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Abstract

In many contexts, it is of interest to assess the impact of selected parameters on the failure probability of
a physical system. To this end, one can perform conditional reliability analysis, in which the probability
of failure becomes a function of these parameters. Computing conditional reliability requires recomputing
failure probabilities for a sample sequence of the parameters, which strongly increases the already high
computational cost of conventional reliability analysis. We alleviate these costs by reusing information
from previous reliability computations in each subsequent reliability analysis of the sequence. The method is
designed using two variants of importance sampling and performs information transfer by reusing importance
densities from previous reliability analyses in the current one. We put forward a criterion for selecting the
most informative importance densities, which is robust with respect to the input space dimension, and use a
recently proposed density mixture model for constructing effective importance densities in high dimensions.
The method controls the estimator coefficient of variation to achieve a prescribed accuracy. We demonstrate
its performance by means of two engineering examples featuring a number of pitfall features such as strong
non-linearity, high dimensionality and small failure probabilities (10−5 to 10−9).

1. Introduction

In order to accurately predict model behaviour with confidence, it is vital to account for uncertainties in-
fluencing the model and its output. Reliability analysis is concerned with quantifying the extremal behaviour
of a model under uncertainty by computing its probability of failure, i.e., the probability of an unacceptable
model response. Often it is of interest to repeatedly perform the analysis on a series of parametrised reliability
problems. Such situations arise in reliability-based design optimization (RBDO), where the parametrisation
is given by the design parameters, or whenever it is desirable to separate the model inputs into two cate-
gories. Hereafter, we refer to these categories as type A and type B. One example of such a separation is
in reducible (epistemic) and irreducible (aleatory) uncertainty [1, 2, 3, 4, 5]. The general goal of separating
inputs in this way is to establish a distinct relationship between type B variables and the probability of failure
conditional on type B variables. By conditioning the probability of failure on type B variables, one obtains
a measure for the influence of these variables on the probability of failure. In general, the concept applies
to any target that can be cast in terms of an expected value. Such a formulation is useful in many contexts
— it may, e.g., be used to provide estimates of credibility bounds, dispersion measures or the distribution
of the probability of failure conditional on type B variables thus quantifying lack of knowledge/confidence
caused by these variables. It gives rise to global sensitivity measures of the conditional failure probability
with respect to the type B variables (e.g., Sobol’ indices [6]) and facilitates the computation of the partial
value of (im-)perfect information for eliciting optimal decisions based on conditional failure probabilities [7].
We have demonstrated how to construct surrogate models mapping the type B-variables to the conditional
probability of failure to obtain global sensitivity measures at significantly reduced computational cost [6].
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Conventional reliability analysis is a challenging task as failure probabilities are typically associated with
rare events [8, 9] and thus assume small values. Simultaneously, it has received considerable attention due
to its relevance to engineering and financial applications. Structural reliability methods (SRM) can be cat-
egorized into approximation-based methods, such as the first- (FORM) and second-order reliability method
(SORM) [10] and sampling-based methods (importance sampling [11, 12, 13], sequential importance sam-
pling [14, 15], subset simulation [16], cross-entropy importance sampling [17, 18, 19], line-sampling [20, 21],
multi-level Monte Carlo (MC) [22] and multi-fidelity MC [23]). Conditional reliability analysis is considerably
more expensive compared to its conventional counterpart as it requires the solution of a sequence of reliability
problems rather than a single one. A number of sampling approaches have been developed for computing
the probability of multiple correlated failure events efficiently. Ref. [24] introduces parallel subset simulation
to estimate failure probabilities of several failure events simultaneously by defining a principle variable that
is correlated with each failure event. In Refs. [25, 26] subset simulation is applied to a parallel system
with each system component representing one reliability problem in the sequence. The corresponding failure
probabilities can be estimated based on the failure probability of the system and the conditional samples
from each subset. Refs. [24, 25, 26] are efficient if all considered failure events are strongly correlated, but
will encounter difficulties if there are failure events occurring in the sequence that are not correlated with
any of the other events. This implies that these methods are not suited for conditional reliability analysis if
the number of type B-samples is large and/or if the type B-samples contribute a large fraction of variability
to the conditional probability of failure, since in either case, the probability of disjunct failure events in the
sequence is considerable. Ref. [27] proposes a method for robust optimization problems, i.e., design opti-
mization under probabilistic constraints that include the mean and variance of the model response. Control
variates are used to recycle information stemming from the previous optimizer iteration to accelerate the MC
constraint computation in each optimization step (but the first). The design parameters, which parametrize
the model and which change in each design iteration, can be viewed as a deterministic counterpart to type
B-variables (see Section 3.2). The same is true for RBDO, where the design optimization is carried out
under constraints on system reliability rather than response moments. Ref. [14] proposes bridge importance
sampling to solve RBDO: Importance densities of reliability computations at previous steps in the design
optimization are used to initialize a bridging step towards the current optimal importance density. Suitable
density candidates are identified based on a heuristic that has inspired an earlier approach to conditional
reliability analysis [28] as well as this contribution (Section 3.3). Ref. [29] proposes to solve RBDO with
importance sampling where information from previous design iterations is incorporated in the choice of the
importance density of the current reliability problem.

Here, we propose a method for solving the conditional reliability problem in high dimensions efficiently
through information reuse. In Section 2, we briefly recap conventional reliability analysis and popular solu-
tion approaches before formally introducing the conditional reliability problem in Section 3. We then discuss
our approach to information reuse that consists of a selection strategy for informative importance densities
and two importance samplers (mixed and controlled) that serve to exploit the selected densities in the current
reliability estimate. In Section 4, we present comprehensive investigations of the method’s performance in
two engineering examples and provide a detailed discussion of the results. Conclusions are given in Section
5.

2. Conventional reliability analysis

In this section, we set up the reliability problem formulation and discuss well-etablished approaches to its
solution. In the second part, we discuss the cross-entropy method (CE) [17, 30] and a recently introduced
improved version thereof (iCE) [31].

2.1. Problem Statement

Consider a system that is modelled by Y : DΘ → R with d-dimensional random input vector Θ : Ω →
DΘ ⊆ Rd, where Ω is the sample space of Θ. FΘ is the joint cumulative distribution function (CDF) of
Θ. Y maps to the system response Y = Y(θ) with the model input θ ∈ DΘ. Based on the response Y ,
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unacceptable system states are defined by means of the limit-state function LSF g̃(Y ). Defining g(θ) = g̃◦Y(θ)
and introducing the convention

g(θ) =

{
≤ 0,Failure

> 0,Safety,

the failure event of the system is defined as F = {θ ∈ DΘ : g(θ) ≤ 0}. The probability of failure is given by
[8]

P = P(F) =

∫

DΘ

I[g(θ) ≤ 0]f(θ)dθ = E [I(g(Θ) ≤ 0)] , (1)

where f is the joint probability density function (PDF) of Θ and the indicator function I[·] equals 1 if true
and 0 otherwise. Without loss of generality, one may formulate an equivalent reliability problem with respect
to the standard-normal probability space using the random vector U : Ω → Rd. Given an isoprobabilistic
transformation T : DΘ → Rd, such that U = T (Θ) [32] and defining G = g(T−1(U)), one can write Eq. (1)
as

P =

∫

Rd

I[G(u) ≤ 0]ϕd(u)du = E [I(G(U) ≤ 0)] , (2)

where ϕd denotes the d-dimensional independent standard-normal PDF.

