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This work develops an efficient real-time inverse formulation for inferring the aerodynamic
surface pressures on a hypersonic vehicle from sparse measurements of the structural strain.
The approach aims to provide real-time estimates of the aerodynamic loads acting on the
vehicle for ground and flight testing, as well as guidance, navigation, and control applications.
Specifically, the approach targets hypersonic flight conditions where direct measurement of
the surface pressures is challenging due to the harsh aerothermal environment. For problems
employing a linear elastic structural model, we show that the inference problem can be posed as
a least-squares problem with a linear constraint arising from a finite element discretization of
the governing elasticity partial differential equation. Due to the linearity of the problem, an
explicit solution is given by the normal equations. Pre-computation of the resulting inverse map
enables rapid evaluation of the surface pressure and corresponding integrated quantities, such
as the force and moment coefficients. The inverse approach additionally allows for uncertainty
quantification, providing insights for theoretical recoverability and robustness to sensor noise.
Numerical studies demonstrate the estimator performance for reconstructing the surface
pressure field, as well as the force and moment coefficients, for the Initial Concept 3.X (IC3X)
conceptual hypersonic vehicle.

I. Introduction

Modern aerospace vehicles demand robust flight control systems that can operate autonomously under dynamic,
uncertain, and extreme environments. Central to this requirement is the ability to obtain accurate information about
the aerodynamic state of the vehicle. This information enables the deployment of advanced predictive capabilities
for autonomy, digital twins, and guidance, navigation, and control (GNC). These desired capabilities become more
challenging under hypersonic flight conditions, where the harsh aerothermal environment is inhospitable to many
sensing technologies. In particular, it is difficult to obtain information about aerodynamic loads, such as the surface
pressure field on the vehicle. The high-temperature hypersonic environment often limits the use of external surface
sensors. Other conventional sensing technologies include inertial measurement units, GPS, satellites, and optical lidar,
but these may not provide direct or sufficiently accurate estimates of the aerodynamic quantities of interest, and often
have external dependencies which may be denied in adversarial scenarios. In this work we develop a vehicle-as-a-sensor
concept [[L], where the deformation of the vehicle is used to infer the instantaneous aerodynamic surface pressures.
Using this strategy to obtain accurate aerodynamic load estimates in real time can help inform GNC systems, enhance
maneuverability, and improve reliability for hypersonics.

Aerodynamic loads are characterized by their integrated quantities, namely, the force and moment coefficients.
Estimation of these aerodynamic parameters is commonly achieved using filtering methods such as the extended Kalman
filter and unscented Kalman filter [2| [3]. The measurement models rely on the availability of measurements of the
air flow angles, such as the angle of attack and sideslip angle, which are difficult to measure accurately. To mitigate
this, Morelli et al. reconstruct the air flow angles from inertial data [4] for estimating the aerodynamic parameters.
In this paper, we take the approach of using discrete strain measurements to infer the full surface pressure field, and
consequently the aerodynamic force and moment coefficients. To do this, we must obtain a (inverse) mapping from
strain to aerodynamic quantities of interest. The strain response induced by the aerodynamic loads is governed by the
partial differential equations (PDE) of linear elasticity. This PDE underpins the strain measurement model for the
inference task, leading to a PDE-constrained inverse problem.
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Solutions to PDE-constrained inverse problems have been formulated in both the deterministic [S] and statistical
(Bayesian) [6] settings, and have great utility in "outer-loop" problems such as aerospace design optimization [7H9]].
These solutions are challenging to compute for a number of reasons. First, the measurements from which we infer the
solution are often noisy and sparse. Additionally, PDE solution operators for many engineering problems of interest are
smoothing, meaning that the output of the physical process is smoother than the input. For example, the stress field in a
problem governed by linear elasticity is smoother than the loading field that induced it. These characteristics result
in an ill-posed inverse problem. A further challenge is that these inverse solutions often require many evaluations of
the high-fidelity physics simulations, which is computationally intractable for real-time sensing problems. However,
the linearity of the elasticity PDE in our problem allows for the formulation of a statistical least-squares problem with
linear constraints, which can be solved explicitly via the normal equations. The resulting estimator is a strain-based
inverse map that can be pre-computed and queried rapidly in real-time. Notably, using the statistical formulation of
the least-squares problem, the known uncertainty due to sensor noise in the observed data also leads to a quantifiable
uncertainty for the estimated solution. Consequently, the estimator fully captures the elastic behavior of the hypersonic
vehicle described by the high-fidelity physics, while achieving the desired goal of rapid evaluation and uncertainty
quantification.

The proposed inverse approach relies on the availability and amenability of discrete, sparse strain measurements
to provide sufficient information about the structural state induced by the aerodynamic loads. Strain-based sensing,
particularly fiber-optics, has been demonstrated to be capable of recovering aeroelastic shape under both static and
dynamic loads [[10], and has also been used for real-time control and monitoring applications [[L1}12]. Our work extends
the application of strain-based sensing to recover the full aerodynamic pressure field, as well as aerodynamic force
and moment parameters. Some additional modeling aspects of this work rely on computational fluid dynamics (CFD)
simulations for hypersonics to produce prior information for the surface pressure field. We note that the advancement of
both simulation capabilities [[13H17]] and measurement technologies [[18] have progressed greatly, and are key enabling
factors for inverse problems which must leverage both resources.

