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Abstract The immense design freedom offered by ad-

ditive manufacturing yields tremendous benefits, but it

also raises the question of how to best go about design-

ing components to exploit this design freedom. In early

design phases, design tools need to utilize this freedom,

but do so with low computational cost and with a good

estimate of the final weight to correctly assess the part’s

influence on the overall product design. This is espe-

cially important for aerospace designs. In this paper,

a design methodology is devised for cellular structures

to be manufactured using additive manufacturing tech-

niques, specifically for such early design phases. This

design methodology uses adaptive meshing techniques

to design the topology of the cellular structure, after

which the struts of that cellular structure are optimized

separately to reduce the dimensionality of the problem.
The method is demonstrated for a small generic bracket

and an aircraft bracket design from the literature. For

these problems, our method is fast enough to evaluate

many thousands of design options. This results in iden-

tifying promising candidate designs for further detailed

design work.

Keywords Design for additive manufacturing ·
cellular structures · aerospace · early-stage design

M. Opgenoord
Department of Aeronautics & Astronautics
Massachusetts Institute of Technology
Cambridge, MA, USA
E-mail: mopg@mit.edu

K. Willcox
Institute for Computational Engineering and Sciences
University of Texas at Austin
Austin, TX, USA
E-mail: kwillcox@ices.utexas.edu

1 Introduction

Additive manufacturing builds up products in a layer-

wise fashion, eliminating most of the geometric limi-

tations present in subtractive manufacturing methods.

However, designing for additive manufacturing is still

not a straightforward problem. This is especially true

for the design of lightweight structures, such as cellular

structures. Typically, only the detailed design of those

structures is considered, using expensive design tools.

However, in early design phases, we also require a good

estimate of the weight and performance of such a part,

but typically have lower computational budget avail-

able. This paper describes a methodology to design the

topology of the cellular structure such that it is aligned

with the stress direction and such that its density is

based on the stress magnitude throughout the part—all

with low computational effort to permit incorporation

in early design phases.

Research into design for additive manufacturing has

mostly focused on the detailed design of (smaller) struc-

tural components, where the allowable design space and

the loads are known and fixed. An example of such a

detailed design study is the work by Aage et al. (2017)

who performed a 1-billion-element topology optimiza-

tion study on the internal wing structure of a commer-

cial jetliner, where the resulting wing structure mir-

rored typical bone structures found in a bird wing. How-

ever, when additive manufacturing is used for larger

parts and where the part’s structural properties af-

fect its loading (e.g., a wing structure), the effect of

additive manufacturing on the overall product design

also has to be considered in early-stage design phases.

This is especially important in aerospace designs, for

instance when additive manufacturing techniques are

used for the wing—for which several design methods
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for additive manufacturing have been published (Stan-

ford and Dunning, 2015; Kolonay and Kobayashi, 2015;

Townsend et al., 2018). In early-stage design phases,

potentially thousands of designs need to be evaluated

quickly on the system level in a multi-disciplinary fash-

ion (Martins, 2017). In such a system level design study,

the loads into the structure are continually changing,

requiring repeated redesigns of the structural compo-

nents. Structural design tools for early-stage design phases

therefore need to be low-cost, but at the same time re-

sult in designs that are sufficiently good representations

of the final (detailed) design. Most topology optimiza-

tion methods are more suited for detailed design studies

due to their cost and lower-resolution representations of

the same optimization problem can be far off from the

final result. We therefore develop a design methodology

specifically for early-stage design phases, with low com-

putational cost and a good approximation of the final

structural properties.

An example of a bio-inspired structure that is of

interest to structural engineers is the cellular struc-

ture.1 Cellular structures occur in almost any living tis-

sue in nature, displaying optimized properties such as

stiffness-to-weight ratio, strength-to-weight ratio (Gib-

son, 1997; Mazur et al., 2016), thermal conductivity,

acoustic absorption, and gas permeability (Rehme, 2010).

Furthermore, cellular structures can be more resistant

to buckling (Sigmund et al., 2016), and are attractive

from a fail-safe design perspective as it is typically straight-

forward to design for multiple load paths through a

part. They can also be tailored to exhibit a specific

(even negative) Poisson’s ratio (Clausen et al., 2015).

In order to design structural parts for additive man-
ufacturing in detailed design studies, topology optimiza-

tion methods are often used. Such topology optimiza-

tion methods are based on structural finite element

methods where either each part of the domain is as-

signed a density determined by an optimizer in so-called

Solid-Isotropic-Material-with-Penalization (SIMP) meth-

ods (Bendsøe and Sigmund, 2013; Bendsøe and Kikuchi,

1988), or where the optimizer can control the parame-

ters of a level-set to yield a sharp boundary for the final

part (Sethian and Wiegmann, 2000; Osher and Santosa,

2001; Van Dijk et al., 2013). To more efficiently gener-

ate cellular structures using such approaches, the result

from a topology optimization problem on a coarse mesh

can be projected down to finer length scales to yield

a cellular structure (Pantz and Trabelsi, 2008; Groen

1 With “cellular structure” we refer to a structure that con-
sists of nodes and struts connecting those struts, where all
struts can have different cross-sectional areas. When there
is a repeating pattern to a cellular structure, it is typically
referred to as a “lattice structure.”

and Sigmund, 2017). Alternatively, notions of structural

components such as struts can be embedded in a contin-

uum topology optimization problem (Guo et al., 2014;

Norato et al., 2015; Watts and Tortorelli, 2018).