2.2. Standard MC

The standard MC estimate of integral (2) reads

p̂MC =
1

n

n∑

k=1

I[G(uk) ≤ 0], uk
i.i.d.∼ ϕd.

This estimate is unbiased and has coefficient of variation (CoV)

δMC =

√
1− P
nP

.

Its costs in terms of g-evaluations (= n) are independent of the model dimension d. If P � 1, δMC scales
approximately inversely with the square root of the failure probability and n becomes large for small values
of P . Namely, for a target δ0, at least n0 evaluations of G are required, where

n0 =
1− P
δ2
0P

.

Thus, while independent of the model input dimension, the standard MC estimate is not suited for estimating
rare events if evaluating Y is not cheap.

2.3. Importance sampling

One of the most commonly used techniques to alleviate the above restriction on the sample size while
achieving a prescribed CoV is the importance sampling (IS) method. Let h be a density, such that h(u) > 0
whenever G(u) ≤ 0. Then, we can rewrite integral (1)

P =

∫

Rd

I(G(u) ≤ 0)

w(u)︷ ︸︸ ︷
ϕd(u)

h(u)
h(u)du = Eh [I(G(U) ≤ 0)w(U)] , (3)

where h is termed the importance, auxiliary, instrumental or biasing density and w is the likelihood ratio
or IS weight. In the context of importance sampling, ϕd is often referred to as the nominal density. The
corresponding estimate of the probability of failure is given by

p̂IS =
1

n

n∑

k=1

I[G(uk) ≤ 0]w(uk), uk
i.i.d.∼ h. (4)
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p̂IS is an unbiased estimate of P and its variance is

V[p̂IS] =
1

n
Vh[I[G(U) ≤ 0]w(U)].

Estimating the above based on a set of samples drawn from h, we obtain an estimate for the CoV of p̂IS as

δ̂IS =
1

p̂IS

√√√√ 1

n(n− 1)

n∑

k=1

(I[G(uk) ≤ 0]w(uk)− p̂IS)2, uk
i.i.d.∼ h. (5)

There exists an optimal importance density h∗ such that V[p̂IS] = 0:

h∗(u) =
1

P
I[G(u) ≤ 0]ϕd(u). (6)

Note, that h∗ requires knowledge of the target quantity P . Thus it cannot be used immediately to compute
integral (3). However, it gives rise to a variety of approaches that aim at approximating h∗ by propagating
a sequence of distributions from ϕd towards h∗, e.g., via conditional sampling using Markov Chain Monte
Carlo [12, 15] or through fitting parametric density models [11, 17, 30].

2.4. The iCE method (iCE)

Here, we discuss a recently proposed version of sequential importance sampling that is based on the
classical CE method proposed in Ref. [30] and has been demonstrated to work well in high dimensions [31].
Consider a parametric version of the importance density h(u,v), which is defined by the parameter vector
v ∈ V. The parameter space V contains v0, where h(u,v0) = ϕd(u). The standard CE method aims at
minimizing the Kullback-Leibler (KL) divergence DKL(h∗(u)||h(u,v)) between h∗(u) and h(u,v) over the
parameter space V, which is defined as [17]

DKL(h∗(u)||h(u,v)) = Eh∗

[
ln

(
h∗(u)

h(u,v)

)]

(6)
=

1

P
Eϕd

[I[G(u) ≤ 0] ln(h∗(u))]− 1

P
Eϕd

[I[G(u) ≤ 0]h(u,v)]. (7)

The first summand on the right-hand side of Eq. (7) is not a function of v, so that minimizingDKL(h∗(u)||h(u,v))
can be expressed as

v∗ = arg max
v∈V

Eϕd
[I[G(U) ≤ 0] ln(h(U ,v))] (8)

and its sample-based approximation reads

v̂∗ = arg max
v∈V

1

n

n∑

k=1

[I[G(uk) ≤ 0] ln(h(uk,v))], uk
i.i.d.∼ ϕd. (9)

For fixed v, the objective function in program (9) is equivalent to a weighted version of p̂MC . That is,
to approximate v∗ well with v̂∗, n has to be large if F is a rare event. The CE method circumvents this
problem by approaching h∗ stepwise with a sequence of parametric distributions defined by {vi, i = 1, . . . ,m}.
The failure event F is represented by a series of more probable intermediate events {Fi, i = 1, . . . ,m}
that are defined by manipulating their associated threshold ξi s.t. Fi = {u ∈ Rd : G(u) ≤ ξi}, where
ξ1 > ξ2 > · · · > ξm−1 > ξm. Starting from h(u,v0) = ϕd(u), the threshold ξi is determined as the lower
ρ-quantile of the LSF based on samples from the parametric density associated with Fi−1, h(u,vi−1), with
typical choices for the quantile value ρ = [10−2, 10−1]. The i-th parametric density is then found through
minimizing the KL divergence between hi(u) and h(u,vi), where hi(u) is the optimal importance sampling
density associated with the threshold ξi. Once all nρ new samples lie within the failure domain, i.e., G
evaluated at these samples is always negative, the algorithm is stopped. Solving program (9) based on

samples from h(u, v̂i−1) rather than ϕd introduces the weight W (u, v̂i−1) = ϕd(u)
h(u,v̂i−1) :

v̂i = arg max
v∈V

1

n

n∑

k=1

I[G(uk) ≤ ξi] ln(h(uk,v))W (uk, v̂i−1), uk
i.i.d.∼ h(u, v̂i−1). (10)
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Computing the new parameter set v̂i based on nρ samples in each iteration effectively leaves a fraction of 1−ρ
(90− 99%) of the samples unused and motivates the first of two major points of departure of iCE from CE:
Within iCE, hi is re-parametrized using a smooth approximation of I[g ≤ 0] based on the standard-normal
CDF Φ(·):

hi(u) =
1

Pi
Φ

(
−G(u)

σi

)
ϕd(u) =

1

Pi
ηi(u), (11)

where Pi = Eϕd
[Φ(−G(U)/σi)] is a normalizing constant and σi is a smoothing parameter. This distribution

sequence has been used to construct adaptive importance sampling-based approaches to reliability analysis
[15, 33] , reliability sensitivity analysis [34] and RBDO [14]. The CE-program now reads

v̂i = arg max
v∈V

1

n

n∑

k=1

ln(h(uk,v))W (uk, v̂i−1), uk
i.i.d.∼ h(u, v̂i−1), (12)

where W (u, v̂i−1) = ηi(u)
h(u,v̂i−1) . In program (12), all samples available from h(u, v̂i−1) will be used with their

respective modified weight. Then, in each step, the current σi is identified such that the sample CoV of the
weights {W (uk, v̂i−1), k = 1, . . . , n} , δ̂W (σ), adheres to a target value δtarget:

σi = arg min
σ∈[0,σi−1]

(
δ̂W (σ)− δtarget

)2

. (13)

δ̂W (σ) is a measure of dissimilarity between two subsequent importance densities hi and h(u, v̂i−1) and the
choice of δtarget needs to balance two conflicting targets: On the one hand, large δtarget leads to inaccurate
solutions of program Eq. 12 as the employed samples from h(u, v̂i−1) cannot represent hi well. On the other
hand, with small δtarget, two subsequent intermediate importance sampling densities will be similar such
that the method progresses slowly and many iterations are required to achieve convergence. [31] suggests
δtarget = 1.5, which is employed here as well. The algorithm terminates, when the approximated and optimal
importance density, hi and h∗, are sufficiently close in the sense that CoV[I[G(u)]/Φ(−g(u)/σi)] ≤ δtarget.
Note, that δtarget is computed with hi(u) rather than the parametric h(u, v̂i), since it is more robust with
respect to the flexibility of the parametric model. After termination, additional samples can be drawn from
the final parametric importance density to achieve a prescribed estimator CoV according to Eq. (5). Algo-
rithm 1 describes the iCE procedure in detail.