An alternative approach to solving the inverse problem is to employ machine learning to train a rapid-to-evaluate
inverse mapping from the measurements to the quantities of interest. The training data can come from high-fidelity
physics simulations, which are queried over a large range of flight conditions, as well as experimental data. Our previous
work [1]] has employed physics simulations to train optimal classification trees (OCTs) [[19] for the inverse mapping.
The OCTs demonstrated strong prediction accuracy, in addition to being interpretable and rapid to evaluate. Neural
networks are another possible option [20]] which are fast to evaluate and have powerful representative capacity for
nonlinear mappings, but they often lack interpretability and may perform poorly in extrapolation. While the accuracy
performance may be reasonable, these machine-learned inverse maps lack a strong theoretical foundation for quantifying
uncertainty and ensuring robustness in the predictions. In this paper, we seek to offer the same evaluation speed as the
machine learning tools while remaining physics-informed and providing reliable quantification of uncertainty.

The remainder of this paper is outlined as follows: in Section[[I} we present the formulation of the proposed estimator
and the corresponding analytical uncertainty quantification. Section [[II] presents the testbed problem for demonstrating
this work, along with numerical results. Finally, we discuss the conclusions and future work in Section

I1. Real-time surface pressure estimation: Problem statement and approaches
In this section, we present the inverse problem statement and approaches. Section describes the problem
definition and the PDE forward model. Section formulates the solution to the inverse problem via a least-squares
estimator, with data-driven modeling considerations outlined in Section [[I.C] Section[[L.D|provides a detailed analysis of
the expected performance and uncertainty of the estimator in two possible settings.

A. Problem Definition
We consider the structural and aerodynamic state of a hypersonic vehicle to be quasi-static at a particular instant in
time. The structural state is observed through measurements of strain, with sensors placed on the interior surface of the
vehicle. We denote the observed data by an ngz-dimensional vector d € 9, where D c R" is the space of possible
strain measurements. The quantities of interest, q € Q, are an n,-dimensional discrete representation of the pressure
field over the surface of the vehicle, where Q@ c R"« is the space of possible pressure field representations. The goal is
to infer q from the observed data d. To perform the inference task, we seek an estimator that represents the inverse
mapping
T:D->Q 1)



which can be evaluated rapidly in real-time. The relationship between the true aerodynamic surface pressure and the
vehicle strain is described by a physics-based structural forward model, which we will later exploit in performing the
inference task. Consider a discrete pressure field p(u) of dimension n,, which is dependent on the flight conditions
at a particular instant in time, u = [M, @, 8, H]", where M is the Mach number, « the angle of attack, S the sideslip
angle, and H the altitude. This pressure can be obtained, for example, by solving a computational fluid dynamics (CFD)
model. Our inverse problem formulation works with q, which are the pressure quantities of interest corresponding
to a discrete pressure field p(u). For example, q could be a vector containing n, < n, nodal values of p, or q could
be a vector containing n, modal coefficients that define a representation of p in some modal basis. The pressure
quantities of interest q are the inputs to the structural forward model, denoted by Fyyyct (Usgruct; q) = 0, where Uggrycq 1S
the displacement of the deformed vehicle. After solving the forward model for ugyc(, the model strain data at the sensor
locations is computed through the observation equation y = G gyyct(Ustruer)- Ultimately, the model strain response y can
be compared to the measured strain data d, thus driving the formulation of the inverse problem. Figure T]illustrates the
overview of the relationship between p, d, and intermediate quantities.

forward model

Fruet (Wsgruee; @) = 0

¥V = Ggtruct (usu'uct)
p(p) : aerodynamic pressure

Ugiruct, Y ¢ Structural state

q € Q: pressure quantities of interest d € D : strain measurements

T:D-Q
inverse map (estimator)

Fig. 1 Inverse problem overview: the forward model maps surface pressure quantities of interest to the
structural state, and the inverse map relates strain measurements to pressure quantities of interest.

