...]T. Similarly, the error in the Hs

norm,
N 1 2m
ey
Ho 2 0

where j = /—1, yields

- 2
H(ei®) — H(e®)| db,

ly = Gllo. < I1H — Hlpollulle, -

See, e.g., [10], for a discussion on the connection between frequency-domain error
measures and time-domain error measures.

2.4. Problem formulation. The classical Loewner framework provides a non-
intrusive way to construct a reduced model from frequency-response data (transfer
function values). In contrast, our goal is to derive a Loewner reduced model from
time-domain simulation data, i.e., from an output trajectory y = [yo,...,yrx_1]
that can be obtained via time-stepping the full model for a given input trajectory
u = [ug,...,ux_1]* for K € N time steps. Thus, we only have available time-domain
simulation data; the full-model operators and frequency-response data are unavail-
able in our setting. Furthermore, unlike the Loewner framework (or the interpolation
framework in general) where the full model needs to be re-evaluated in the frequency
domain for every interpolation point, our aim is to derive the reduced model from
a single input/output trajectory, i.e., from data obtained from a single time-domain
simulation of the full model.

3. Inferring Loewner reduced models from time-domain data. This sec-
tion develops a nonintrusive data-driven technique to construct reduced models 3!
from readily available simulation data. In particular, we require an input trajectory
u € CK and an output trajectory y € CX. Our approach first infers frequency-
response data from the input and output trajectory and then uses the Loewner frame-
work to derive an approximate Loewner reduced model from the inferred frequency-
response data. Section 3.1 and Section 3.2 discuss the relationship between the time-
domain data and frequency-response data. Section 3.3 introduces a regression problem
to infer frequency-response data from a time-domain input/output trajectory. Sec-
tion 3.4 introduces time-domain Loewner reduced models that are constructed from
the inferred frequency-response data. Section 3.5 and Section 3.6 summarize the
computational procedure of the time-domain Loewner approach in Algorithm 1 and
provide practical considerations. Section 3.7 discusses extensions to our time-domain
Loewner approach.
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3.1. Relationship between time-domain and frequency-response data.
Define the points

(3.1) G =crr,
fori=0,..., K —1. Note that ¢; € D, fori =0,..., K — 1, where D denotes the unit
circle,i.e., D ={z € C : |z| = 1}. Tt is clear from (3.1) that ¢; depends on the number
of time steps K — 1. Consider the input trajectory uw = [ug,...,ux_1]T € CX and
the corresponding (discrete) Fourier coefficients vector U = [Up,...,Ux_1]T € CK
such that

K—1
(3.2) up = Z Uigt,
i=0

for k =0,...,K — 1. Let r € N be the number of non-zero Fourier coefficients
and let Z, = {i1,...,ir} C {0,...,K — 1} be the set of the indices of the non-
zero Fourier coefficients. This means we have |U;| > 0 for ¢ € Z, and |U;| = 0 for
i1 €{0,..., K—1}\Z,. Using the representation (3.2) in the convolution of the impulse
response with the input (2.3) leads to

k

k k
(3.3) vk =Y b =Y Yy Uigi™ = Uigt > hug "
=0 =0

= i€l 1€L, =0

We define the sum
k
(3.4) Hy(2) =Y iz
1=0

for k € N, and rewrite (3.3) as

(3.5) ye =Y UiHy(q:)qF .

i€T,

For Z € D, the sequence of the partial sums {Hy(2)}7°, converges to the transfer
function value H(Z) as k — oo, see Section 3.2 and, e.g., [2]. Thus, the relationship
(3.5) provides a direct connection between the time-domain output y; at time step k
and the approximate frequency-response data Hy/(q;) for i € Z,..

3.2. Asymptotic properties. We now analyze the convergence behavior of the
sequence of the partial sums {H(2)}72, to H(Z) for 2 € D. Define 0 Hy(2) such that

H(2) = Hy(2) + 6Hk(2),

for £ € N. Proposition 3.2 shows that, as expected, the rate of the convergence of
{0H(2)}32, to 0 as k — oo depends on the spectral radius of E~!A. We first show
Proposition 3.1 and then present Proposition 3.2. We note that Proposition 3.1 lists
some basic observations about 3, which can be found in some form or another in
the literature, see, e.g., [2, Theorem 5.18]. Here we include a sketch of the proof for
completeness and its connection to the later parts of the paper.

PROPOSITION 3.1. Let A\1,...,An € C be the poles of X, i.e., the eigenvalues of
E~'A, and let p denote the spectral radius, i.e.,

(3.6) p =, max_ [ i
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Assume E~1'A is diagonalizable. Then the absolute value of the impulse response hy,
for k € N is bounded as

(3.7) |hie| < e1pPT,
where ¢1 € C is a constant independent of k. Moreover, if 3 is asymptotically stable,

i.e., if p <1, then the series

o0

(3.8) > (bl

k=0
converges.