A different approach designs cellular structures di-

rectly, through for instance ground structure optimiza-

tion methods (Dorn et al., 1964; Hemp and Chan, 1966;

Vanderplaats and Moses, 1972; Kirsch, 1989). A similar

approach was used by Zhou (2012) to design truss-like

continuum structures, optimizing for the density and

orientation of members of a truss-like structure. These

methods numerically approximate optimal Michel struc-

tures (Michell, 1904) using a finite number of struts,

yielding a structure more similar to an animal bone

structure. However, these methods are inherently lim-

ited by the original mesh on which the ground structure

is generated. This can be partially alleviated by tailor-

ing a limited number of unit cells to the stress state in

different parts of the structure and using those to gen-

erate a new ground structure mesh (Graf et al., 2009).

Although additive manufacturing offers larger de-

sign freedom compared to conventional manufacturing

techniques, some manufacturing constraints remain. Be-

cause the parts are built up in a layer-wise fashion

they need support from the layer below them, limiting

the overhang angles between subsequent layers. Even

for powder-based techniques, such overhang limits usu-

ally remain to prevent warping. Selective Laser Sin-

tering (SLS), however, does not have such overhang

constraints as it is powder-based and the temperature

gradients are lower. Critical overhang angles are typi-

cally 45◦ ± 10◦ (Rehme, 2010; Schmidtke et al., 2011),

but this number is strongly dependent on the manufac-

turing process and the material. Furthermore, the ge-

ometric resolution is limited—and dependent on man-

ufacturing process and material—which also limits the

minimum wall thickness.

Including such manufacturing constraints in struc-

tural optimization techniques is critical, otherwise the

optimized model needs to be manually altered to adhere

to the manufacturing constraints, resulting in a loss

of optimality—as illustrated in Fig. 1. Moreover, dedi-

cated design for additive manufacturing—including its

manufacturing constraints—is of major importance for

the introduction of additive manufacturing as an eco-

nomically viable production technique (Vaneker, 2017).

The manufacturing constraint most commonly used in

topology optimization is a minimum or maximum length

scale constraint (Poulsen, 2003; Guest et al., 2004; Guest,

2008). Recently, topology optimization methods started

considering other manufacturing constraints, such as

overhang constraints (Gaynor and Guest, 2016; Lange-

laar, 2016; Qian, 2017). For cellular structures, the com-
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Fig. 1: Manufacturing constraints need to be included in the optimization to ensure the final manufactured part

has optimal performance.
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Fig. 2: Complete approach for designing a manufacturable load-dependent cellular structure.

mon approach is to find that printer orientation where

the maximum number of struts are manufacturable and

remove struts that do not comply with the manufactur-

ing constraints (Shidid et al., 2016).

In this paper, we develop a methodology for design-

ing optimal and manufacturable cellular structures to

be manufactured using additive manufacturing. A ma-

jor goal here is to reduce the computational burden of

designing such cellular structures to allow for inclusion

in early design stages, which is enabled by the use of

low-order methods and adaptive meshing techniques.

The design methodology is split in two main parts: (1)

the design of the structural topology (Section 2), and

(2) finding the optimal thickness of each strut (Sec-

tion 3)—this approach is also illustrated in Fig. 2. This

approach is not globally optimal, but allows for a large

reduction in computational design effort. The designed

cellular structure is then converted into a solid CAD

model to allow for rendering and manufacturing (Sec-

tion 4). The methodology is demonstrated for several
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brackets in Section 5 and concluding remarks are pro-

vided in Section 6.

2 Design of Cellular Topology

To design lightweight cellular structures, the cellular

topology—i.e., the location of the nodes and the con-

nectivity between those nodes—needs to be aligned with

the load direction and needs to be fine in areas of high

stress, while it can be coarser in locations of lower

stress. Moreover, the cellular topology should be de-

fined such that it is actually manufacturable.

In this work, a Riemannian metric field (Section 2.1)

is used to define the cellular topology, where the metric

is informed by the stress tensor throughout the avail-

able design space of the problem, which is found by

solving a linear elasticity problem on a fully solid de-

sign domain (Section 2.2). The metric field is based

on this stress tensor, subject to corrections for direc-

tion and positive definiteness (Section 2.3). Moreover,

information about manufacturing constraints and the

build direction can be included in the Riemannian met-

ric (Section 2.4).

2.1 Riemannian Metric Fields

A cellular structure can be described from a discrete

or continuous viewpoint. In the discrete viewpoint, the

cellular structure consists of nodes and struts, each with

a certain length, thickness, and direction. In the con-

tinuous viewpoint, the properties of the cellular struc-

ture such as the local size—i.e., the volume that each

element of the cellular structure encompasses—and di-

rectionality of the cellular topology can be described as

a continuous field throughout the structure, as shown

in Fig. 3. The latter is a more elegant way of looking

at the problem of designing a load-dependent cellular

topology and also relaxes the intractability of solving

a discrete optimization problem for the optimal topol-

ogy. This continuous approach is demonstrated in the

following.

The goal here is to design a load-dependent cellular

topology—i.e., the location of the nodes and direction

of the struts of the cellular topology are tailored to the

specific loading condition(s) to which the part is sub-

jected. To design such a load-dependent cellular topol-

ogy, we leverage mesh adaptation techniques from the

CFD community. In CFD applications, meshes need to

be locally refined in areas with large gradients, such as

boundary layers and shock waves. Furthermore, these

are areas where the gradient in one direction is large,

while being small in a perpendicular direction, requir-

ing the mesh to exhibit a certain anisotropy. One way of

prescribing anisotropy is through the notion of Rieman-

nian metric spaces, which were first used by Diaz et al.