To explicitly define Fyyye and Ggyyet, We consider the equations of linear elasticity on the domain Q C R3, with
exterior and interior surfaces 0Qcx; and 9Qjy, respectively, and aft end Q,5. The governing partial differential equation
(PDE) and boundary conditions for the displacement u(x) for x € Q are given by

-V.o(u)=0 inQ
o(u) - n=0 ondQi
o(u)-n=t ondQe

u=0 on 0Qu¢

where o is the Cauchy stress tensor, n is the outward-pointing surface normal, and t is the traction defined on the
external boundary 0Qcy;. The traction boundary condition is derived from the aerodynamic surface pressure. The
strain-displacement equation is given by € = %(Vu +Vu™) where ¢ is the infinitesimal strain tensor, and the constitutive
law is given by o0 = 2S¢ + %tr(s)l, where S is the shear modulus and E is the Young’s modulus of the
material. We consider a finite element spatial discretization of the above elasticity equations. Upon discretization,
the forward structural model is given by Fypuet = Augpyet — Cq = 0, where A is the stiffness matrix, and C relates
the pressure quantities of interest q to the nodal forces f on 9Qe, such that f = Cq. The result is a large, sparse
linear system with dimension 7y, the number of degrees of freedom in the structural discretization. We also define
Y = Gpuct (Uggruet) = Bugyruer, Wwhere B is a spatial observation operator that (1) maps the discrete displacements to
discrete strains using the strain-displacement relation and (2) extracts the particular strains corresponding to the direction
and location of each sensor from the forward model.

@



B. Real-time Inverse Solutions via Statistical Least Squares

We formulate the inference problem of inferring pressure quantities of interest q from measurements d in general as
a regularized, weighted least-squares problem. The main objective is to minimize the data misfit between a given strain
measurement and the forward model strain predictions at the sensor locations. We add regularization and weights to
provide statistical information about the measurements, via the sensor noise covariance I'y, as well as the quantities of
interest, in the form of a prior mean and covariance, q and Iy, respectively. The selection of these properties are further
detailed in Section[[T.C] Then, the least-squares objective is given by

.1 _ .
min 5[ Bugruce —dI>, + 2lla - Gl>,  subject to Augre — Cq =0, 3)
q 2 n 2 pr

data misfit regularization

where 7 is a regularization parameter. The notable challenge is that the constraint is derived from a high-dimensional
finite element model, and the solution of Equation [3|typically necessitates many evaluations of this expensive forward
model. However, due to the linearity of the constraint, the least-squares problem offers an explicit solution via the
normal equations, given by

4= (CTATTB'T,'BA'C+yI,) ' (CTATTB'T, 'd +7I,/q). “4)
This is the general form of our estimator, or inverse map, obtained via a least-squares approach. We note that
Ugtruct = A‘ICq; it follows that the parameter-to-observable map is given by y = Bugyyet = BA‘qu. We let

Z = BA~!C denote the Jacobian of the parameter-to-observable map. Substituting in Equation E] and expanding, we
obtain

4= (Z'T,'Z+yT,)" (27T, 'd+T,'q) )
=[(Z'T,'Z+yI,H7'Z27T, 1 d + (27T, Z+91,) 79 g (©6)
=T =k

We note that the matrix Z contains the system matrices A, B and C, which are measurement-independent, and can
therefore be constructed in advance to pre-compute Z. We additionally have a known, fixed I'y, q, and I'p,;. Therefore,
in Equation@ the matrix T = (Z'T;'Z + yI‘;rl)‘IZTF; I can be entirely pre-computed, resulting in a matrix of size
ng X ng. Similarly, the term k = (Z'T';'Z + yI',')~'yT,,'q can be pre-computed. Upon deployment of the estimator,
for a new measurement d, we can rapidly estimate the quantities of interest by simply performing the matrix-vector
product Td, plus a shifting term k due to the prior mean. Notably, this computation can realistically be performed in
real-time, even for large n,, since the sensor dimension g4 is typically moderate. We note that integrated quantities of
interest, such as force and moment coefficients, can also easily be computed by reconstructing the pressure field from q,
and may be especially useful for real-time guidance, navigation, and control applications. Consequently, this estimator
is a possible efficient real-time sensing strategy for hypersonic vehicles.

C. Data-Driven Modeling Considerations

1. Noise and prior distributions

We characterize two important features for statistical modeling: (1) the measurement noise model, and (2) the prior
distribution. For the noise model, we consider additive Gaussian noise such that d = Bugyy + 7 = y + 77, where the
random variable 7 ~ (0, T'y) is the noise discrepancy between the model strain response and the measurement. Here, we
assume independent, identically distributed sensor measurements, with zero mean and variance o2, such that T, = 21
This variance can be approximated through characterization of the physical sensor noise levels. Substituting I';, in
Equation 4] the noise covariance-weighted least-squares solution simplifies to the ordinary least-squares solution if there
is no regularization. In practice, we also perform a whitening transformation to normalize the variance 5’ = L™ ',
where L is computed through the Cholesky factorization I'; = LL" for numerical stability.

The prior distribution of the quantities of interest is modeled by a Gaussian with mean p and covariance I',;. We
construct the mean and covariance in a data-driven fashion by using a CFD model, denoted by Fyero(p; ) = 0, to
compute surface pressure snapshots over a range of flight conditions y; for j = 1,..., N, where N is the total number of
flight condition combinations of interest. The pressure snapshots are denoted by p;, each of which correspond to the



flight conditions p;. We define p to be the mean over the snapshots. Then, we construct the covariance of the prior by
computing the covariance over the snapshots,

N

= o eN\T
Fpr _ Z; (pj I;v)(_pjl p) . ™
7=

This covariance captures spatial correlations in the pressure field from the data, including features such as smoothness
or discontinuities. This is important for recovery of these features in the estimated pressure field if they are not strictly
informed by the measurements, which we further describe in Section[II.D.