Proof. Because E~'A is diagonalizable, we have the eigenvalue decomposition
E'A=QDQ !, where Q € CVN*V is the matrix of the eigenvectors of E~'A and
D ¢ CVXV is the diagonal matrix with the corresponding eigenvalues Ay, ..., Ay € C.
Then, plugging this into (2.4), we obtain

hy = aDkilﬂ,

for k € N where a = [a,...,an] = CQ and B = [B1,...,8~5]T = Q"Y(E~'B).
Then, using (3.6), we obtain

N
Zaiﬁi)\i?71

i=1

|hi| = |aD* 18| = <llalz (BT BvAR T, < lledlllBll2p™

with the constant

1 = [le2lIB]]2-

The convergence of (3.8) follows automatically when p < 1. O

Note that the bound in (3.7) also holds for p > 1. Note further that only p < 1
is necessary for the series (3.8) to converge; it is not necessary that E~1A is diago-
nalizable [2, Theorem 5.18].

PROPOSITION 3.2. Let E71A be diagonalizable and let 2 € D be a point on the
unit circle. Then,

(3.9) 6H.(2) = [H(2) — Hy,(2)] < cap”,

where co € C is a constant that is independent of k and p is defined as in (3.6).
Proof. Using the definition of H(2) in (3.4), we obtain

i hz7

[H(2) — Hk(2)| =
I=k+1
Since z € D, we have
(3.10) Sz < > |l
I=k+1 I=k+1

Then, insert (3.7) in (3.10) to obtain

i Il < i cap” = iclﬂ”’“ = cw’“ipl = 16_1,()/)’“,
=0 1=0

l=k+1 l=k+1

which is the desired result. O
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3.3. Inferring frequency-response data from time-domain data. We now
exploit the relationship (3.5) to infer frequency-response data from a time-domain
input/output trajectory of the full model. Let 0 < € € R be a tolerance parameter
and select kmin € N such that |[0Hy, ., (¢;)| < € for ¢ € Z,., see Section 3.6 for guidance
on the selection of ky;,. We consider the least-squares problem

K-1

. 2
(3.11) H = argmin Z <ykZUilPAIl'qikl> ;
=1

Hi,.. H€C k=p,,,

with the solution H = [Hy, ..., H,]T € C". Note that Z, = {i1,...,i,}. Note further

that we chose ki, such that (3.11) is overdetermined and has a unique solution.
Let F € CE—kmin) X7 1o 4 matrix with

11

Kmin Kmin
Ui1q4 U’imqiT

(3.12) F= € QU —kumm)xr

Upah ™" ... Uiah !

m 1,

and let y € CK—kmin he the vector with 4 = [y .yyk—1]T. Then, (3.11) can be

rewritten as the linear least-squares problem

min? *

) 2
(3.13) argminHFH—gH ,
Hecr 2

which can be efficiently solved, especially if r, the number of non-zero Fourier coef-
ficients of the input, is small. If the number of non-zero Fourier coeflicients is large,
the least-squares problem can become computationally expensive to solve, see the
discussion in Section 3.6.

3.4. Time-domain Loewner reduced model. We first select an even number
m < r of interpolation points from the set of points {g;,,...,q; }. Without loss of
generality, let ¢;,, ..., g, be the interpolation points. Following the classical Loewner
framework discussed in Section 2.3, the set of interpolation points {¢;,, ..., ¢;,, } is par-
titioned into two sets {q;,,..., ¢, } and {¢;,,,,--.,¢i, }. As in the classical Loewner
framework, our method is applicable to any partition of the set of interpolation points
into two subsets of equal size.

We assemble the approximate Loewner matrix L using the inferred frequency-
response data flh R H,

Hi—Hnp H,—H,,
iy — Qi 41 o qi; —4igp
(3.14) L= : ; cCrn,
Hi, —Hi,, Hi, —Hi,,
Qin ~Qip1 Qin, —Qin,

Similarly, we derive the approximate shifted Loewner matrix L

qiy Hi—qi,,  Hnp1 giy =iy, Hon
Qiq =iy e Qiy — iy,
» . . . X
(3.15) L, = . N . e,
Gin Hin =Gin 11 Higy, Gin Hip, = in, Hisy,

Qin — iy 41 o Qip, —Qig,
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We then obtain the inferred reduced operators

B—-f, A--i,
and
B=[H,... H,)" eCcr*, C=[Hpi1,... Hyp) e CH".
The time-domain Loewner reduced model 3 of order n is
s, {Eﬁckﬂ = A&, + Bu,
Uk = Cye

with the reduced state vector &, € C™ and the reduced output g5 € C for £ € N. Once
the time-domain Loewner reduced model 3 is constructed, post-processing techniques
to truncate [26, p. 150] and stabilize [18] the time-domain Loewner reduced model
can be applied just as in the case of the classical, frequency-domain Loewner model
construction.