The second point of departure of iCE from CE is given by the parametric density model choice. When
working in standard-normal space, typical choices for h(u,v) are the d-dimensional single Gaussian density
(SG) [35] or a d-dimensional Gaussian mixture (GM) [19, 35]. For the single Gaussian, programs (10) &
(12) can be solved analytically and for the Gaussian mixture, the solution is identified through the expecta-
tion maximization (EM) algorithm. However, within importance sampling algorithms, both models perform
poorly in higher-dimensional problems (d ≥ 20). A detailed discussion of the issue can be found in Refs.
[35, 36, 37]. In Ref. [38], a von Mises-Fisher model for the direction in U -space is proposed to remedy these
issues. For the iCE method, this model is extended by a Nakagami distribution for the radius of any point in
standard-normal space, which yields the von Mises-Fisher-Nakagami-mixture model (vMFNM) for h(u,v),
where v = [m,Ω,µ,κ,α] [31]. α ∈ RK are the mixture weights of the K components, m ∈ RK and Ω ∈ RK
are the shape and spread parameters of the K Nakagami distributions and κ ∈ RK and µ ∈ RK×d are the
concentration and mean direction parameters of the K von Mises-Fisher distributions. Program (12) can be
solved through a weighted expectation-maximization algorithm. The number of components in the mixture
K can be either prescribed through prior knowledge of the reliability problem (e.g., knowledge of the number
of disjunct failure regions) or - in moderate dimensions - identified through a clustering algorithm such as
DBSCAN [39]. For details, see [31, 35].
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Algorithm 1 The iCE method

Input LSF G(u), input space dimension d, target CoV δtarget, samples per level N

Output estimate p̂iCE, compute estimate CoV δ̂iCE, no. of levels m,
importance densities {h(u, v̂i), i = 1, . . . ,m}

1: procedure iCE(g, δtarget, N , d)
2: Set converged = false
3: Set i = 1
4: Select v̂0 . e.g., s.t. h(u, v̂0) = ϕd(u)
5: while ¬converged do

6: Sample U = {uk, k = 1, · · · , N} ∈ RN×d . uk
i.i.d.∼ h(u, v̂i−1)

7: G = G(U) ∈ RN×1

8: if CoV[I[G]/Φ(−G/σi)] ≤ δtarget then . CoV of likelihood ratio of h∗ and ηi(u)
9: Set m = i− 1

10: W = I[Gk ≤ 0]ϕd(u
k)/h(uk, v̂m) . Likelihood ratio of h∗ and h(u, v̂m)

11: Estimate the failure probability

p̂iCE = Ê(W )

12: Compute the failure probability estimate’s CoV

δ̂iCE =

√
V̂(W )

N Ê(W )2

13: Set converged = true
14: else
15: Compute σi from Eq. (13)
16: Compute v̂i from Eq. (12)
17: i = i+ 1

18: return p̂iCE, δ̂iCE, m, {h(u, v̂i), i = 1, . . . ,m}
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3. Conditional reliability analysis

3.1. Problem Statement

The interest is in computing the failure probability conditional on a dB-dimensional subset of the input
random vector Θ. Let this subset be ΘB : Ω→ DB ⊆ RdB with joint CDF FB . Further let ΘA : Ω→ DA ⊆
RdA with joint CDF FA be the complement of ΘB over Θ such that we may reorder the inputs and write
Θ = [ΘA,ΘB ]T . The failure probability conditional on ΘB is defined by the integral

PF(ΘB) = P(F|ΘB) =

∫

DA

I[g(θA; ΘB) ≤ 0]f(θA|ΘB)dθA = Ef(θA|ΘB) [I(g(Θ) ≤ 0)|ΘB ] . (14)

Using the isoprobabilistic transformation T from Section 2.1 we recast Eq. (14) in standard-normal space:

PF(UB) = P(F|UB) =

∫

RdA

I[G(uA;UB) ≤ 0]ϕdA(uA)duA = E [I(G(U) ≤ 0)|UB ] . (15)

Note that UA and UB are independent and thus we have f(uA|uB) = f(uA) = ϕdA(uA).

As mentioned before, possible applications include quantiles PF/P̄F, surrogate models P̂F(ΘB) or a den-

sity estimate f̂(pF) of PF(ΘB). In practice, these quantities are computed based on nB samples of PF(ΘB),
{pj , j = 1, . . . , nB}, where

pj = PF(ujB) =

∫

RdA

I(G(uA,u
j
B) ≤ 0)ϕdA(uA)duA, ujB

i.i.d.∼ ϕdB , j = 1, . . . , nB . (16)

The computational cost associated with this setting can be considerably higher than that of a conventional
reliability analysis as nB dA-dimensional reliability problems of form (14) have to be solved instead of a
single one. Figure 1 illustrates the estimation of conditional failure probabilities with iCE and the associ-

UA

h(uA;v1
3)

h(uA;v2
3)

h(uA;vnB
3 )

u2
B

u1
B

unB

B

F 1

F 2

FnB

ϕ(uA)

. ..

Figure 1: Illustration of iCE densities: h(uA;vj
i ) is the importance density used at the i-th iCE step in the j-th conditional

reliability problem in standard-normal space. Intermediate densities at equal iCE-steps i associated with different conditional
reliability problems j tend to look identical in this illustration but are generally not. An exception is the nominal density ϕ(uA),
which is identical for each problem.

ated parametric importance densities constructed in the process. Therein, vji is the parameter vector of the
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parametric importance density constructed in the i-th step of the j-th iCE run (i.e., the run solving the j-th
reliability problem). The parameter vector v now receives a superscript to identify the reliability problem to
which it belongs while its subscript indicates the associated iCE step.

The main contribution of this paper is an algorithm that efficiently solves the sequence of conditional reli-
ability problems given in Eq. (16). The connection of this problem sequence to a conceptually similar one
arising in RBDO is discussed in the following subsection. Our framework is based on the iCE method for
conventional reliability analysis. The basic idea is to reuse information from - or more precisely: densities
constructed in - past problems to alleviate the computational cost in the current estimation. The two key
tasks of such an algorithm are the identification of suitable biasing densities amongst solved reliability com-
putations on the one hand, and the efficient integration of these densities in the estimation of the current
conditional failure probability on the other hand. Identification and integration are addressed in subsections
3.3 and 3.4, respectively.

3.2. Connection to RBDO

Reliability-based design optimization (RBDO) may be defined as the minimization of a deterministic cost
function under constraints on the failure probability given the system design. To this end, the design is
parametrized by means of a set of design variables. Then, a problem similar to Eq. (16) arises as the failure
probability of the system has to be evaluated repeatedly and conditional on several points in the design space.
In such case, θjB would represent the design variables’ values in the j-th iteration of the RBDO program. Due
to this similarity, information reuse is also interesting for solving RBDO problems and has been put forward
in this context in Ref. [29]. There, an influence hypersphere around each ΘB-sample in DB is defined
to identify suitable previously constructed importance densities. An important difference to conditional
reliability estimation is the fact that values of ΘB are not based on randomly sampling from f(θB) but are
inherently ordered as they are generated by an optimisation procedure. While this can significantly simplify
the source identification task discussed in Section 3.3, it incurs the additional cost of computing gradients of
the model with respect to ΘB . `2-distance-based information reuse in DB is a promising approach as long
as the design space dimension remains moderate. [28] use a nearest neighbour search to identify such an
ordering based on the `2-distance amongst ΘB-samples in DB . However, in our experience, such a heuristic
for the proximity of reliability problems is not robust if either g is not sufficiently well-behaved (e.g., not
sufficiently linear in θB) or the dimension of DB is large. In the latter case, the heuristic will suffer from the
concentration of distance in high dimensions [40].