2. Dimensionality reduction

Since the surface pressure field p is high-dimensional, we may seek to represent the pressure field in a low-dimensional
subspace using the proper orthogonal decomposition (POD). The pressure snapshots described above, p;, are collected
in a snapshot matrix P. We center the snapshot matrix by the column-wise mean, p, to obtain P. We perform the
singular value decomposition on the centered snapshot matrix, P = VEWT. We then choose to retain the first r left
singular vectors. The reconstructed surface pressure field is then given by

r

pzf)+ZciV[ (®)

i=1

where c; and v; are the i-th POD coefficient and left singular vector, respectively. This allows us to represent the
high-dimensional pressure field using r coefficients.

D. Analysis and Uncertainty Quantification

Up to this point, the specific representation of pressure quantities of interest q have not been detailed. In the following
sections, we outline two cases for q: first, the case where we have fewer parameters than measurements, n, < ng,
such that the least squares problem is over-determined, and second, the case where there are more parameters than
measurements, ny > ng, such that the inverse problem is ill-posed. We provide a discussion of uncertainty quantification
for each case, as well as an analysis of recoverable surface pressure information for a given sensor configuration.

1. Case 1: ng < ng

Consider the case where the number of parameters n, is less than or equal to the number of measurements, ng.
In this setting, we let q be a low-dimensional parameterization of the surface pressure field p so that n; < ny. Here,
we employ the POD decomposition given in Equation (8 First, let Cyn,p define the mapping from the pressure field
to the resulting nodal forces, f = Cyapp. We then define C := Cy,yp V-, where the columns of V,. are the first r left
singular vectors of the snapshot matrix, and ¢g; := ¢;, the corresponding POD coefficients. We seek to estimate the
coeflicients q from the data to reconstruct the pressure field. Here, we consider the weighted least squares problem
without regularization (y = 0), meaning we seek the unique solution to the over-determined system of equations Zq = d,
where Z is full-rank. To analyze this problem, we consider an infinitesimal perturbation ¢d to the strain response
y = Zq. We seek to characterize the corresponding error in the least squares solution dq = q — q with respect to the
perturbation dd. Standard sensitivity analysis [21] of the ordinary least-squares solution to small perturbations in the
right-hand side yields a relative condition number given by

0 od Z
‘K:sup(” (I||/|| ||): k(Z) ©
sa \ llall [ lld]| vcos 6
where k(Z) is the condition number of the parameter to observable map, v = —”ﬂ(‘m” ,and cos @ = _”HquIH  For K >> 1,

the problem is ill-conditioned and we can expect large relative errors in the solution, even though 6d is infinitesimal; this
error becomes even larger once we consider a larger perturbation 7. We can improve the conditioning of the problem
through the number of sensors as well as sensor placement, since the condition number is directly affected by the
information gained from the sensors in the problem. In many least squares problems, it is also useful to add regularization
so that the errors are not magnified due to the matrix conditioning. For our problem in Case 1, when n, < ng, instead
we drive x(Z) to be sufficiently small through the sensor configuration, so we do not require regularization (y = 0). To



further quantify the uncertainty in the estimate, the covariance matrix of the estimator can be computed, given by the
inverse of the Hessian of the data misfit term in our least squares objective function,

H—l

misfit

— (CTA_TBTFEIBA_IC)_I — (ZTFEIZ)_I (10)

This is easy to compute for low-dimensional q, and it provides an explicit quantification of the uncertainty on the
estimated parameters.

2. Case 2: ng > ng

We now consider the case where the number of parameters n,, is larger than the number of measurements ng.
Particularly, we seek to estimate the distributed loads without restrictions to a particular low-dimensional parameterization
using POD or otherwise. Instead, we seek to directly infer the surface load parameter field. In this setting, we define
q = p, and C := Cpy,p. This formulation results in an under-determined system of linear equations, for which there are
many solutions. Of these solutions, it is sometimes sufficient to choose the minimum-norm solution. This solution lies
within the row space of Z, which is the data-informed subspace of the parameter field, and is the best we can achieve
without prior information. However, we can significantly improve upon this result by constructing a prior, which enters
through the regularization term in the least-squares problem.