3.5. Computational procedure. Algorithm 1 summarizes the computational
procedure of deriving a time-domain Loewner reduced model. Inputs to Algorithm 1
are the input trajectory w, the output trajectory y, the number k,;, € N, and
the dimension n € N of the time-domain Loewner reduced model. First, the in-
put trajectory w is transformed into its Fourier representation with coefficients U =
[Uo,...,Uxg_1]T € CK. The indices of the non-zero Fourier coefficients are i1, ... ,i, €
{1,...,K —1}. The matrix F € CHE—Fmin)*m and the vector g € CK—Fmin are as-
sembled as described in Section 3.3. The matrix F' and the vector y define the in-
ference problem (3.13). The solution of the inference problem (3.13) are the inferred
frequency-response data Hy, ..., H, € C for the points Qiys- s Qip-

The algorithm selects the first 2n points ¢;,, ..., Gi,,, € {¢,,---, ¢, } as interpola-
tion points. Note that our methodology is applicable to any other set of interpolation
points that is a subset of {¢;,,...,¢;, }. The inferred Loewner L € C"*" and the in-
ferred shifted Loewner matrix Ly € C"*" are assembled from the inferred frequency-
response data ﬁil yeee ,ﬁim at the interpolation points ¢;, , .. ., gi,, - The time-domain
Loewner reduced model 3 is then derived from L and L as described in Section 3.4.

The computationally expensive steps in Algorithm 1 are computing the Fourier
coefficients of the input trajectory u and solving inference problem (3.13). The costs
of computing the Fourier coefficients are bounded in O(K log(K)) if the fast Fourier
transform is used. The matrix F is of size (K — kpyin) X r and therefore the costs
of solving the inference problem (3.13) are bounded in O(Kr?) [17, Section 5.3.3].
Typically, the runtime of computing the Fourier coefficients and the runtime of the
inference are negligible compared to the runtime of time stepping the full model ¥ to
obtain the output trajectory y for the input trajectory w.

3.6. Practical considerations. The regression problem in (3.13) takes into
account the outputs from time step kmin to K — 1. The outputs at time steps
1,..., kmin — 1 are ignored because the sums Hy(2) for k = 1,..., knin — 1 are poor
approximations of the transfer function values H(2) in the sense of (3.9). The choice
of the index kni, is problem dependent, as indicated by the asymptotic analysis in
Section 3.2. In particular, the eigenvalues of the matrix E~'A determine the con-
vergence rate of the sequence of partial sums {Hy(2)};2, to H(2). Since typically
the eigenvalues of E~' A are unavailable, and therefore cannot be used to guide the
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Algorithm 1 Time-domain Loewner

1: procedure TLOEWNER(u, Y, kmin, 1)

2 Define the points qq,...,qx—1 € C as in (3.1)
3 Compute the Fourier coefficients U = [Uo, cery (A]K,l]T e CK of u

4 Let i1,...,4, € {1,...,K— 1} be the indices of the non-zero Fourier coefficients
5: Assemble matrix F € (C Famin) X7 as in (3.12)

6 Assemble vector ¥ = [yp.. ..., Yx_1|7 € CKFmin

7 Solve (3.13) to infer frequency-response data Hy,...,H,
8 Select without loss of generality the 2n interpolation points ¢;,, ..., gi,,
9: Select the corresponding inferred data H Tyes Hgn
10 Assemble matrix L using Hl, ..., Hy, as in (3.14)
11: Assemble matrix L using Hl, .. I:IQ,L as in (3 15)
12: Construct reduced operators E= —]L A=—-1,

13 Construct B = [Hy,..., H,|" € C™" and C = [Hyy1,. .., Hyp) € CX"
14: Assemble1 time-domain Loewner reduced model 3 of dimension n
15: return X

16: end procedure

selection of knin, we simulate the full model for many times steps K — 1, to ensure
that the outputs enter a steady state, and then set ki, = |1/4K | to use the outputs
of the final 3/4 of the time steps in the inference problem (3.13). Note that setting
kmin too large, i.e., ignoring many outputs in the inference problem (3.13), can lead
to a system matrix F' with a large condition number or even to an underdetermined
inference problem (3.13), see the numerical results in Section 4.4.

The set of interpolation points of the time-domain Loewner reduced model Sisa
subset of the set of points {qo,...,qx—1} defined in (3.1). This shows that increasing
the number of time steps K — 1, increases the number of potential interpolations. The

range of frequencies corresponding to the points qg,...,qx_1 is
2 27(K —1)
—,———| CR.
o

Therefore, performing more time steps K — 1 increases the range of the frequencies
of the points qg,...,qr—_1-

The dimension of the matrix F in (3.13) grows with the number of non-zero
Fourier coefficients of the input. This shows that the Fourier coefficients of the input
have to be sparse to make the least-squares problem (3.13) computationally tractable.
Typically, one first selects interpolation points ¢;,, ..., ¢, of the points qo,...,qx—1,
and then constructs a sparse input that has non-zero Fourier coefficients only for the
frequencies corresponding to the interpolation points g;,,...,q;,,. The input u at
time step k is then a sum of m cosine and sine signals corresponding to the frequencies

of Qiys s Qipys i'e'7
27Tilk
k=0,..., K -1
NC0)

1l & , 2mik
—K;(l—kj)(cos( % >+

such that the Fourier coefficients are non-zero only for frequencies 27mijk/K,l =
1,...,m. Note that selecting interpolation points ¢;,, ..., ¢;, in interpolatory model
reduction is a topic of ongoing research, see, e.g., [3,9,10,20].
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3.7. Extensions. We presented our time-domain Loewner approach for single-
input/single-output models with zero initial conditions. Here, we present a brief
discussion on extensions to multi-input/multi-output systems and to non-zero initial
conditions.