3.3. Source selection

We reuse information by identifying parametric importance densities constructed for previous conditional
reliability problems in the sequence (16) that are, in some sense, well-suited to estimate the current conditional
failure probability. Thus, each parameter set {vji , i = 1, . . . ,mj , j = 1, . . . , nB} is stored in a candidate pool
during the computation of the j-th problem, with mj denoting the number of steps in the iCE method
solving the j-th reliability problem. Within importance sampling, the fitness of an importance density for a
given reliability problem can be characterized in terms of its proximity to the optimal importance density,
e.g., in terms of an f -divergence measure. In brief, an f -divergence Df (p|q) measures dissimilarity between
distributions with PDFs p and q as the expected value of the likelihood ratio p/q weighted with a function
f : Df (p|q) = Eq[f(p/q)]. Different choices of f lead to different divergence measures such as the squared
Hellinger distance (f(s) = 2(1−√s)) or the Kullback-Leibler-divergence (f(s) = s log s).

3.3.1. Mode search according to Beaurepaire et al.

Estimating Df (p||q), with p the target density and q any density in the candidate pool, requires a
considerable amount of LSF evaluations per candidate density for source identification only (in addition to
the estimation cost). Instead, Ref. [14] proposes a heuristic to reduce the identification cost to a single LSF
evaluation per candidate density in the context of RBDO. There, the failure probability is re-evaluated with
sequential importance sampling conditional on various design parameter values provided by an optimization
sequence. The heuristic is based on evaluating the current (`-th) LSF G(uA,u

`
B) at the mode ūji of each
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stored parametric density. The fittest importance density amongst all available candidates is identified as
the one whose mode evaluation is closest to 0:

[I`, J`] = arg min
i=1,...,mj ,
j=1,...,nB

|G(ūji ,u
`
B)|, (17)

i.e., the importance density of the `-th reliability problem is selected as the importance density constructed
at the I`-th step of the J`-th conditional reliability problem.

3.3.2. Extension for mixtures and the CE-framework

In this work, we extend the idea presented in Ref. [14] by identifying multiple potentially suitable candidate
densities and combining them into a mixture. Instead of identifying a single density amongst the members of
the candidate pool, we evaluate the current LSF at the mode of each candidate density to identify a mixture
density. The weight αji of the candidate density constructed in the i-th iCE step of the j-th reliability
problem is computed as the inverse absolute value of the LSF at the density mode whereby the weights are
normalized so that they sum to unity. Mixture components whose weights fall below a threshold value (we
choose the threshold as 0.01) are eliminated from the mixture to prevent dilution of the mixtures. The

(a) (b) (c)

(d) (e) (f)

Figure 2: Step-wise illustration of the mode search algorithm (top left to bottom right). The perspective is obtained by a
projection of Figure 1 along the UB-axis. (a) Candidate densities (importance densities from reliability problems 1 and 3) along
with LSF of current reliability problem (problem 2) are depicted. (b) The modes of the candidate densities are identified. (c) +
(d) The LSF of the current problem is evaluated at these modes. (e) The normalized reciprokes of the mode evaluations form
the mixture weights. (f) The importance density mixture for the current problem is computed.

source identification procedure for mixtures is detailed in Algorithm 2, which returns the importance mixture
qα = αTq for each reliability problem but the first. q is the vector of all retained candidates in the current
mixture and α is the vector of associated mixture weights. Figure 2 illustrates the algorithm in one dimension
(dA = 1). The candidate density modes can be computed exactly without additional LSF evaluations due to
their parametric nature.

3.4. Information reuse for iCE: Mixture-based and controlled importance sampling

Once the mixture qα is identified, it can be used for importance sampling. The mixture-based importance
sampling (M-IS) estimate of p` reads

p̂`MIS =

n∑

k=1

ϕdA(ukA)

qα(ukA)
I[G(ukA,u

`
B) ≤ 0], ukA

i.i.d.∼ qα. (18)
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Algorithm 2 Mode-based source identification

Input current conditional LSF G(uA,u
`
B), candidate modes ūji , candidate densities h(uA;vji )

Output number of mixture components M , mixture coefficients α, mixture densities q

1: procedure Source-ID(G,ūji ,h(uA;vji ))

2: Compute mode evaluations ḡji = G(ūji ,u
`
B) . i ∈ 1, 2, . . . ,mj , j ∈ 1, 2, . . . , `− 1

3: Compute mixture coefficients aji =
1/ḡji∑`−1

j=1

∑mj
i=1 1/ḡji

4: Initialize α, q
5: for all aji do . Gather tuples identifying important candidates

6: if aji > 0.01 then

7: Add: α← aji , q ← h(uA;vji )

8:

9: Renormalize mixture coefficients α = α/‖α‖1 ∈ [0.01, 1]M×1 . M =
∑`−1
j=1

∑mj

i=1 I(aji > 0.01)
10: return M ,α, q

The M-IS estimate’s CoV is found in the same way as that of the previously discussed standard IS estimate,
i.e.,

δ̂`MIS =
1

p̂`MIS

√√√√ 1

n2

n∑

k=1

(
ϕdA(ukA)

qα(ukA)
I[G(ukA,u

`
B) ≤ 0]− p̂`MIS

)2

. (19)

The M-IS is one of two IS estimates employed in this work. The second IS estimate results from the application
of a variance reduction technique to the M-IS estimate and is known as controlled importance sampling (C-IS)
[41]. The C-IS estimate can be viewed as a control variates analogue for probability densities. The classical
control variates method is a variance reduction technique that may be applied to unbiased estimators µ̂ of
E[f(X)], where X is a random vector with CDF FX [17]. The idea is to use a random vector of dC control
variates C that is correlated with µ̂ and has known mean c = E[C] to construct a new unbiased estimate
with lower variance compared to µ̂ as:

µ̂β = µ̂+ βT(C − c).
β is found by minimizing V[µ̂β], which yields [17]

βopt = Σ−1
C σµ̂C ,

where ΣC is the covariance matrix of C and σµ̂C is the dC-dimensional vector of covariances between the
components of C and µ̂. The minimal variance reads

V[µ̂βopt ] = V[µ̂]− σT
µ̂CΣ−1

C σµ̂C ,

where σT
µ̂CΣ−1

C σµ̂C ≥ 0, with the expression becoming 0 only if σµ̂C = 0, i.e., if µ and C are uncorrelated.
That is, control variates are based on exploiting knowledge about a quantity that is correlated with the
estimation target, where the larger the correlation, the larger the variance reduction.