We compute the covariance matrix as in Equation|/] We note that this data-driven covariance will be rank-deficient
when the number of snapshots N used to construct the covariance is less than n,, (the rank of this matrix will be at most
N). Thus, we do not have I‘Ijrl in the explicit solution in Equation 4, However, this can be mitigated by adding a small
perturbation €l to the prior covariance. Then, the Woodbury matrix identit can be used for cheap computation of the
inverse of the Hessian of the least-squares objective in Equation[3] given by

1
H'=(Z'T,'Z+yT,) ' = (T —TpZ (YT + ZTyZ7) " ZT,). (11)
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Analysis of the Hessian provides insights for pressure field recoverability through the prior and the data. To compute the
eigenvectors, we factor the Hessian as demonstrated in [22] and solve the eigenvalue problem for non-zero eigenvalues

of the prior-preconditioned Hessian, formulated as

I'p-Hmisitbx = Axbg (12)

where A and by are the k-th largest eigenvalue and corresponding eigenvector, respectively, and Hysae = Z' T 7.
The eigenvectors (modes) of the resulting low-rank spectral decomposition of the prior-preconditioned Hessian define
the possible solution space of the least-squares estimator. In a noise-free setting, these modes can be perfectly recovered
through the prior and the data. The orthogonal complement, which corresponds to higher frequency (spatially oscillatory)
modes, is eliminated from the possible solution space. Since we expect our parameter field to be mostly smooth, this
elimination results in a physically tractable solution. Additionally, standard spectral analysis [S] shows that the errors
due to noise in the Fourier coefficient corresponding to the k-th mode will scale with ik, which leads to amplified errors
when Ay is small. In turn, the regularization parameter y must be chosen to shift the eigenvalues to reduce the noise
amplification, which then also eliminates the contribution of the modes corresponding to eigenvalues 1; << y. We tune
this parameter based on the expected sensor noise levels in order to balance estimator accuracy and noise mitigation.

ITI. Application: IC3X Testbed Problem
To demonstrate the inverse approaches outlined above, we consider the Initial Concept 3.X (IC3X) hypersonic
vehicle. The IC3X was initially proposed by Pasiliao et al. [23], and a detailed finite element model for the vehicle was
developed by Witeof et al. [24]. The IC3X is a representative hypersonic vehicle with boost, cruise, and terminal phases
in a nominal trajectory. The vehicle is propelled by a scramjet in the cruise phase. The geometry of the vehicle is shown
in Figure[2] In this paper, we conduct an initial study using a modified version of the IC3X vehicle with removed fins
(fuselage only), and a hollow internal structure.

*The Woodbury identity may suffer from ill-conditioning depending on the construction of the regularization. It is important to verify the
numerical stability of the computation to avoid this potential pitfall.
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Fig. 2 IC3X geometry.

A. IC3X modeling

The forward aerodynamics for the IC3X are solved using CART3D [25H27]], which solves the compressible Euler
equations for inviscid steady fluid dynamics. CART3D allows for rapid databasing of surface pressure solutions over
a wide range of flight conditions. The structural model is constructed and solved using FEniCS[28 [29]], which is a
software project providing a collection of packages, including DOLFIN[30], that can be used for solving PDEs with the
finite element method. Specifically, we employ FEniCs for the explicit construction of the required system matrices
B, A, C that appear in Equation[d] We note that the estimator can also be implemented with access to only the system
matrix actions on a vector, which may be needed for large-scale problems where it is computationally infeasible to
store the system matrices explicitly. We produce the surface mesh for the CFD solver and the volume mesh for the
structural model using Gmsh [31]]. The resulting surface mesh contains n, = 60,538 degrees of freedom, and the
resulting structural mesh contains ng = 461,664 degrees of freedom. The boundary surfaces for the structural model,
with boundary conditions given in Equation 2] are illustrated in Figure 3]
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Fig. 3 Boundary surfaces of the modified IC3X. We seek to predict the pressure field on the exterior surface
0Qe¢. Sensors are placed on the interior surface 9Q;y, with fixed aft end 0Q,¢.

1. Sensor configuration and noise statistics

In this work, the strain sensor configurations consist of strain gauges placed in rows on the inner surface of the hollow
IC3X vehicle structure. Each row consists of nine evenly spaced strain gauges. The in-plane strain of the inner surface
can be measured in a particular direction. Measuring the strain in the stream-wise direction (i.e., x-direction) captures
the bending strain, which dominates the strain response when the total angle of attack is non-zero. The circumferential
strain can also be measured, capturing the strain due to hoop stresses. Figure[d]depicts the sensor placement for two and
four rows of sensors, which we will refer to as Configuration 1 and 2, respectively. Configuration 1 contains 27 sensors,
of which 18 sensors measure the x-direction strain, and 9 sensors measure the circumferential strain. Configuration
2 contains 54 sensors, which are the same as Configuration 1 plus their mirror through the x-axis. The observation
operator B is constructed for each of these configurations to map the forward model displacement to the strain in the
corresponding direction and location as the physical sensors. As described in Section[[T.C] we assume independent,
identically distributed Gaussian noise for each sensor with zero mean and standard deviation o. For this study, we
choose o to be equal to 1% of the median strain magnitude over all sensors and flight conditions, based on estimated
noise characteristics for physical strain gauges.
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Fig. 4 Strain sensor configurations: (top) Configuration 1 with 27 sensors, (bottom) Configuration 2 with 54
sensors. (Right) yz-plane view indicating sensor row measurement direction, (left) 3D view of sensor locations,
with arrows indicating measurement direction.