Consider a system with n;, € N inputs and ny,; € N outputs. Then, H(z;) is
an Mgy X Nyn matrix-valued rational function. In this case, in contrast to matrix
interpolation, the Loewner framework (indeed, interpolatory model reduction in gen-
eral) enforces tangential interpolation along a left-tangential direction I; € C™» and
a right-tangential direction d; € C"e=t. Then, the entries of the Loewner matrix
depend on the scalars l?H(z,)dl fori,j =1,2,...,r, see, e.g., [3], for details. If, in-
stead, matrix interpolation is preferred, then the matrix-valued quantities H(z;) will
determine the Loewner matrices. This choice—matrix interpolation versus tangential
interpolation—will determine what the unknowns are and whether to infer the matrix
H (z;) or the scalars I] H(z;)d;. Since the scalars I] H(z;)d; will be needed for all the
combinations of left- and right-tangential directions, it might prove beneficial to infer
H(z;) or H(z;)d; at once and recycle it to fill the entries of the Loewner model.

Consider now the situation where the full model is simulated with a non-zero
initial condition. Our framework requires isolating contributions to the output due
to the input only. This can be achieved by employing the superposition principle
after simulating the system with zero forcing, but with the same initial condition.
This approach has been recently applied in [8] for projection-based model reduction
of systems with non-zero initial conditions. However, if the goal is not just to identify
a reduced model, but also to use it for a wide-range of initial conditions, this requires
projecting the new initial condition of the full-model to the reduced space. This is
a topic of ongoing research even in intrusive projection-based model reduction; see,
e.g., [6,8,24]. However, since we are only focusing on a data-driven framework here,
we do not have access to internal dynamics to construct a projection subspace. To
the best of our knowledge, the question of data-driven modeling with non-zero initial
conditions is unanswered even in the classical Loewner framework. However, we
believe that the framework of [8] might provide a feasible solution by assuming that
the initial conditions of interest, although unknown, lie in a low-dimensional space
spanned by a known basis.

4. Numerical results. This section demonstrates the time-domain Loewner
framework on numerical examples. Section 4.1 provides numerical evidence for the
bounds derived in the asymptotic analysis in Section 3. Section 4.2 and Section 4.3
derive time-domain Loewner reduced models of two benchmark models and Section 4.4
derives a time-domain Loewner reduced model of a finite element model of a cantilever

beam [38].

4.1. An illustrative synthetic example. We take N = 10, E € RV*VN to be
the N x N identity matrix, and set B = CT with C = [1/N,2/N, ..., N/N] € RV,
We construct an N x N matrix with entries drawn from a uniform distribution in
[0,1]. Then, we transform this matrix into the matrix A such that the spectral radius
of Ais p < 1, i.e., all the eigenvalues of A lie in the unit disc. These matrices E, B, C,
and the matrix A define a full model X, of order N = 10 induced by the choice of
the spectral radius p. We now discuss the properties of our time-domain Loewner
framework on full models 3, for varying p < 1.

We first numerically investigate Proposition 3.2 and study the accuracy of the
truncated sum Hy(2) in approximating H(2) for varying p values. Towards this goal
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(a) number of time steps K — 1 with K = 50 (b) number of time steps K — 1 with K = 100

Figure 1: Illustrative example: The absolute error (4.1) of the approximations
{Hrk-1(¢i,), -, Hrx-1(g:,)} of the frequency-response data {H (g, ),...,H(g:,.)} increases
with the spectral radius for a fixed number of time steps. The reported results confirm
numerically the bound of the absolute error derived in Proposition 3.2.