Ref. [41] introduces a second mixture qβ of control densities with coefficients β into the M-IS estimate
and add a correction term to preserve its unbiasedness (corresponding to βTc above). Ref. [41] states that,
ideally, for the M-IS sampler these densities are the ones that constitute the importance mixture qβ (namely,
q). The C-IS estimate reads:

p̂`CIS =

n∑

k=1

ϕdA(ukA)I[G(ukA,u
`
B) ≤ 0]− qβ(ukA)

qα(ukA)
+ ‖β‖1, (20)

where qβ = βTq. The second summand is the correction term that preserves unbiasedness. Since qβ is a
density and thus ingrates to 1, we have Eqα [βiqi/qα] = βi ∀ i ∈ 1, 2, . . . ,M . Optimal variance reduction can
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be achieved by minimizing the variance of the C-IS estimate jointly over the additional free coefficients β
and its associated estimate p̂`CIS(β). The estimate’s variance can be computed based on the sample from qα
as

(σ̂`CIS)2 =
1

n

n∑

k=1

(
ϕdA(ukA)I[G(ukA,u

`
B) ≤ 0]− qβ(ukA)

qα(ukA)
+ ‖β‖1 − p̂`CIS

)2

. (21)

Following Ref. [41], minimizing (21) can be cast as a multiple linear regression of the model Y (u) = cTZ(u)
with the extended coefficient vector c = [p̂`CIS,β

T ]T and

Y (u) = ϕdA(u)I[G(u,u`B) ≤ 0]/qα(u)

Z(u) = [1, q1(u)/qα(u)− 1, q2(u)/qα(u)− 1, . . . , qM (u)/qα(u)− 1]T .

The multiple linear regression program reads

ĉ = arg min
c∈R1×M+1

1

n

n∑

k=1

[
Y (ukA)− cTZ(ukA)

]2
, (22)

where β̂opt = ĉ2:M+1 and p̂`CIS(β̂opt) = ĉ1. For simplicity, p̂`CIS shall always denote the minimum variance

estimate p̂`CIS(β̂opt) and its CoV is denoted by δ̂`CIS. The latter can be computed directly from the standard
error of multiple linear regression as

δ̂`CIS =
1

p̂`CIS

√√√√ 1

n(n−M − 1)

n∑

k=1

[
Y (ukA)− ĉTZ(ukA)

]2
. (23)

Eqs. (19) & (23) provide the means to determine the accuracy of the two p`-estimates. In Section 4, we test
the efficiency and accuracy of both the M-IS and C-IS estimates against a standard iCE run starting from
the nominal distribution p. Based on Algorithm 1, this baseline estimate will have CoV δ̂iCE. Thus, the goal
is to achieve δ̂MIS/CIS ≤ δiCE at lower computational cost compared to the total cost of the iCE baseline.
In iCE, δtarget is prescribed for the CoV of the weights of the optimal IS density with respect to its current

smooth approximation hi. This is equivalent to requiring that
√
Nδ̂iCE . δtarget. The inequality is exact if

hi(u) and h(u;vi) are equal. Hence, it is reasonable to enforce

δ̂`MIS/CIS ≤
δtarget√
N

, 2 ≤ ` ≤ nB . (24)

A straightforward way to ensure criterion (24) with as few samples as possible is to incrementally add samples
drawn from the importance mixture to the estimate until convergence. In practice, we start with ∆n samples
and iteratively increase the number of samples by batches of ∆n, where we set ∆n = N/100. The maximum
number of samples is set to the number of samples per level in the iCE procedure N . Convergence is likely
to be achieved within N samples, if the identified importance mixture qα is a good approximation of the
optimal importance density h∗, i.e., if CoV[h∗/qα] ≤

√
Nδtarget.

3.5. Preconditioning iCE

If convergence is not achieved within N samples, it is still likely that CoV[h∗/qα] ≤ CoV[h∗/ϕdA)],
such that replacing the nominal density in Algorithm 1 with qα leads to a reduced number of steps in
the iCE sequence, m. To precondition iCE in this way, one may use the N samples drawn from qα and
evaluated for the M-IS/C-IS-estimate, effectively entering Algorithm (1) in line 8 with v0 corresponding to
the parameter set of qα. In Algorithm 3, this preconditioned version of iCE is called as preconditioned-
iCE(G(uA,u

j
B), δtarget, N, dA, qα,U,G), where the three additional arguments represent a set of samples U

and the corresponding LSF evaluations G, drawn from qα. If the preconditioned iCE step is performed, it is
likely because the history of already computed conditional reliability problems does not contain problems that
are sufficiently informative with respect to the current one. Therefore, once the current problem is solved with
preconditioned iCE, the resulting importance density h(uA;v`m`

) is added to the pool of candidate densities.
In this way, the pool grows adaptively and with each solved conditional reliability problem, it becomes more
informative for the problems left in the sequence. The final procedure is outlined in Section 3.6 by Algorithm
3.
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3.6. The computational procedure

In Algorithm 3, we summarise the overall procedure to estimate a sequence of conditional reliability
problems using Algorithms 1 & 2 as well as samplers (18) or (20).

Algorithm 3 Importance sampling with information reuse

Input LSF G(u), input space dimension d, target CoV δtarget, sample increment ∆n,

samples per level N , a set of B-samples UB = {ujB , j = 1, · · · , nB} ∈ RdB×nB

Output conditional failure estimates p̂ ∈ [0, 1]nB×1, estimate CoVs δ̂ ∈ RnB×1, no. of levels m ∈ NnB×1

1: procedure IS-IR(g, δtarget, N , d, UB)
2: j ← 1
3: gj(uA) = g(uA,u

j
B)

4: [p̂j , δ̂j , mj , {h(uA, v̂i), i = 1, . . . ,mj}]= iCE(gj , δtarget, N , dA) . Algorithm 1
5: Add q ← {h(uA, v̂i), i = 1, . . . ,mj}
6: for j = 2, . . . , nB do
7: [M ,α, q] = Source-ID(g,ūji ,h(uA;vji )) . Algorithm 2
8: qα = αTq
9: n = ∆n

10: Sample UA = {ukA, k = 1, . . . , n} ∈ Rn×dA . ukA
i.i.d.∼ qα

11: Compute G = G(UA,u
j
B) ∈ Rn×1

12: while n ≤ N do
13: With (UA,G), compute p̂jMIS/p̂

j
CIS based on Eq. (18)/(20)

14: With (UA,G), compute δ̂jMIS/δ̂
j
CIS based on Eq. (19)/(23)

15: if δ̂jMIS/CIS ≤ δtarget/
√
N then

16: break
17: else if n ≤ N then

18: Sample UA,new = {ukA,new, k = 1, . . . ,∆n} ∈ R∆n×dA . ukA,new
i.i.d.∼ qα

19: Compute Gnew = g(UA,new,u
j
B) ∈ R∆n×1

20: Add UA ← UA,new

21: Add G← Gnew

22: else if n = N and δ̂jMIS/CIS > δtarget/
√
N then

23: gj(uA) = g(uA,u
j
B)

24: [p̂j , δ̂j ,mj , h(uA, v̂
j
mj )] = preconditioned-iCE(gj , δtarget, N, dA, qα,UA,G)

25: Add q ← h(uA, v̂
j
mj )

26: return p̂,δ̂,m

4. Numerical experiments

4.1. Parameter Study: Sequential processing chain

In the first example, we consider a sequence of processing steps. Each step is modelled as a Possion
process and arrival of the first jump indicates finalisation of a step and triggers the subsequent step. The
arrival time of the first jump in the i-th step is distributed exponentially with rate parameter λi, which is
an uncertain parameter. The goal is to estimate the probability of the total processing time exceeding a
threshold. The LSF thus reads

g(t,λ) = T −
dA∑

i=1

ti,

︸ ︷︷ ︸
∼Hypoexp(λ)

ti ∼ Exp(λi), (25)
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where Exp denotes the exponential distribution and Hypoexp denotes the hypoexponential distribution. The
sum of dA independent exponential random variables with rate parameters λ ∈ RdA×1

+ is hypoexponentially
distributed [42]. The exponential and hypoexponential CDF read

FExp(x;λ) = 1− e−λx ∀x ≥ 0,

FHyp(x;λ) = 1−
dA∑

i=1

e−λix
dA∏

j=1,j 6=i

λj
λj − λi

∀x ≥ 0.