(1997) and Hecht et al. (1997) for mesh adaptation pur-

poses in fluid flow problems. Such a metric is a tensor

field that at any point in the domain describes mesh size

and anisotropy. Mesh adaptation using a metric com-

puted from solution error is demonstrated by, amongst

others, Loseille and Alauzet (2011a,b), and Yano and

Darmofal (2012). Metric-based anistropic mesh adap-

tation has also been used to increase the efficiency of

SIMP-based topology optimization methods (Ejlebjerg

Jensen, 2016).

Most of these adaptive methods are developed for

meshes with simplicial elements, which are also appro-

priate for structural applications. Triangles—or tetra-

hedra in three-dimensional structures—have good static

structural properties and are therefore appropriate core

elements for a cellular structure. Using such a metric to

describe the triangulation is a natural way to include

information of load paths into the cellular structure,

and also to include manufacturing constraints, as we

show in Section 2.4.

We now present the formal mathematical definition

of a Riemannian metric field, closely following the no-

tation by Loseille and Alauzet (2011a) and Loseille and

Alauzet (2011b). A Riemannian metric field {M(x)}x∈Ω—

with x the physical coordinate—is a smoothly varying

field of semi-positive definite (SPD) matrices on the d-

dimensional domain Ω ⊂ Rd. The edge length of a seg-

ment ab from a ∈ Ω to b ∈ Ω under this Riemannian

metric is given by

`M (ab) =

∫ 1

0

√
ab>M (a + abs) ab ds.

The metric-conforming triangulation Th is then such

that all edges are close to unit length under the Rie-

mannian metric field, {M(x)}x∈Ω , typically satisfying

1√
2
≤ `M (e) ≤

√
2 ∀e ∈ Edges (Th) .

A geometric interpretation of a metric and its cor-

responding triangulation are illustrated in Fig. 4. As a

further example of a metric field, consider the metric

field in Fig. 5, which was used to generate the cellular

structure in Fig. 3.

2.2 Solid Mechanics Solver

To find the continuous stress tensor, we solve the lin-

ear elasticity equations over the whole domain. The full
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(a) Discrete cellular structure
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(based on determinant)
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local direction of cellular topology

Fig. 3: Cellular structure and continuous fields of its properties.

linear elasticity equations are (Shames and Pitarresi,

2000)

∇ · σ + f = 0 ∀ x ∈ Ω (1a)

ε =
1

2

[
∇u + (∇u)

T
]
∀ x ∈ Ω (1b)

σ = C : ε, ∀ x ∈ Ω (1c)

u = u, ∀ x ∈ ∂ΩD (1d)

σ · n = t, ∀ x ∈ ∂ΩN (1e)

where Ω is the domain of the problem, σ is the Cauchy

stress tensor, ε is the infinitesimal strain tensor, u is the

displacement vector, C is the fourth-order stiffness ten-

sor, and f is the body force per unit volume. As for the

boundary conditions, u is the specified displacement of

a boundary ∂ΩD (Dirichlet boundary condition), t is

the specified stress normal to a boundary ∂ΩN (Neu-

mann boundary condition), n is a normal vector (posi-

tive outward). Note that the : operator indicates a dou-

ble contraction, such that Eq. (1c) can be written as

σijkl = Cijklεkl in index notation. C is defined as

Cijkl = λ1δijδkl + µs (δikδjl + δilδjk) ,

where λ1 is Lamé’s first parameter, and µs is the shear

modulus (or rigidity), both of which are elastic moduli,

defined as

λ1 =
Eν

(1 + ν) (1− 2ν)

µs =
E

2 (1 + ν)
,

where E is the Young’s modulus, and ν is Poisson’s

ratio.

The linear elasticity equations are solved using a fi-

nite element method (FEM), specifically a hybridizable

discontinuous Galerkin discretization, following the ap-

proach by Soon et al. (2009).

More details on that discretization and the solver

are provided in Appendix B of (Opgenoord, 2018).2

2.3 Load-Dependent Cellular Topology Based on

Metric Field

To tailor the cellular topology to the load direction and

areas of high stress, we base the topology on the stress

tensor throughout the solid domain. The stress tensor σ

indicates which areas of the domain are highly loaded.

Intuitively, it is desirable to have a finer cellular struc-

ture near highly loaded areas, and to have a coarser

cellular structure near areas with low stress. Further-

more, the structure should align with the stress direc-

tion. Therefore, we adapt the structure to the stress

tensor using metric-based mesh adaptation techniques

(Diaz et al., 1997; Yano and Darmofal, 2012).

Our proposed method for computing the metric from

the stress tensor applies corrections to ensure positive

definiteness of the metric and to ensure that the di-

rection of the metric aligns with the stress direction.

The stress tensor is not necessarily positive definite be-

cause it distinguishes between compression and tension

(Fig. 6), whereas a metric is required to be positive

definite. For adaptation purposes, however, it is not

important to distinguish between compressive and ten-

sile stresses since it is the magnitude of the stresses

that drives the need for local refinement.3 Therefore,

2 The source code for this solver has been made available
at github.com/mopg/luteos.jl.
3 In designing the topology of the cellular structure, buck-

ling is ignored.

https://github.com/mopg/luteos.jl
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h1 = 1/√λ1

h2 = 1/√λ2n1

n2

(a) Metric in 2D

n3

n2

n1

h1 = 1/√λ1

h2 = 1/√λ2
h3 = 1/√λ3

(b) Metric in 3D

(c) Example triangulation in 2D conforming only to the
metric defined at the center of ellipse

(d) Example triangulation in 3D conforming only
to the metric defined at the center of ellipsoid

Fig. 4: Geometric interpretation of a metric. Note that
the triangulation corresponding to the metric is not

unique.

to guarantee the metric is positive definite, we take the

magnitude of the principal stresses to be positive, such

that this metric is positive definite—i.e., it has a pos-

itive determinant. In practice, this is implemented by

taking the eigenvalue decomposition of the stress ten-

sor and taking the absolute value of the eigenvalues to

compute the metric–while ensuring the eigenvalues stay

above a minimum threshold to avoid a semi-definite

metric.