2. Flight conditions and surface pressure

For a nominal trajectory of the IC3X, we consider the following flight condition ranges of interest: Mach number
5 — 17, angle of attack 0°— 10°, sideslip angle 0°- 10°, and altitude 20 km. For dimensionality reduction in Case 1,
we solve the forward aerodynamics for the set P; of all combinations of the parameters M = {5.0,5.5,6.0,6.5,7.0},
a={0,2,4,6,8,10}, B8 = {0,5, 10} at H = 20km altitude, and collect the corresponding pressure snapshots. This results
in a total of N = 90 snapshots. We compute the POD using the centered snapshots as in Equation[8] For the data-driven
prior in Case 2, we use the set P; of all combinations of the parameters M = {5,6,7}, @ = {-8,-6,-4,-2,0,2,4,6,8}
and B = {-8,-6,-4,-2,0,2,4,6,8}, at H = 20km altitude. The corresponding N = 243 snapshots are then used
to compute the prior mean and covariance as in Equation[7} Figure 5 gives a visualization of the pressure at flight
conditions M = 5,a = 8, and § = 0. At the axial station x = 1.75m where the angle of the fuselage changes, there
is a clear discontinuity in the surface pressure, which is caused by the geometry and occurs at all flight conditions.
Additionally, at larger angles of attack, there exists a discontinuity (shock) due to counter-rotating vortices that occur on
the leeward side of the vehicle, leading to a region of higher surface pressure along the body. This is visible in the top
right view of Figure[5] These types of features are common for hypersonic vehicles, and we seek to accurately estimate
these surface pressure fields.
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Fig.5 Pressure visualization at conditions M =5, @ = 8, 8 = 0. Left: Side view of non-dimensional pressure
over 2D slice of fluid domain. Right: (top) leeward, (middle) side, and (bottom) windward views of the surface
pressure ﬁeldﬂ



Table 1 Relative condition number for sensor configurations.

Number of Sensors | Relative Condition Number K
Configuration 1 27 89.61
Configuration 2 54 47.96

B. Case 1 : Numerical Results

In this section, we provide numerical results for the scenario where n, < ng4. The quantities of interest q we seek to
estimate are the POD coefficients parameterizing the surface pressure. For the pressure snapshots corresponding to
Py, the cumulative energy retained by the first five modes is 99.1%, thus we choose to retain r = 5 singular vectors.
Therefore, the parameter-to-observable map Z has dimensions ng X r. First, we demonstrate the impact of the sensor
configuration on the conditioning of the least squares problem. Table [T]shows the relative condition number % using
ld|| = 100y/nq and ||q|| = 1 for each sensor configuration. Configuration 2 has the smaller condition number, since it
has a larger number of sensors, and will therefore have less sensitivity to noise perturbations for estimating (.

To numerically demonstrate the performance of the estimator, we produce synthetic noisy measurements by sampling
the noise model n ~ (0,I',,), and adding the realization of noise to the model strain response. The estimated POD
coefficients ¢ = Td with y = 0 are computed for each synthetic measurement. Each estimated coefficient §; is compared
to the reference POD coefficient g; at a particular flight condition using the normalized difference, computed by

A

#POD _ qi — qi (13)
' range(q;)

where range(q;) is the range of the i-th POD coefficient over all POD representations of the pressure snapshots in
P,. Figure [f] shows the normalized difference metric in the predicted coefficients over 50 samples from each flight
condition in Py, resulting in a total of 4500 samples. We also show the 30~ uncertainty bounds for each e})OD denoted
by the triangle markers, where 0'1.POD is the normalized square root of the i-th diagonal of the covariance matrix from
Equation@} The results show that the median difference for both sensor configurations is zero, however, the distribution
of differences for Configuration 2 has a smaller variance. This again arises from the improved conditioning in the
least-squares problem for Configuration 2, resulting in lower uncertainty in the estimated coefficients. From these
estimated POD coefficients, we reconstruct the surface pressure field p as in Equation |8} Figure [7|shows the relative L2
errors in the reconstructed pressure field with respect to the reference pressure field, computed by

erec()n — ”f)_p” (14)
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We observe that Configuration 1 has a median reconstruction error of 7.5% in the reconstruction error, but has a large
distribution with some errors reaching over 30%. Configuration 2 has a median of 5.5% and significantly fewer outliers,
with all estimated pressure reconstructions lower than 15% relative error.

To visualize the reconstructed pressure fields, Figure [8]and Figure 0] each show an example reconstructed surface
pressure from the estimated POD coeflicients with a high and low relative error, respectively. The flight conditions in
Figure are M =5, @ =6, § =5, which is in the set P;. The reconstruction error was 15.9% using a synthetic noise
realization for Configuration 1. The flight conditions in Figureare M =7, a =2, 8 =28, which is a testing condition
not in P;. The reconstruction error was 3.9% using a synthetic noise realization for Configuration 2. In both cases, the
general surface pressure is generally well recovered. We observe that the errors primarily arise from the leeward shock—
the discontinuity is not well captured, which is a result of both noise and the POD surface pressure parameterization,
particularly in the testing condition, since the shock location is outside of the range space of the pressure snapshots.