consider the r = 5 points on the unit circle D
o edWl g adW2 g QdWB o oJWa o nJWs
Qiy = €77, Qiy = €77, Qiy = €77, ¢y =€ 77, gy =€ 77,

corresponding to the frequencies in rad/s

Figure 1 plots the absolute error

(4.1) errabs(Hi-1(¢:)) = [H (@) — Hx—1(@)], i€ {iv,... i}

As expected from Proposition 3.2, for a fixed number of time steps K — 1, the absolute
error increases with p. As p — 1, the decay of the impulse response coefficients is slow,
thus the truncation error of Hx_1(Z) is larger. However, as shown in Figure 1b, when
K isincreased to K = 100, the accuracy is increased. We note that if p is close to 1, the
time-domain simulation will naturally take longer to converge. Figure 1 additionally
confirms numerically the bound of the error (4.1) derived in Proposition 3.2. The
plots in Figure 1 show curves for p for ranges where the absolute error is still within
machine precision.
Next we check how the inferred frequency-response data approximate the frequency-

response data of the full model. Let u = [ug, ..., ux_1]7 € CX be the input trajectory
with Fourier coefficients Uy = 1,U3z = 3,Ug = 8,Usg = 20,Us9 = 49 and all other
Fourier coefficients zero. Let further y = [yo,...,yx_1]7 € C be the corresponding

outputs obtained via time stepping the model 3,. We approximate the full-model
frequency-response data H(gi, ), .., H(qi,) with the inferred frequency-response data
Hi, ..., H, using Algorithm 1 with ky;, = |1/4K |. Figure 2a shows the relative error

oy [H(a) — Hil
(42) errrel(Hl) = |H<q”>| 5

for I € {1,...,r} and for varying p. Figure 2b shows the relative errors (4.2) for
K =100 and I = 1,...,r. The theory presented in Section 3.2 suggests that the
relative error of the inferred frequency-response data depends on the spectral radius
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Figure 2: Illustrative example: The plots show that the relative error of the inferred
frequency-response data {1311, cee I:IT} is large if the spectral radius is large relative to the
number of time steps K — 1. In (a), where K = 50, the error starts to increase significantly
near p=7x 1072, and in (b), where K = 100, the error starts to increase near p = 3 x 1071,

p, which is confirmed by the results reported in Figure 2a and Figure 2b. For a fixed
number of time steps, a large spectral radius p leads to a large error. Increasing the
number of time steps helps to reduce the error, as can be seen by comparing Figure 2a
with Figure 2b. Thus, with an appropriately chosen K value, Algorithm 1 accurately
infers frequency-response data for a wide range of p values.

Figure 3 demonstrates that, besides increasing the number of time steps K, in-
creasing the parameter ky;, can compensate a larger p value. Recall that our time-
domain Loewner approach ignores all outputs at time steps 1,. .., knin—1 and uses the
outputs at time steps kmin,..., K — 1 in the regression problem to infer frequency-
response data. In Figure 3a, the frequency-response data are inferred with a rel-
ative error of about 10712 for spectral radii in the range p € [1072,7 x 1072] for
Emin = [1/4K | and in the range [1072,4 x 107!] for ky,;, = [3/4K |. Thus, increasing
kmin significantly increases the range of spectral radii for which transfer function val-
ues are accurately inferred. A similar behavior is reported in Figure 3b for K = 100.
Note that setting kmin too large can lead to a system matrix F of (3.13) with a
large condition number and introduce numerical errors into the inferred data, see the
detailed discussion in Section 4.4.

4.2. Eady example. We consider the dynamics of baroclinic instabilities as de-
scribed by Eady’s model [16]. Baroclinic instabilities are the dominant mechanism
that shape cyclones in the atmosphere and are typically found in the mid-latitude
regions of the Earth. We consider here a time-continuous LTT system of a baroclinic
instability, i.e., a storm track, which is a common model reduction benchmark exam-
ple!. We discretize the LTI system with the fourth-order Dormand-Prince method [14]
and time step size 6t = 10~! to obtain a full model ¥ of the form (2.2). We set
K =102 so that the points qq, ..., gr—1 have frequencies in the range

[27 x 107°, 27 x (1 —107%)] .

We are interested in the frequency range [2m x 1073,3]. Note that we chose the
time step size large to demonstrate the time-domain Loewner approach on an ex-

Thttp:/ /slicot.org/20-site/126-benchmark-examples-for-model-reduction
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Figure 3: Illustrative example: The inference (3.13) uses time-domain outputs starting at
time step Kkmin. Setting kmin large relative to the number of time steps K — 1, avoids
the outputs at early time steps where the approximations Hy(£) have a large error, see
Proposition 3.2.

ample where we have available outputs at only few time steps. We set n = 8,
m = 64, and kpin = [1/4K |, see Section 3.6. The interpolation points ¢, , ..., ¢, ,, €
{qo,...,qx—-1} are selected as logarithmically equidistant frequencies in the range
[2m x 1073, 3], and the points Qi jars - - > Qin, are their complex conjugates so that
both Loewner models have real state-space realizations. The input trajectory u =
[ug, ..., urx_1]T € CK has the components

1 , C(2mik . (2mik B
uk_K§(1+j)(COb< % )-i—jbln( % )), k=0,...,K -1,

so that we obtain the Fourier coefficients

(4.3) U - 1+7, ifie{is,. .. im},
’ ’ 0, else,

fori=0,..., K—1. We feed the input u to the full model X, run a single time-domain
simulation, and derive the time-domain Loewner reduced model 3 with Algorithm 1.
Subsequently, we perform the truncation step discussed in [26, p. 150] to reduce the
dimension of the reduced model to n = 8. For comparison, we additionally construct
the classical Loewner reduced model 3.