Secondly, to align the topology with the stress di-

rection, the eigenvalues of the metric are altered. The

magnitude of the local determinant of the metric is in-

versely proportional to the local size of the mesh. There-

fore, when the determinant of the stress tensor is large

in a particular part of the domain, the element sizes

of the topology are small in that part as well, which is

Fig. 5: A metric is a field of SPD tensors, illustrated

using ellipses here. This metric field is used to generate

the cellular structure in Fig. 3.

desired. If the stress is high in one particular direction,

the local topology should be elongated along that di-

rection, and thus the metric should be smaller in that

direction. Therefore, the eigenvalues of the final metric

are taken to be the inverse of the eigenvalues of the met-

ric based on the stress tensor—while ensuring that the

area under the metric stays constant. This is illustrated

for two-dimensional problems in Fig. 7.

For three-dimensional problems, we take the inverse

of the principal stresses while scaling the metric such

that the determinant of the metric stays the same. For

three-dimensional problems, the metric is therefore com-

puted as

m1 =
3
√
S2

1

σ1
, m2 =

3
√
S2

1

σ2
, m3 =

3
√
S2

1

σ3
,

where S≡σ1 σ2 σ3 and m1, m2, and m3 are the eigen-

values of the final metric M. The metric M is used to

define the topology.

While not implemented in this paper, this approach

could extend to multiple load cases as well. In that case,

the metric M could be based on a weighted combi-

nation of the stress fields corresponding to those load

cases. The incorporation of manufacturing constraints

into that metric will be the same as is described in the

next subsection.

2.4 Manufacturing Constraints

Although additive manufacturing allows for large de-

sign freedom, few AM processes can manufacture any

type of cellular structure. Most processes are for in-

stance limited in terms of the overhang tolerated for

parts. Typically, extrusion-based manufacturing pro-

cesses have more stringent overhang constraints than
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)
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)
< 0 det

(|σx′x′ | 0
0 |σy′y′ |

)
> 0

Fig. 6: The stress tensor is not necessarily positive definite, but an updated metric for adaptation purposes can

be made positive definite by taking the absolute value of the principle stresses.

σx′x′
σy′y′

M ′ =
(|σx′x′ | 0

0 |σy′y′ |
)

Example of simplex
conforming to metric

σx′x′
σy′y′

M ′ = |σx′x′σy′y′ |
(
1/|σx′x′ | 0

0 1/|σy′y′ |
)

Example of simplex
conforming to metric

Fig. 7: Using scaled eigenvalues for the final metric yields a topology with correct orientation. The top row

illustrates what the topology would look like if the eigenvalues of the final metric were taken to be the absolute

principal stresses, the bottom row illustrates the desired direction obtained by using scaled eigenvalues based on

the principal stresses. M′ is the metric M expressed in the coordinate system of the principal stresses.

powder-based manufacturing techniques, but almost all

additive manufacturing processes have some form of

overhang constraints.

The two most significant manufacturing constraints

are the minimum geometric feature due to limited printer

resolution, and the overhang angle constraint. The lat-

ter constraint is imposed because a new layer needs

to have support from the structure below, as shown in

Fig. 8. Even in powder-based manufacturing methods

this constraint remains due to heat transfer and warp-

ing issues. We also include bridge constraints, which

limit the maximum horizontal “bridge” that can be

printed.

There are several different ways to include the man-

ufacturing constraints. The minimum geometric feature

size limit is straightforward to include by setting the

minimum mesh size through the metric. For the over-

hang angle constraint, we optimize the local metric such

that it is as close as possible to the original metric in

the Frobenius norm, while adhering to the manufac-

turing constraints. In order to solve that optimization

problem, the orientation and shape of the metric needs

to be described geometrically. Here, we choose quater-

nions (Hamilton, 1844; Wie, 2008) to describe the axis

orientation of the metric, and the length of the major

axes (h1, h2, h3) to describe the shape of the ellipsoid

(Fig. 9). Quaternions are chosen over Euler or Tait-

Bryan angles, because these have a singularity which

can limit the convergence of the optimization algorithm.

The optimization problem is described mathematically
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β

(a) Overhang angle

hhor

(b) Bridge length

Fig. 8: In this work, overhang angle constraints and

bridge length constraints are considered.

as

min
q, h1, h2, h3

‖M−Morg‖F (2)

subject to n1h1±n2h2

‖n1h1±n2h2‖ · nprinter ≥ cosβmax

n1h1±n3h3

‖n1h1±n3h3‖ · nprinter ≥ cosβmax

‖q‖ = 1,

where q = [q1, q2, q3, q4]
T

are the quaternions, andM =

RΛRT with R obtained from q as

R =

1− 2q23 − 2q24 2q2q3 − 2q1q4 2q2q4 + 2q1q3
2q2q3 + 2q1q4 1− 2q22 − 2q24 2q3q4 − 2q1q2
2q2q4 − 2q1q3 2q3q4 + 2q1q2 1− 2q22 − 2q23


and Λ the eigenvalue matrix obtained from h1, h2, h3
as

Λ =

1/h21 0 0

0 1/h22 0

0 0 1/h23

 .
The normal vectors of the major axes of the ellipse—

n1, n2, n3—are the columns of R. nprinter is the z-

axis of the printer expressed in the coordinate system

of the part. Note that this optimization problem is

non-convex, due to the ‖q‖ = 1 constraint. A gen-

eral nonlinear optimization solver is therefore used to

h1n1

h2n2

h3n3

(a) Metric, defined by h1, h2, h3 as well as q
(from which n1, n2, n3 follow).