With known rate parameter vector λ, the failure probability is given as

P(F|λ) = P(g(t) ≤ 0) = 1− FHyp(T ;λ). (26)

We let θA = t ∈ RdA×1, ΘB ∼ UdB (0, 1) ∈ RdB×1, where dB = n · dA, n ∈ N, and

1

λi
=

1

n

n·i∑

j=n·i
−n+1

θB,j , i = 1, 2, . . . , dA. (27)

That is, each inverse rate parameter (scale parameter) is computed as the average of n different reducible
variables. With these definitions and transforming the LSF to standard-normal space, Eq. (25) reads

G(uA,uB) = T −
dA∑

i=1

F−1
Exp(Φ(uA,i);λi),

1

λi
=

1

n

n·i∑

j=n·i
−n+1

Φ(uB,j). (28)

We define A ∈ {0, 1}dA×dB such that λ−1 = AθB/n. A has a banded structure with elements of the main
diagonal and the first n−1 diagonals above the main diagonal being 1 and the rest 0. An analytical expression
for PF(UB) follows from Eq. (26):

PF(UB) = 1− FHyp

(
T ; (AΦ(UB)/n)−1

)
. (29)

By inverting Eq. (29) one may compute Tp corresponding to the first-order approximation of a fixed uncon-
ditional failure level p as

Tp = F−1
Hyp

(
1− p; (AΦ(E [UB ])/n)−1

)
= F−1

Hyp(1− p; 2), (30)

where 2 denotes a dA-dimensional vector of twos. In the following application, if not stated otherwise,
dB = 100 and n = 5 such that dA = 20. The unconditional failure probability is chosen as P(F) = 10−5 and
the number of ΘB-samples as nB = 100. We use the relative root-mean-squared error (RMSE) to measure
the accuracy of a failure probability estimate p̂ conditional on θB , which reads

e(p̂|θB) =
1

PF(θB)

√
E
[
(p̂(θB)− PF(θB))

2
]
, (31)

and plot the mean of e(p̂|θB) taken over the nB ΘB-samples in Figure 3. The expectation in Eq. (31)
is computed with 100 repetitions of the analysis using the same ΘB sample set. The proposed algorithms
(M-IS & C-IS) are benchmarked against an iCE reference solution with equal number of samples per level
N = 1000 and target CoV δtarget = 1.5 for iCE, M-IS and C-IS. This corresponds to a target CoV of the
conditional failure probability estimate of approximately 0.05. A series of parameter studies is devised to
illustrate the behaviour of our algorithm depending on the failure magnitude of the problem (P(F) - through
choosing different Tp thresholds according to Eq. (30)), its dimensionality in A-space (dA) and B-space (dB)
and the number of conditional reliability problems present in the sequence (nB).
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Figure 3: Failure probability estimation: computational cost (left) and RMSE mean including confidence intervals (right) with
varying unconditional failure probability levels.

The estimator accuracy (mean and variance) of both M-IS and C-IS-based information reuse samplers
matches that of the reference solution when varying P(F) over a wide range (10−3 and 10−9, see Figure 3).
The computational savings of our information reuse samplers increase as P(F) decreases and reach > 60%
saved effort at P(F) = 10−9. This is somewhat intuitive as the number of required steps in the iCE sequence
grows with decreasing failure probability magnitude such that the savings potential rises. C-IS does not
notably outperform M-IS, i.e., the control variate effect is negligible at all investigated P(F)-values.
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Figure 4: Conditional failure probability densities in linear (upper) and logarithmic (lower) scale with varying unconditional
failure probability levels.

Figure 4 shows the density estimates corresponding to the P(F)-study. Both mean and confidence inter-
vals (CI) of the density estimates produced with M-IS/C-IS match exactly with the reference solution.,The
confidence intervals here are again based on 100 repeated runs of iCE, M-IS and C-IS while drawing a different
sample set {θjB , j = 1, . . . , nB} in each repetition (as opposed to the plots in Figure 3, which are based on 100
repetitions given an identical sample set). That is, the CIs in Figure 4 represent the aggregation of statistical
uncertainty stemming from the failure estimation (iCE/M-IS/C-IS) and the density estimation based on nB
samples. This procedure (100 repetitions at identical type B-sample for cost/error analysis and 100 random
draws of the type B -sample for computing PF density CIs) is used for any following parameter study as
well. The second parameter study considers the number of type B-samples nB . There, the relative savings
potential at P(F) = 10−5 amounts to 30% (this is also evident from the first parameter study in Figure 3) at
all investigated sample sizes nB , while the absolute savings scale proportionally with the total computational
effort or nB (Figure 5, left). Although the relative RMSE of all failure probability estimators is independent
of nB (Figure 5), PF density CIs are shrinking around the mean density estimates as nB increases (Figure 6)
due to the aggregation of failure probability and density estimation uncertainty in these computations (the
uncertainty in the density estimation). As nB rises further, we expect an increase in relative savings due
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Figure 5: Computational cost (left) and mean relative RMSE of conditional failure probability estimates including confidence
intervals (right) with varying number of type B-variable samples.

to an increasingly dense population of the type B-variable space with samples. This, in turn, will produce
more correlation amongst the LSFs, which facilitates more efficient information reuse. nB does not affect
the relative RMSE of the failure probability estimates (Figure 5, right). Finally, we study the influence of
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Figure 6: Conditional failure probability densities in linear (upper) and logarithmic (lower) scale with varying conditional sample
size nB .

the subspace dimensions dA and dB on the performance of our method. Figure 7 shows the progression of
computational cost and RMSE as dB increases and dA = 10, P(F) = 10−5 and nB = 100 are fixed. The
corresponding conditional failure probability densities - plotted in Figure 8 - reveal a decreasing variability
in PF as dB rises. This is to be expected as every rate parameter (type A-variable) in λ is averaged over an
increasing number of type B variables. That is, the rate parameter variance - and thus also the variance of
PF - scale inversely with dB . As dB increases from 10 to 1000, the computational savings increase from 45%
to > 70% while the error (RMSE) decreases slightly due to the decreasing variability of PF. The same effect
is observed when increasing dA while keeping dB = 100 (and again dB = 100, P(F) = 10−5 and nB = 100)
constant: The variance of PF increases with rising dA (Figure 10), which in turn causes a slight increase of
the relative RMSE (Figure 9). Figure 9 also reveals an intermediate dA regime, in which the computational
savings are relatively low (≈ 20%) due to a plateau in the computational cost of the reference solution be-
tween dA = 10 and dA = 25. In conclusion, this study demonstrates the robustness of the information
reuse-based M-IS/C-IS estimators with respect to the problem dimensions in both type A & B - variables
while facilitating computational savings of ≈ 25%− 75%.
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Figure 7: Failure probability estimation: computational cost (left) and RMSE mean including confidence intervals (right) with
varying problem dimension dB .
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Figure 8: Conditional failure probability densities in linear (upper) and logarithmic (lower) scale with varying dimension dB .
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Figure 9: Failure probability estimation: computational cost (left) and RMSE mean including confidence intervals (right) with
varying problem dimension dA.
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Figure 10: Conditional failure probability densities in linear (upper) and logarithmic (lower) scale with varying dimension dA.
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4.2. Case Study: Monopile foundation in plastically behaving soil

4.2.1. Problem Setup

This case study is based on a finite element model for the interaction of a monopile foundation of an
offshore wind turbine (Figure 11) with stiff, plastic soil. Deterministic parameters of the monopile are its
depth L = 30 m, diameter D = 6 m, wall thickness t = 0.07 m, Poisson ratio ν = 0.3 and Young’s modulus
E = 2.1 · 105 MPa. The uncertain inputs comprise the lateral load H as well as the undrained shear strength
s of the soil and hyperparameters of both quantities. The engineering model consists of a nonlinear finite
element code whose setup is described in detail in Ref. [43] and the probabilistic model considered there has
been modified following Ref. [44]: s is considered both uncertain and increasing in mean with soil depth z.