The magnitude and phase of the full model, the classical Loewner reduced model,
and the time-domain Loewner reduced model are shown in Figure 4. The transfer
functions are evaluated at 100 test points on the unit circle with frequencies logarith-
mically distributed in the range [27 x 1072,3]. As the figure shows, the time-domain
Loewner reduced model captures the behavior of the classical Loewner reduced model
accurately. Figure 5 shows the output trajectory of a time-domain simulation of the
time-domain Loewner, the classical Loewner, and the full model for a non-zero input
and a zero initial condition. The output trajectory of the time-domain Loewner re-
duced model achieves a similar approximation quality with respect to the full model
as the output trajectory of the classical Loewner reduced model. The Hs and Ho
errors [10] of the two reduced models are shown in Table 1. The crucial observation
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Figure 4: Eady example: The plots compare the magnitude and the phase of the transfer
function of the time-domain and the classical Loewner reduced model to the full model.

here is that with a single time-domain simulation and without any frequency-response
data, Algorithm 1 mimics the accuracy of the classical Loewner model, which requires
evaluating the transfer function at every interpolation point.

Figure 6a compares the eigenvalues of the matrix E-1A of the time-domain
Loewner reduced model to the corresponding eigenvalues of the classical Loewner
reduced model. Figure 6b plots the magnitude of the eigenvalues. The time-domain
Loewner reduced model, and the classical Loewner reduced model, are both asymptot-
ically stable. Additionally, the poles of the time-domain Loewner model approximate
the poles of the classical Loewner model well.

4.3. Penzl example. We consider Penzl’s time-continuous LTI system intro-
duced in [41, Example 3], which is investigated in the context of the Loewner approach
in [26, p. 151] and in the context of SVD-Krylov-based model reduction methods
in [2, p. 408]. Define the following matrices

T —-1 100 T —-1 200 T —1 400
A= [100 1] A= [200 1] » As= [400 1] ’

and the diagonal matrix A, € R'090*1000 with —1,-2,...,-1000 on the diagonal.
The matrix A € R1006x1006 jg 5 block-diagonal matrix with A, Ay, A3, A4 on the
diagonal. The matrices B € R'%% and C € R'*1996 are defined as

B'=C=[10 10 10 10 10 10 1 ... 1].
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Figure 6: Eady example: The eigenvalues of E~'A of the time-domain Loewner reduced
model are similar to the corresponding eigenvalues of the classical Loewner reduced model.
The magnitude of the eigenvalues is less than 1 and therefore the time-domain Loewner
reduced model is asymptotically stable.



18

PEHERSTORFER, GUGERCIN, AND WILLCOX

Table 1: The Ho and Athe Hoo error of the transfer function of the classical H and the
time-domain Loewner H with respect to the full model transfer function H.

| H—H %, | H—H |2, | H—H |7,
[EEATETS 1 H 345 [EEATETS
eady | 741 x 1072 754 x 1072 1.46 x 1072
penzl | 2.47 x 1071 247 x 107! 1.19 x 1074
beam | 4.56 x 1072  6.17 x 1072  6.13 x 1073
| H —H || 200 | H—H | #00 | —H || %00
| H 5 | H ]2 [EEA[EY
cady | 556 x 102 6.03 x 10-2  1.53 x 10-2
penzl | 1.35 x 1071 135 x107' 1.91x10°*
beam | 5.88 x 1074 8.03 x 10~* 6.93 x 10~
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Figure 7: Penzl example: The plots show the magnitude and the phase of the transfer

functions

evaluated at 100 test points.

similar results as the classical Loewner reduced model.
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Figure 8: Penzl example: The absolute error (4.1) of the transfer function of the time-domain
Loewner reduced model over 100 test points shows a similar behavior as the absolute error
corresponding to the classical Loewner reduced model.
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Figure 9: Penzl example: Increasing the number m of interpolation points from m = 2n = 28
to m = 64 increases the approximation quality of the time-domain Loewner reduced model
near the poles, cf. Figure 7.

We discretize the time-continuous LTT system given by

x(t) = Azx(t) + Bu(t)
y(t) = Ca(t)

in time with the implicit Euler method and time step size 6t = 10™* to obtain a full
model ¥ of the form (2.2). We set K = 10° so that the frequency range of the points
4o, - - -, qr—1 defined in (3.1) is

(4.4) [27 x 1078, 27 x (1 - 1079)] .