β

ψ

βmax

nprinter

(b) Overhang constraints can be thought of as a
cone in the direction of the printer’s z-axis.

Fig. 9: Geometry of optimization problem for including

manufacturing constraints in the local metric.

solve this problem, in this case an interior point opti-

mizer, Ipopt (Wächter and Biegler, 2006). A geometric

interpretation of this optimization problem is that the

metric has to be oriented such that it points into the

manufacturable cone (Fig. 9), while deviating as little

as possible from the initial metric.

This approach to include manufacturing constraints

into the metric is purely geometric, without a direct re-

lationship to the loads through the cellular structure.

An example of the result of the optimization in 2D is

illustrated in Fig. 10, where in this case the metric is

mostly rotated. However, even though this is a geomet-

ric approach, the impact on the load bearing capabil-

ity of the structure is typically limited, since we find

at each point in the domain a metric that is closest
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h′2

β′
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h′1

)��� < βmax

X

Fig. 10: 2D example of including manufacturing constraints by optimizing the local metric.

to the original metric obtained from the stress tensor,

which ensures the topology is still as closely aligned

with the stress direction as possible. We demonstrate

this by showing the relative specific compliance of a

cellular structure—column under compression—when

we change the build direction. For this cellular struc-

ture the cross-sectional areas for the struts is constant

throughout the structure. We see that the specific com-

pliance is fairly constant for small β angles, but even

for large printer angles (40◦) the specific compliance is

only 20% higher. We show the influence of printer angle

on the direction of the cellular topology of this column

in compression in Fig. 12, which clearly shows that the

topology is oriented along the printer z-axis. Of course,

when the build direction is too different from the load

direction, the load-bearing capability of the structure

will suffer more. The build direction should therefore

be aligned as much as possible with the main load di-

rections in the structure. A natural extension of this

work would be to wrap an optimizer around our design

methodology to find the best build direction, as is for

instance done by Langelaar (2016).

0 10 20 30 40
0

0.5

1

1.5

Printer angle, β

Specific compliance
relative to β = 0◦

Fig. 11: Influence of printer angle on compliance of col-

umn in compression (same column as in Fig. 12).

x y

z
zprinter

(a) β = 0◦

x y

z zprinter

(b) β = 60◦

Fig. 12: The cellular structure is aligned with the

printer direction for this column under compression.

Once the metric is optimized to include manufac-

turing constraints, the topology of the cellular struc-

ture is generated using a metric-based mesh genera-

tor. Throughout this work, we use feflo.a by (Loseille

and Lohner, 2010; Loseille, 2014; Loseille et al., 2017).

To generate the initial mesh for which we compute the

stress tensor, any mesh generator can be used, in this

work typically commercial mesh generation software is

used.

Even though the cellular topology is now tailored

to the loads and aware of manufacturing constraints

through the metric, not all struts may follow manu-

facturable directions. Several heuristic approaches can

be taken to alter the cellular structure to ensure 100%

manufacturability. One could find struts in the struc-

ture that violate the manufacturing constraints, and

then perform edge swaps on them which in many cases

may make the new strut manufacturable, see Fig. 13.
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Such edge swaps are commonly performed in meshing

algorithms. For a 3D structure, however, we only per-

form these edge swaps on boundaries, as in the interior

swapping edges may result in struts colliding with one

another.

For struts that are perpendicular to the printer’s

z-axis, we need to ensure that they have enough sup-

port from below. In this work, we support the “hor-

izontal” strut by finding a node under the strut and

then adding struts between that node and the horizon-

tal strut (Fig. 13).

The remaining struts that are not manufacturable

could simply be removed, as is demonstrated by Shi-

did et al. (2016), but that does not necessarily guaran-

tee manufacturability—one could remove a strut that

was critical to support another strut—nor is there any

guarantee that the resulting structure is still stable. For

now, we take Shidid’s approach, but a more integral ap-

proach is a topic of future work. In case the resulting

structure is unstable, the overall density of the cellular

structure can be altered or the build direction can be

changed.

Strut violates
overhang constraint

Manufacturable
struts

Swapped strut
that adheres to
overhang constraint

l < hhor
Bridge length
too large

Manufacturable
struts

Added
strut

Fig. 13: The manufacturability of the cellular topology

can be improved through edge swaps and by adding

internal support.

3 Optimal Cross-Sectional Area of Struts

Once the cellular topology is defined, we can apply

truss optimization techniques to optimize the size of

each strut in that cellular structure. We therefore use

pinned-joint theory to relate nodal loads to the strut

loads and stresses, thereby assuming uniaxial loading of

the struts and stresses in the nodes. This is a simplifica-

tion that is made to reduce the computational effort for

this early-stage design method. In later design stages,

the struts themselves can be allowed to take up bend-

ing loads (using frame analysis) while also including the

stresses in the nodes.

The truss optimization problem for the minimum-

weight solution with the cross-sectional area of the struts

as design variables, can be cast into a linear program-

ming form. Take a and l to be the vectors containing

the areas and lengths, respectively, of the struts. Then,

for a cellular structure with n nodes and m struts in

physical dimension d, we minimize the volume of the

cellular structure (V) by solving (Kirsch, 1993)

min
a,f

V = lTa (3)

subject to Cf = F

−σCaj ≤ fj ≤ σTaj
aj ≥ 0

f ∈ Rm

where f is a vector containing the forces in the struts,

and F are the nodal forces—the definitions of these

variables is also illustrated in Fig. 14. σC and σT are

F

l1, a1

f3

f1

l2, a2

f1

f2

F1y

l3, a3

f3
f2

Fig. 14: A truss structure optimization is performed to

minimize the weight of the cellular structure.
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the compressive and tensile stress limits, respectively.