For visual clarity, the color range in this and subsequent pressure color bars is truncated at the indicated maximum. Higher pressures exist in a
small region at the IC3X nose.
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Fig. 8 Visualization of estimated surface pressure compared to the reference surface pressure at conditions
M =5,a =6, 8 = 5. (Left) Positive and (right) negative xz-plane view of reference, estimate, and absolute error
in pressure, from top to bottom.
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Fig. 9 Visualization of estimated surface pressure compared to the reference surface pressure at test conditions
M =7,a =2, B =8. (Left) Positive and (right) negative xz-plane view of reference, estimate, and absolute error
in pressure, from top to bottom.

Furthermore, we compute the aerodynamic force and moment coefficients from the estimated POD coefficients. The
aerodynamic coefficients, which are the integrated field quantities of interest, can be computed for a pressure field p.
We denote the body frame force and moment coeflicients by the vector qcoef = [Ca, Cn, Cy, Mp, My] ", the elements
of which are the coefficients of axial, normal, and side force coefficients, and the pitch and yaw moment coefficients,
respectively. These coefficients are computed by

Qeoet = GE = GCpppp (15)

where G maps the nodal forces to the force and moment coefficients. For Case 1, since p ~ V, q+p, we can further expand
Geoeff = GCrapVr-q + GCrpapp. Note that GCpyap V- and GCrapp can be precomputed, allowing rapid computation
of the force and moment coefficients in real-time, in the case of guidance and control applications. Figure [I0]shows
the normalized difference for the estimated force and moment coefficients over the same measurement sample set for
Configuration 2, computed by A

coeff _ Cr — Cr

= 16
% = max(en IOk} (16)

where Cj denotes the k-th coefficient in coefr, and € is the tolerance where the k-th coefficient is close to zero. We

observe that the median normalized difference is close to zero for all coefficients, and the distribution is again a result of
the measurement noise.
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C. Case 2: Numerical Results

For the case where n,; > ng, we seek to estimate the full surface pressure field. Here, we focus on sensor
configuration 2 with ng = 54 sensors. We compute the prior mean and covariance using Equation [/| for the set of
flight conditions given by P,. To analyze the modes which are well-informed by both the prior and the data, we solve
the eigenvalue problem with the prior-preconditioned data misfit Hessian, as described in Equation[I2] The decay
of the non-zero eigenvalues are shown in Figure[TT] We observe that there is rapid decay in the eigenvalues, with
a six order-of-magnitude difference between the first and the eighth eigenvalue. Figure [I2] provides a visualization
of the eigenvectors for k = 1,3, 6,23,53. We observe that modes corresponding to larger eigenvalues are relatively
smooth, and the modes corresponding to smaller eigenvalues contain higher spatial frequency features. These modes
represent the features captured by the prior that are also informed by the measurements. However, due to the rapid decay
of the eigenvalues, not all of the modes will be recoverable because these eigenvalues will amplify the noise in the
measurements. To mitigate this noise amplification, we require tuning of the regularization parameter y.
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Fig. 11 Eigenvalue decay of prior-preconditioned data-misfit Hessian.
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Fig. 12 (Left) Side view and (right) front view of the eigenvectors of the prior-preconditioned Hessian for
k =1, 3, 6,23,53. We observe increasing spatial frequency features with increasing k.

For a regularization parameter 7, the contribution of the eigenvectors which correspond to eigenvalues 1; <<y
will be very small. Consequently, the projection of a centered pressure field p onto the span of the first » eigenvectors,
choosing r such that O(4,) = O(y) gives an approximate best-case estimate for a given y. To demonstrate, we first
consider ¥ = 107° in a noise-free setting to estimate the pressure field at conditions M = 5, = 6, = 6. This is
equivalent to retaining all 54 modes in the solution, since all eigenvalues are larger than y. Using this parameter, the
estimated pressure field is computed for a zero-noise measurement, resulting in a relative error of 2.8%. Figure[I3]
shows the reference pressure, the projection of the reference onto » = 54 leading eigenvectors, the estimated pressure,
and the absolute error between the reference and the estimate. Here, we observe that the leeward pressure discontinuity
is captured by the modes, demonstrating that the strain measurements sufficiently inform this feature of the surface
pressure.