Figure 11: Wind turbine monopile foundation [43].

It is thus modelled by a random field with linear mean drift along the soil depth coordinate z. Given an
underlying homogeneous Gaussian random field s̃(z,Θ)

{s̃(z) : 0 ≤ z ≤ L} ∼ N (0, σs̃),

the non-homogeneous random field representing the shear strength of the soil can be expressed as

s(z,Θ) = s0 + s1σ
′(z) exp {s̃(z,Θ)}

= s0 + s1γz exp {s̃(z,Θ)} ,

where γ is the soil unit weight, σ′(z) = γz is the effective vertical stress, s0 is the undrained shear strength at
ground level and s1 is the drift parameter governing the mean increase of s with increasing soil depth. s̃(z,Θ)
models the intra-site variability. That is, at a given site with known deterministic s0 and s1, it describes
the inherent variability of the undrained shear strength. In order to describe the inter-site variability, the
parameters s0 and s1 are modelled probabilistically as well. The homogeneous RF s̃ is equipped with an
exponential correlation function:

ρs̃s̃(z
′, z′′) = exp

{
−2|z′ − z′′|

θs̃

}
,

with vertical soil scale of fluctuation θs̃ = 1.9m [45] and standard deviation σs̃ = 0.3 [45, 46]. We assume
the soil to be stiff and plastic according to the classification provided in Ref. [47]. There, the specific soil
weight range is given with 17−19kN/m3, thus we set γ = 18kN/m3. The mean cohesion range is given with
20 − 50kN/m2 by Ref. [47] and Ref. [48] lists the mean range of the undrained shear strength ratio su/σ

′

as 0.23 − 1.4. We fit log-normal distributions for s0 and s1 by setting the 10 % and 90% quantiles of the
distributions equal to the lower and upper bounds of these ranges. The resulting parameters are detailed in
Table 1 along with uncertain parameters for the load H, namely µH and σH . The mean and CoV of the load
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Gumbel distribution in Table 1 are conditional on the parameters aH (location parameter) and bH (scale
parameter):

µH|aH ,bH = µaH + γEµbH

δH|aH ,bH =
π√
6

µbH
µH|aH ,bH

,

where γE is the Euler-Mascheroni constant. s̃ is simulated by means of the midpoint method. That is,

Table 1: Input variable definitions of the monopile foundation.

Input Distribution Mean µ CoV δ

ξ [−] Standard-Normal 0 n.d. (Σξξ = In×n)

s0 [kPa] Log-Normal 33.7094 0.3692

s1 [kPa] Log-Normal 0.7274 0.8019

H [kN ] Gumbel µP |aH ,bH δP |aH ,bH

aH [kN ] Log-Normal 2274.97 0.2

bH [kN ] Log-Normal 225.02 0.2

the spatial domain [0, L] is discretized with n spatial elements and s̃ is represented by means of n random
variables with joint distribution N (0,Σs̃s̃). The random variables represent the random field values at the
element midpoints. Thus, the covariance matrix Σs̃s̃ is computed by evaluating σ2

s̃ρs̃s̃(z
′, z′′) at the element

midpoints. The number of elements is chosen such that 95% of the inherent RF variability is captured by
the RF discretization, leading to n = 82 in this example. Therefore, the total input dimension is d = 87.
As the sampling approaches are implemented in the standard normal space, the midpoint random variables
are transformed to independent standard normal random variables, denoted as ξ, by means of the Cholesky
decomposition of Σs̃s̃. The model output Y = Y(θ) is the maximum occurring stress in the foundation. The
LSF is given by

G(u) = σcrit − Y(T−1(u)),

with T the transformation from the original input probability space DA to standard-normal space and σcrit =
100 MPa the stress threshold, which corresponds to a system failure probability of P(F ) = 3.6·10−4 (estimated

with MC and δ̂MC = 0.1187). Depending on the availability of measurements and inter-site data, the
assignment of inputs to either ΘA and ΘB may vary. We illustrate two cases, the first of which features a
high-dimensional reducible space DB as we set ΘA = [aH , bH , H]and ΘB = [s0, s1, ξ] while the second has
high-dimensional DA, where ΘA = [ξ, H] and ΘB = [s0, s1, aH , bH ].

4.2.2. Efficiency & Accuracy

Due to the large computational cost of a single evaluation of the monopile foundation model, we compare
single runs of M-IS/C-IS over a given type B-sample to the iCE reference, which is repeated 26 times over
that same sample to estimate a confidence interval. For both type B-variable configurations, we set the
number of samples per iCE level to N = 500 and choose δtarget = 1.5 and nB = 100. The monopile
example is well-suited to demonstrate the dependence of information reuse-based savings potential on the
partitioning of inputs in type A and type B. Figures (12) & (13) (both: right) show that the conditional
failure probabilities are computed accurately with the information reuse estimators for both type B-variable
configurations. However, while for the configuration ΘB = [s0, s1, ξ], these results are obtained with ≈ 25%
of the reference computational cost, the second configuration ΘB = [s0, s1, aH , bH ] admits almost no savings
(Figures (12) & (13), left). This is mostly due to the random field hyperparameters aH and bH that are
present in the second configuration and cause a large fraction of PF-variability: The conditional failure
probabilities span roughly 6 orders of magnitude in the second configuration (10−8-10−2 , Figure (13), right)
versus only 2 orders of magnitude in the first (10−4-10−2, Figure (12), right). This high variability delays
the construction of a pool of candidate densities that are relevant for information reuse. As the number of
ΘB-samples increases we expect the computational savings to increase.
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Figure 12: Monopile configuration 1: computational cost (left) and conditional failure probability estimates at ΘB samples
(right) with iCE reference solution mean and 95% CI.
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Figure 13: Monopile configuration 2: computational cost (left) and conditional failure probability estimates at ΘB samples
(right) with iCE reference solution mean and 95% CI.