C ∈ Rnd×m is the connectivity matrix between nodes

and struts, which is directly determined by the topology

of the cellular structure. Each column of C is the pro-

jection of a strut on the degrees of freedom of the nodes

that are connected to that strut. Therefore, the matrix

entry corresponding to the ith node and jth strut for a

three-dimensional cellular structure is expressed as

C 3 (i−1)+1, j = nj · x̂
C 3 (i−1)+2, j = nj · ŷ
C 3 (i−1)+3, j = nj · ẑ,

where x̂, ŷ, and ẑ are the unit vectors in the x, y, and z

directions, respectively. As an example, consider Fig. 15

where strut k is orientated in the xy-plane and makes

a 60◦ angle with the xz-plane.

60◦

x

y

z

j

i

k

C3 (i−1)+1, k = − 1
2

C3 (i−1)+2, k = 1
2

√
3

C3 (j−1)+1, k = 1
2

C3 (j−1)+2, k = − 1
2

√
3

Fig. 15: The matrix C defines the connectivity between

the struts and nodes of the cellular structure.

This plastic formulation in Eq. (3) can be reformat-

ted as a standard linear program and can therefore be

solved very quickly. This formulation, however, can only

be used for single load cases with no minimum area con-
straints, because the solution has to be a statically de-

terminate structure, seeing as no stress-strain compati-

bility conditions are taken into account (Kicher, 1966).

However, we require constraints to be placed on the

cross-sectional areas of the struts. Therefore, a formu-

lation which satisfies the stress-strain relations has to

be used (Ohsaki, 2011)

min
a,u,f ,σ

V = lTa (4)

subject to Cf = F (force balance)

Bσ +CTu = 0 (stress-strain compatibility)

fj = σjaj (stress definition)

−σC ≤ σj ≤ σT (stress limits)

amin,j ≤ aj ≤ amax,j

u ∈ Rnd, f ∈ Rm

where B ∈ Rm×m is a diagonal matrix where the jth

diagonal entry corresponds to the deformation per unit

force of the jth strut,

Bjj =
lj
Eaj

,

where lj and aj are the length and cross-sectional area

of the jth strut, respectively, and E is the Young’s mod-

ulus. This elastic formulation has been known to suf-

fer from problems with vanishing constraints as aj→0,

resulting in σj becoming independent of fj (Rozvany,

2001). Fortunately, we specifically want to prescribe a

minimum area for each strut to ensure support for each

strut, and therefore no vanishing constraints occur in

this problem. Finally, note that we ignore self-weight in

this optimization, i.e., we assume f = 0 in Eq. (1).

The optimization problem in Eq. (4) can be ex-

tended to include buckling constraints. The critical Eu-

ler buckling load fcrit of the jth strut can be expressed

as

fcrit,j =
πEa2j

4(kelj)2
,

where ke is the column effective length factor. This con-

straint is also nonlinear in aj , which further adds to the

nonlinearity of Eq. (4). This constraint is added to the

optimization statement in Eq. (4) as

fj ≥ −fcrit,j .

Multiple load cases can also be included in the strut

diameter optimization problem (4) by adding additional

force-balance, stress-strain compatibility, stress defini-

tion, and stress limit constraints, as well as additional

displacement, force, and stress optimization variables

corresponding to each load case.

As written, Eq. (4) is not convex, due to the fj =

σjaj constraint. When the minimum compliance prob-

lem is solved instead—maximizing stiffness, rather than

minimizing weight—the design problem can be written

as a convex optimization problem (Freund, 2004). How-

ever, we specifically require the minimum-weight solu-

tion, which results in a non-convex optimization prob-

lem. The problem is therefore solved as a generic non-

linear optimization problem using Ipopt (Wächter and

Biegler, 2006).
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(x1, y1, z1)

a1

(x2, y2, z2)

a2

(x3, y3, z3)
a3

(x4, y4, z4)

a4 (x5, y5, z5)

a5

(x6, y6, z6)

a6

a7

a8

a9

a10

a11 a12
a13

Fig. 16: Cellular structure representation with 6 nodes

and 13 struts.

4 Geometry Generation for Cellular Structures

After the cellular topology is designed and the opti-

mal cross-sectional area for each strut in the cellular

structure is found, the design of the cellular structure

is essentially a list of nodes coordinates and a list of

cross-sectional areas of struts connecting those nodes

(Fig. 16). This representation is a cheap representation

of a complicated model, and is ideal to use in design-

ing the part. However, in order to prototype a part,

this information has to be translated into a solid rep-

resentation of the part (Fig. 17). Note that fillets in

the joints are not taken into account in this geometry

generation algorithm. Such fillets, however, are crucial

to avoid large stress concentrations in the nodes of the

cellular structure.

We have developed a geometry generation algorithm

that can quickly transform a large heterogeneous cel-

lular structure representation into a watertight solid

representation (in either .stl format or a parametric

CAD format).4 We consider a heterogeneous cellular

structure to be a cellular structure without repeating

elements (element density varies over the structure and

is dependent on the direction), and consider a homoge-

neous cellular structure to be a structure with repeating

elements. In standard mesh terminology, a heteroge-

neous structure can also be referred to as anisotropic,

and a homogeneous one as isotropic. McMillan et al.

(2015) explored similar ideas for geometry generation,

but their algorithm is restricted to using period unit

cells, whereas we specifically require an algorithm for

heterogeneous cellular structures. Our geometry gener-

ation algorithm is described in detail in Appendix C of

(Opgenoord, 2018).