Following [26, p. 151], we restrict the discussion to the frequency range [10~%, 1], which
contains the significant part of the frequency domain response of 3. We set n = 14,
m = 2n = 28, and kmyin = |1/4K |, see Section 3.6. The first m/2 interpolation points
Qirs s Gip,n € {qo,--.,qK—1} are selected as logarithmically equidistant frequencies
in the range [1074,1], and the other m/2 interpolation points such that the set is
closed under complex conjugation The input trajectory u = [ug,...,ux_1]T € CK is
derived as in Section 4.2. We then time step the full model 3 for this input u, a single
time-domain simulation, to obtain the outputs y = [yo,...,yx_1]7 € CX and derive
the time-domain Loewner reduced model 3 with Algorithm 1. For comparison, we
additionally construct the classical Loewner reduced model >

The magnitude and the phase of the transfer function of the full model, the
classical Loewner reduced model, and the time-domain Loewner reduced model are
shown in Figure 7. As before, the transfer function is evaluated at 100 test points on
the unit circle with frequencies logarithmically distributed in the range [10~%,1]. The
time-domain Loewner reduced model provides a similar approximation accuracy in
magnitude as the classical Loewner reduced model. Two peaks in the magnitude and
the phase of the transfer function are missed by the classical and the time-domain
Loewner reduced model. Our results below will show that increasing the number of
interpolation points leads to classical and time-domain Loewner reduced models that
capture the peaks in the transfer function more accurately. The absolute error of the
transfer function of the time-domain Loewner reduced model is plotted in Figure 8
and illustrates once more that both models have almost the same accuracy.
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Figure 10: Penzl example: The eigenvalues of E~'A of the time-domain Loewner reduced
model are similar to the corresponding eigenvalues of the classical Loewner reduced model.
The magnitude of the eigenvalues is less than 1 and therefore the time-domain Loewner
reduced model is asymptotically stable.

Figure 9 shows that increasing the number of interpolation points from m = 28
to m = 64, and subsequently performing the truncation step discussed in [26, p. 150]
to reduce the dimension of the reduced model to n = 14, increases the accuracy
of the time-domain Loewner reduced model even further. The two Loewner models
approximate the first two peaks in the transfer function of the full model well and
miss the third peak. Note, however, that the time-domain Loewner reduced model
matches the classical Loewner reduced model well. The absolute errors plotted in
Figure 8 confirm that the time-domain and the classical Loewner reduced model have
a similar error in the frequency range [10~%, 1] rad/s. For m = 64, the errors in the Hs
and H, norm are reported in Table 1, illustrating that the Hy and H, performance
of the time-domain Loewner captures that of the classical Loewner at least to the
third significant digit. The eigenvalues of E~1A of the time-domain Loewner reduced
model are shown in Figure 10 and confirm that the model is asymptotically stable
and matches the poles of the classical Loewner model as before.

4.4. Cantilever beam. We now consider a finite element model of a cantilever
Timoshenko beam in a three-dimensional spatial domain [38]. The geometry of the
beam is shown in Figure 11a. The length of the beam is 1 and the height and thickness
of the beam is 0.01. Young’s modulus is set to 210 x 10° N/m? and the density is 7850
kg/m?3, which are typical parameters for iron. Poisson’s ratio is 3/10. The input is the
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Figure 11: Beam example: The geometry of the beam problem is shown in (a). The plot in
(b) shows the displacement of the tip of the beam in direction z3 in response to a non-zero
input at time 0.

force on the tip of the beam in direction x3. The output is the deflection of the beam
at the tip in direction z3. We discretize the corresponding time-continuous LTT system
in time with the implicit Euler method with time step size 6t = 10~* and set K = 10°
to time step the corresponding full model ¥ for K — 1 time steps. The dimension
of the full model is N = 240. The impulse/response of the LTI system is shown in
Figure 11b. The frequency range of the sampling points (3.1) is equal to the frequency
range (4.4) of the Penzl example. The input trajectory u = [ug,...,ux_1]7 € CK
has the Fourier coefficients (4.3) for m = 132 logarithmically distributed frequencies
in the range (4.4) such that they are closed under complex conjugation. We time
step the full model 3 with the corresponding input trajectory to obtain the output
trajectory y = [yo,...,yx_1]T € CK.

Consider first the choice of the parameter ky;,. The results in Section 4.1 and
Figure 3 suggest setting ki, large relative to the number of time steps K — 1 so
that only the outputs at the later time steps are used in the inference problem (3.13);
however, setting kpi, too large can result in a system matrix F of the inference
problem (3.13) with a large condition number. Figure 12 shows the condition number
of the matrix F for values kp;, € {2.5x10%,5x 10%,7.5x 10%,9 x 10°,9.9 x 10°,9.99 x
10°}. The reported results in Figure 12 illustrate for this example that the condition
number of F' is large if ky;, is large, i.e., if many output samples are ignored in the
inference problem.