4.2.3. Conditional densities and global sensitivity analysis

Based on nB = 500 (first configuration) and nB = 100 (second configuration) type B-variable samples,
we compute confidence intervals on PF (Table 2) and a kernel density estimate of its distribution (Figures
14 & 15, left). These are intervals of the random variable PF itself. That means they are not measures
of estimation accuracies but rather a property of the conditional random variable. Estimation accuracy is
measured by the confidence intervals of the estimator P̂F(θiB) as depicted in Figures 12 & 13. The number of
samples per iCE level is set to N = 1000. The intervals again demonstrate the vast increase of PF-variability
in between the first to the second type B-variable configuration. Moreover, we compute reliability-oriented
variance-based sensitivity indices according to Ref. [6]: The nB conditional failure probability samples are
used to construct a surrogate (a partial least squares-based polynomial chaos expansion [49]) of logPF(ΘB),

log P̂F(ΘB). Sobol’ and total-effect indices of log P̂F with respect to ΘB can be computed by post-processing
the surrogate model coefficients [50]. The sensitivity indices indicate that the random field drift gradient s1

contributes by far the largest variability to PF in the first configuration while in the second, the load hyper-
parameters aH and bH dominate the random field parameters (Figures 14 & 15, right). We observe, that
Sobol’ and total-effect indices are much closer to one another under the second configuration indicating an
absence of interaction effects. Under the first configuration, such higher-order effects play a more prominent
role, which is due to the fact that in this configuration all type B-variables are random field-related. In
other words, any pair of parameters belonging to the same probabilistic model is likely to exhibit stronger
dependencies than a pair belonging to two different probabilistic models (here: to the random field model and
the random load model). In the latter case, the pair of parameters can only interact through the FE-model,
where however first-order effects seem to be dominant. Asymptotically, the mean estimates of the conditional
failure probability provided in Table 2 will coincide with the unconditional failure probability of the system.
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Figure 14: Monopile configuration 1: Conditional failure PDF with confidence intervals (left) and variance-based failure sensi-
tivity indices (right) with nB = 500.

Table 2: PF-confidence intervals for two type B-variable configurations.

ΘB = [s0, s1, ξ] ΘB = [s0, s1, aH , bH ]

Mean 2.537 · 10−4 2.828 · 10−4

interval width lower CI upper CI lower CI upper CI

90% 1.530 · 10−4 4.812 · 10−4 7.053 · 10−7 1.457 · 10−3

95% 1.476 · 10−4 7.060 · 10−4 3.910 · 10−7 2.325 · 10−3

99% 1.444 · 10−4 2.789 · 10−3 1.308 · 10−8 8.658 · 10−3

The computed quantities help answer questions such as: ‘Is there something to gain from gathering ad-
ditional information on any of the type B inputs?’ And ‘If so, which parameters should we learn and update
by collecting additional information on them?’ Based on the confidence intervals, the answer to the first
question may be based on predefined maximally admissible bounds on the interval widths or upper semi-
widths (for the failure probability, naturally, the upper tail of the distribution is the decisive one). Under the
second configuration, the large target variability motivates collecting additional information for uncertainty
reduction, whereas, in the first configuration the target variability is already quite low. Then, in order to
decide which type B-variables require an update one may resort to the variable ranking provided by the Sobol’
and total-effect indices of log P̂F: For the second configuration, the load dispersion parameter bH contributes
most of the variance in log P̂F and thus should receive priority in the acquisition of additional data.
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Figure 15: Monopile configuration 2: Conditional failure PDF with confidence intervals (left) and variance-based failure sensi-
tivity indices (right) with nB = 100.
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5. Conclusion

This paper reviews conditional reliability analysis, i.e., the estimation of the probability of failure condi-
tional on a subset of the uncertain inputs. Such conditional probabilities of failure are functions of the input
they are conditioned upon and are useful in a multitude of contexts such as sensitivity analysis, quantification
and communication of lack of knowledge and decision analysis. The estimation of conditional failure proba-
bilities is a computationally intensive task. We present a method to efficiently perform conditional reliability
estimation by reusing information throughout the computation. Information reuse is realized through im-
portance densities from previous computation steps for importance sampling estimates of conditional failure
probabilities. We propose a strategy for the selection of these densities and test two importance sampling
estimators that efficiently incorporate them to reduce the estimator variance, namely: mixture importance
sampling and controlled importance sampling.

In two numerical examples, we find that both mixture and controlled importance sampling perform sim-
ilarly and provide up to 76% computational savings compared to a baseline method without information
reuse. A parameter study reveals the robustness of the proposed method both with respect to the magnitude
of the probability of failure (down to P(F) = 10−9) and the dimensionality of both type A- and type B-
variable spaces (scenarios with up to 200 type A-variables and 1000 type B-variables are investigated). The
second example showcases the application of our method to compute the distribution and global sensitivty
indices of two differently conditioned probabilities of failure for a wind turbine foundation model with 87
inputs. We find that the potential for computational savings offered by information reuse depends on the
variability contributed to PF by the type B-variables. Increasing variability reduces correlation amongst the
limit-state functions in the reliability problem sequence and therefore the re-usability of importance densities.

In order to further increase the potential for computational savings of information reuse, surrogate mod-
els may be used to replace the expensive engineering model at various points in the algorithm. For example,
the sequence of importance densities occurring in iCE could be based on locally reconstructed surrogate mod-
els. Similar approaches have been used in the context of conventional reliability analysis [51] and Bayesian
updating [52].

6. Acknowledgment

We acknowledge support of by the German Research Foundation (DFG) through Grant STR 1140/6-1
under SPP 1886. The third author acknowledges support of the AEOLUS center under the U.S. Department
of Energy Applied Mathematics MMICC award DE-SC0019303. The first author would like to thank Anirban
Chaudhuri and Boris Kramer who have been very helpful in discussing information reuse concepts as well as
importance sampling and its variants.

References

[1] M. H. Faber, On the treatment of uncertainties and probabilities in engineering decision analysis, Journal
of Offshore Mechanics and Arctic Engineering 127 (2005) 243–248.

[2] A. O’Hagan, J. E. Oakley, Probability is perfect, but we can’t elicit it perfectly, Reliability Engineering
& System Safety 85 (2004) 239–248.

[3] S. Ferson, C. A. Joslyn, J. C. Helton, W. L. Oberkampf, K. Sentz, Summary from the epistemic
uncertainty workshop: consensus amid diversity, Reliability Engineering & System Safety 85 (2004)
355–369.

[4] J. Helton, W. Oberkampf, Alternative representations of epistemic uncertainty, Reliability Engineering
& System Safety 85 (2004) 1 – 10. Alternative Representations of Epistemic Uncertainty.

[5] A. Der Kiureghian, O. Ditlevsen, Aleatory or epistemic? Does it matter?, Structural Safety 31 (2009)
105–112.

22



[6] M. Ehre, I. Papaioannou, D. Straub, A framework for global reliability sensitivity analysis in the presence
of multi-uncertainty, Reliability Engineering & System Safety 195 (2020) 106726.

[7] J. E. Oakley, Decision-theoretic sensitivity analysis for complex computer models, Technometrics 51
(2009) 121–129.

[8] O. Ditlevsen, H. O. Madsen, Structural reliability methods, John Wiley & Sons Ltd, 1996.

[9] M. Lemaire, A. Chateauneuf, J.-C. Mitteau, Structural reliability, Wiley-ISTE, 2009.

[10] A. Der Kiureghian, First-and second-order reliability methods, in: E. Nikolaidis, D. M. Ghiocel,
S. Singhal (Eds.), Engineering Design Reliability Handbook, CRC Press, Boca Raton, FL, 2005.

[11] C. G. Bucher, Adaptive sampling an iterative fast Monte Carlo procedure, Structural Safety 5 (1988)
119 – 126.

[12] S. Engelund, R. Rackwitz, A benchmark study on importance sampling techniques in structural relia-
bility, Structural Safety 12 (1993) 255 – 276.

[13] S. Au, J. Beck, A new adaptive importance sampling scheme for reliability calculations, Structural
Safety 21 (1999) 135 – 158.
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