4 The source code for the geometry generation algorithm is
made available at github.com/mopg/intrico.jl.

Fig. 17: Solid geometry for node 1 of Fig. 16.

5 Example Designs

The design methodology in Sections 2 and 3 is demon-

strated here for several test cases. A simple bracket is

designed in Section 5.1, which is used as a test case

to compare the performance of a homogeneous cellu-

lar structure to that of a heterogeneous cellular struc-

ture and to describe the influence of the strut cross-

sectional area optimization on the mass of a part. We

further demonstrate the design methodology on a test

case from General Electric in Section 5.2, which allows

us to compare our methodology to methods from the

literature.

5.1 Generic Bracket

As a first example to demonstrate our design method-

ology, we design a generic bracket, for which the load

case is shown in Fig. 18. In the following, we compare

the performance of a tailored cellular topology to that

of a homogeneous cellular topology and also character-

ize the influence of printer angle on the manufactura-

bility of the part. We consider the design domain and

load case shown in Fig. 18. The part is to be manufac-

tured using standard ABS plastic. The Von Mises stress

throughout the part is shown in Fig. 19 for that load

case. As expected the Von Mises stress is highest near

the “neck” of the structure, both because that part has

the lowest cross-sectional area and because of the dis-

continuity in the geometry of the bracket, which leads

to stress concentrations.

From the stress tensor computed for the load case in

Fig. 18, we compute a metric field. The cellular topol-

ogy is then generated using a metric-based mesh gener-

ator, in this case feflo.a (Loseille and Lohner, 2010).

The cross-sectional area of the struts in that result-

ing cellular are optimized to yield the minimum-weight

structure, subject to stress and buckling constraints. In

https://github.com/mopg/intrico.jl
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Clamped

z x

y

2.5 MPa

0.25 MPa

Fig. 18: Load case for bracket design example. The

largest dimension is in z-direction (150 mm).

mises
 [MPa]

20

17.5

15

12.5

10

7.5

5

2.5

0

Fig. 19: Von Mises stress through domain of bracket for

load case in Fig. 18.

the optimization we limit the diameter of the struts to

be between 3mm and 5mm. This lower limit is imposed

since the bracket is to be manufactured using Fused Fil-

ament Fabrication (FFF), which requires a minimum

strut diameter of around 3mm (Redwood et al., 2017).

Under these constraints, the resulting optimized part

weighs only 0.140 kg for a cellular structure with 401

struts. A render of this part is shown in Fig. 20.

To investigate the importance of the cellular topol-

ogy, we compare the minimum weight of the heteroge-

neous cellular structure—which is aligned with stress

directions—to the minimum weight of a homogeneous

cellular structure which is not tailored to the stress di-

rections. For fair comparison, the heterogeneous and

homogeneous cellular structures have the same num-

ber of struts. For the homogeneous cellular structure

then, we also optimize the cross-sectional area of each

strut. For the optimization problem of the homoge-

neous cellular structure, the diameter constraints of the

(a) Heterogeneous cellular structure

(b) Homogeneous cellular structure

Fig. 20: Comparison of optimized heterogeneous cellu-

lar structure and optimized homogeneous cellular struc-

ture.

struts have to be relaxed slightly compared to the het-

erogeneous cellular structure to ensure a feasible de-

sign. The diameter of the struts is therefore constrained

to be between 3mm and 6mm. The optimized homo-

geneous cellular structure weighs 0.209 kg—a 37% in-

crease compared to the heterogeneous cellular struc-

ture. These designs are also compared in Fig. 20. We

see in Fig. 20 that the homogeneous cellular structure

has a few thick struts while most struts are assigned

the minimum strut diameter. This could be expected,

because there are only few struts that are aligned with

the stress direction and therefore there are only a few

struts that take up most of the load. The heterogeneous

cellular structure is therefore also expected to exhibit

better load-bearing capability in case one or more struts

fail. Also note that the manufacturability of the ho-

mogeneous cellular structure is only 59%, whereas for

the heterogeneous cellular structure it is 100%—this

again is expected, because the heterogeneous cellular

structure is actually designed with manufacturing con-

straints in mind. To demonstrate the manufacturabil-

ity of the heterogeneous cellular structure, the bracket
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is manufactured using an FFF desktop printer—the

printed part is shown in Fig. 21.

Fig. 21: This heterogeneous cellular structure is manu-

factured using the Markforged Mark II desktop printer.

As a final comparison, we investigate the influence

of optimizing the cross-sectional area of each strut in

the cellular structure on the performance of a part. We

compare the previous designs to cellular structures with

a uniform cross-sectional area for all struts for both

the heterogeneous and homogeneous cellular structures;

we call these designs uniform cellular structures. The

minimum-weight uniform cross-sectional area for the

uniform cellular structures is found by a bisection method,

which finds the minimum cross-sectional area for which

one or more struts are at the stress limit. We compare

these designs in Table 1, where we see that the uniform

cellular structures are at least 51% heavier than their

non-uniform counterparts.

Mass, kg Manufacturability, %

Heterogeneous 0.152 100
Heterogeneous 0.230 100

(uniform)
Homogeneous 0.232 59.2
Homogeneous 0.367 59.2

(uniform)

Table 1: Manufacturability and performance for hetero-

geneous and homogeneous cellular structures.

Finally, we also compare the influence of the design

for manufacturability on the actual manufacturability

of the resulting cellular structure. For this comparison,

we design a cellular structure for various manufactur-

ing directions by varying β for the design and then

check the manufacturability of the part under differ-

ent β manufacturing angles. Manufacturability here is

defined as the ratio between the number of struts that

follow manufacturable directions to the total number

of struts in the part. The results in Table 2 show that

whenever the part is to be manufactured in the same di-

rection as it is designed, the manufacturability is 100%,

validating the approach. However, when we vary the

angle at which the part is manufactured, the manu-

facturability quickly drops to levels as low as 53%. In-

corporating manufacturing constraints for the cellular

structure into the design is therefore crucial.