As in the Penzl example and as discussed in Section 3.6, we set ki, = [1/4K | =
2.5 x 10° and derive a time-domain Loewner reduced model of dimension n = 8
using Algorithm 1. We additionally construct the classical Loewner reduced model
with the same interpolation points for comparison. Figures 13a and 13b show the
magnitude and the phase of the full model, the classical Loewner reduced model, and
the time-domain Loewner reduced model evaluated at 100 test points corresponding to
logarithmically distributed frequencies in the range (4.4). The time-domain Loewner
reduced model captures the full model very accurately, especially for low frequencies.
For higher frequencies, i.e., in the frequency range [1071, 1] rad/s, the time-domain
Loewner reduced model provides a poor approximation of the full model. However,
the classical Loewner reduced model is inaccurate in this high frequency range as well.
Thus, further increasing the number of interpolation points and the dimension of the
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Figure 12: Beam example: The condition number of the system matrix F' of the inference
problem (3.13) significantly depends on the parameter kmin. If kmin is set large relative to
the number of time steps K — 1, i.e., if many outputs are ignored in the inference problem
(3.13), then the condition number of F' can become large and induce numerical errors in the
inferred frequency-response data.
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Figure 13: Beam example: The time-domain Loewner reduced model provides a similar
approximation quality as the classical Loewner reduced model.

reduced models might be necessary to approximate well the transfer function in the
high frequency range.

The absolute error of the transfer function of the time-domain Loewner reduced
model is similar to the error of the classical Loewner reduced model, see Figure 14a,
once again justifying the time-domain Loewner model achieves the accuracy of the
classical Loewner model. We provide a time-domain simulation of the time-domain
Loewner model and classical Loewner model. The outputs of the classical and the
time-domain Loewner reduced model in response to non-zero inputs and zero initial
conditions are plotted in Figure 14b, showing that the time-domain response of both
models are almost the same. The response of the full model is plotted in Figure 11b
and visualized in Figure 15. Figures 16a and 16b show that the time-domain and the
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Figure 14: Beam example: The plot in (a) shows that the absolute error of the time-domain
and the classical Loewner reduced model behaves similar in this example. The plot (b)
compares the output of the time-domain and the classical Loewner reduced model.
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Figure 15: Beam example: The plot shows the displacement of the beam in direction x3. Note
that the displacement, length, width, and height of the beam are scaled for the visualizations.

classical Loewner reduced models are asymptotically stable.
We now derive a time-domain Loewner reduced model from four different inputs
than the input we constructed as defined in (4.3). We consider a sine signal

us,fine:sin<f2k), k=0,....,. K -1,

with fp = 25, and a “chirp” signal

) _ 2
uzhlrp:Sin(l‘i‘QW(fAI]z—_FW)) —Sil’l(l), k:o,...,K—l,

with f4 = 1072, The inputs u¥"¢ = [u§"®, ... w5, T and uhiP = [ughirp, . ,u‘}?ijﬁ’]T
are visualized in Figure 17a-b, respectively. Additionally, we consider the “square”
input w®"?"® that is constructed with the square method of MATLAB with frequency
27/ fp, and the “sawtooth” input w**W*°°" that is constructed with the sawtooth
method of MATLAB with frequency 27/ f, see Figure 17c-d. Consider now the Fourier
coefficients Usi"e ¢ RK Uehire ¢ RK psavare ¢ RE and Usavtooth ¢ RK of the in-
puts usine 4P qsauare g qsawtooth  regpectively. We set all Fourier coefficients
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Figure 16: Beam example: The time-domain Loewner reduced model of dimension n = 8
with m = 132 interpolation points is asymptotically stable.

to zero except those that correspond to the m = 132 logarithmically distributed fre-
quencies in the range (4.4), cf. the construction of the input above. This sparsification
leads to the inputs @5, 4P gsauare and 52Vtooth ip the time domain, for which
we run Algorithm 1. The magnitudes of the transfer functions of the corresponding
time-domain Loewner reduced models are shown in Figure 18. All inputs lead to a
similar behavior as the synthetic input used above. This illustrates Algorithm 1 is
not restricted to a specific input and provides flexibility and robustness for various
input selections.

5. Conclusions. We presented a time-domain Loewner framework that con-
structs a reduced model of an LTT system (e.g., stemming from the discretization
of a time-dependent linear PDE) directly from a single time-domain input/output
trajectory. Our framework is applicable to black-box full models that are marched
forward in time to compute the outputs for given inputs but for which the operators
of the full model and frequency-response data are unavailable. Our approach infers
frequency-response data from the input/output trajectory of the full model and then
uses the classical Loewner framework to construct a reduced model. The numerical
results demonstrate that the time-domain Loewner reduced models provide a similar
accuracy as the classical Loewner reduced models in our examples with benchmark
and finite element models. Extending the new time-domain Loewner framework to
multi-input/multi-output LTI systems and moving from Lagrange interpolation that
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Figure 17: Beam example: The plot visualizes the sine u*™°, the chirp u™P, the square

w8 and the sawtooth w*Vt°°™ inputs.

we consider here to Hermite interpolation are important directions of ongoing and
future work. We developed our time-domain Loewner approach for time-discrete
LTI systems (2.2) that are obtained via a time discretization with equidistant time
step size. Future work includes an extension to adaptive time step sizes, which will
require a formulation of our time-domain Loewner approach for LTI systems with
time-varying operators.
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