Not only can we include critical design constraints

early, the algorithm is fast as well, enabling inclusion in

early design phases. Generating the inhomogeneous het-

erogeneous cellular structure only takes 28.5 seconds5

to go from outer geometry definition and loading con-

dition to a generated .stl file.

β (manufacturing)

in % −45◦ −25◦ 0◦ 25◦ 45◦

−45◦ 100 97.1 99.3 87.7 60.0
−25◦ 77.5 100 98.6 94.2 67.8

β 0◦ 78.5 97.2 100 94.9 74.1
(design) 25◦ 72.9 94.7 98.7 100 78.3

45◦ 53.4 86.5 98.8 96.6 100

Table 2: Manufacturability (%) for manufacturing and

designing a bracket with different manufacturing orien-

tations.

5.2 Aircraft Engine Bracket

In 2013, General Electric (GE) launched a competition

to redesign an aircraft engine bracket to take advan-

tage of additive manufacturing capabilities. Although

the deadline for the competition has long since passed,

this design problem still serves as a useful test case

for this work. Tang et al. (2015) used this bracket case

study to demonstrate their lattice optimization algo-

rithm, the result of which we compare our methodology

against. Note that in this study only one load case is

used—a 42.5 kN bearing load, see Fig. 22. This bracket

is to be manufactured using Titanium Ti-6Al-4v, which

has a tensile yield stress of 880 MPa, a compressive

yield stress of 970 MPa, and a Young’s modulus of

113.8 GPa.

5 28.5 seconds on one core of a 2015 Macbook Pro (3.1 GHz
Intel Core i7). Note that this is including solving the FEM
problem, which takes 15.5 seconds.
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(a) Geometry of GE bracket.

42.5 kN42◦

(b) Load case for GE bracket.

Fig. 22: The load case for the GE aircraft bracket is a

42.5 kN force applied at a 42◦ angle from vertical.

The Von Mises stress through this bracket is shown

in Fig. 23, where it can be seen that this bracket is fairly

lightly loaded, with the maximum stress in the hooks

around 350 MPa. The rest of the structure is even more

lightly loaded, and therefore provides a good opportu-

nity to minimize the weight using a cellular structure.

The results in Fig. 23 are used to generate the cel-

lular topology, after which the cross-sectional area for

each strut is optimized for minimum weight, subject

to buckling and compatibility constraints. In this opti-

mization, the radius of the struts is constrained to be

between 0.3 mm and 1 mm, the same constraints as

used by Tang et al. (2015).6

The resulting cellular structure is shown in Fig. 24,

which has a mass of 0.408 kg—a 24% reduction com-

pared to the cellular structure from Tang et al. (2015),

which had a mass of 0.54 kg. The difference is explained

by the hooks and bolt holes being solid in that work,

as well as by their use of a fine homogeneous cellu-

lar topology. It should also be noted that Tang et al.

(2015) did not include buckling of the struts in their

analysis, while that has a large influence on the mass—

6 Note that these constraints on the radius of the struts vio-
late the minimum size requirements of the GE engine bracket,
but are consistent with Tang et al. (2015).
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(a) The hooks are the highest stressed part of the bracket.

(b) The internals of the bracket experience minimal stress.
Note that this figure’s color legend has a different scale to
figure (a).

Fig. 23: Von Mises stress through domain of GE bracket

for load case in Fig. 22.

without including buckling, our analysis shows that the

bracket would weigh 0.286 kg. Use of stress-aligned cel-

lular structures thus yields a large mass reduction. Note

that the overall winner of the GE bracket challenge had

a weight of 0.327 kg for a design that included four load

cases. In that design, the outer topology of the bracket

was allowed to change as well. In our design that topol-

ogy stays fixed—it is expected that changes in outer

topology can yield a further mass reduction in some

cases. Allowing the outer topology to change as well in

the optimization problem is a natural extension of this

work, for instance using an approach similar to Ringertz

(1985). Such a topology optimization approach could be

used as the next step in a design phase to get higher

performance for higher computational cost.

6 Conclusion

This paper presented an early-stage design methodol-

ogy for cellular structures to be manufactured using

additive manufacturing. In early-stage design phases

it is important to characterize a part’s performance

and weight accurately with low computational cost, as

potentially thousands of designs need to be evaluated

on a system level. The design methodology therefore

only uses one FEM solution, which is used to inform
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Fig. 24: Optimized cellular structure for aircraft bracket. This part weighs 0.408 kg.

a Riemannian metric field. That metric field is em-

ployed to construct the cellular topology using adap-

tive meshing techniques, such that the cellular topol-

ogy is fine near areas of high stress, coarse near areas of

low stress, and is aligned with the stress direction. This

approach also allows for including manufacturing con-

straints, such as minimum feature size and overhang an-

gle constraints. Once the cellular topology is designed,

the cross-sectional area of each strut is optimized for

minimum weight subject to stress, compatibility, and

buckling constraints.

This design methodology is applied to a small bracket

to show the manufacturability of the part, where it was

found that the design for manufacturability improves

the manufacturability of the cellular structure substan-

tially. Lastly, an aircraft bracket from the literature is

redesigned to achieve a 24% weight improvement.

The approach demonstrated in this paper should

be considered as the first step in design methodology

for (large) additive manufactured structures. The next

step (in the preliminary design phase) could be an ap-

proach where the outer topology of the part is allowed

to change. Finally, in the detailed design phase, a level-

set or density-based topology optimization approach

can be used.
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