With the introduction of noise, we must tune y to prevent the noise amplification due to the smaller eigenvalues.
For the assumed noise level, the regularization was selected using a Morozov-like criterion, where the parameter vy is
selected such that norm of the data misfit between the model strain and the measurement, || Zq — d||, is approximately
equal to the noise level, defined as 6 = E[||5||]] = o+/ng. This resulted in a regularization parameter of y = 1072, We
note that a single value for y was selected for estimation over all flight conditions. Considering the same flight conditions
as above, M =5, @ = 6, 8 = 6, the estimated pressure field was computed for one hundred different noise realizations,
resulting in a relative error range of 13.3% to 27.9%. Figure[T4]shows the reference pressure field, the projection r =7,
the estimated pressure field for a particular noise realization, which has a relative error of 17.5%, and the absolute
error between the reference and the estimate. We observe that solution no longer captures the leeward pressure feature
because the regularization has eliminated (smoothed) the modes which inform the discontinuity. However, we have
sufficiently prevented exploding errors produced by noise amplification. To further assess the estimator performance,
we compute the force and moment coefficients for the estimated pressure field. Over the same one hundred synthetic
noise realizations for the flight condition above, the relative errors in the coefficient of normal and side force were below
2%, and the relative errors in the pitch and yaw moment coefficients were below 3.4%. The largest axial force moment
error was larger, reaching 16.8%, but with a mean of 5.1% over the one hundred noise realizations. This shows that
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Fig. 13 (Left) Leeward view and (right) front view of (top to bottom) the reference pressure, projected reference,
zero-noise estimated pressure, and absolute error for ¥ = 107° at flight conditions M =5, a = 6, 8 = 6.

the integrated quantity relative errors can be quite low in comparison to the full-field relative error. To understand
this behavior, returning to Figure@ we examine the front view (right column) of the reference and estimated surface
pressure for the same flight conditions, as well as the absolute difference. In this view, we can see symmetric structure
in the absolute error across the plane with normal [0, — cos %, cos %] (direction of the total angle of attack). This
results in a similar bending moment in comparison to the reference pressure field, which dominates the strain response.
Consequently, the coefficients related to normal and side forces have small relative errors. This behavior arises from the
terms in the regularized least-squares problem: we seek a data misfit which is of the same order as the noise level, thus
the resulting bending moment is accurate enough to invoke a similar strain response, however we are unable to correctly
recover higher-frequency features in the pressure field due to the regularization term.

Additionally, we consider flight condition M = 6, @ = 0, 8 = 5, which was not in the set P, used to construct the
prior covariance. Figure[T5]shows the reference pressure field, the projection r = 7, the estimated pressure field for a
particular noise realization, which has a relative error of 7.6%, and the absolute error between the reference and the
estimate. For this flight condition, the leeward discontinuity is less prominent in the reference solution because the total
angle of attack is smaller. Again, we observe that the leeward feature is not captured by the estimated pressure field, due
to the regularization. Over one hundred noise realizations, the relative error range was 4.0% up to 12.0%. This shows
consistent estimator performance for flight conditions outside of P,. It also shows that there is smaller uncertainty in
the estimated pressure field for flight conditions at lower angles of attack due to a smoother leeward pressure feature.
This highlights the challenge with correctly identifying the discontinuities in a surface pressure field using strain-based
inverse maps.

In summary, the strain-based inverse map using our example sensor configuration captures the structural behavior
sufficiently to accurately recover surface pressures over a wide range of flight conditions in a noise-free setting. Therefore,
the limitation in pressure recoverability is due to the inherently noisy nature of measurements. We observe that the
flexibility of the high-dimensional parameter field in Case 2 still allows the solution to adapt to best match the strain
response, resulting in small errors in the performance quantities of interest like the force and moment coefficients. In
contrast, the POD parameterization in Case 1 does not enjoy the same advantage, resulting in larger force and moment
errors in the presence of sensor noise. In both cases, high spatial frequency features, such as a shock, remain difficult to
recover due to sensor noise.
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Fig. 14 (Left) Leeward view and (right) front view of (top to bottom) the reference pressure, projected reference,
estimated pressure, and absolute error for = 10'/? at flight conditions M = 5, @ = 6, 8 = 6. The relative error
of the estimated pressure compared to the reference pressure is 17.5% using a synthetic noisy measurement.

Reference
4
 ——— )
— 3.0e+04"
Projection
— 2
5.0e+3 §
[a¥
Estimate 2.0e+3
4000*
Absolute Error r
) ; — 2000 -
_0 g
. i 2000 ©
-4000

*color range truncated
Fig. 15 (Left) Side view and (right) front view of (top to bottom) the reference pressure, projected reference,

estimated pressure, and absolute error for = 10'/2 at testing flight conditions M = 6, @ = 0, 8 = 5. The relative
error of the estimated pressure compared to the reference pressure is 7.6% using a synthetic noisy measurement.
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IV. Conclusion

In this work, we have formulated a real-time estimator for aerodynamic loads via a strain-based strategy. Pre-
computation of the high-dimensional system matrix multiplications in the resultant estimator, which embed the physics
in the solution, enables real-time tractability of the approach. Given sensor noise statistics, the approach also enables
uncertainty quantification for the estimated quantities of interest. In the case where the number of unknown pressure
quantities is smaller than the number of measurements (i.e., n; < ng), we directly compute the variance of the estimated
parameters, demonstrating the impacts of the conditioning of the parameter-to-observable map. In the case where the
number of pressure quantities exceeds the number of measurements (i.e., ny > ng), we analyze the prior-preconditioned
Hessian to expose the theoretical recoverability of pressure fields under measurement uncertainty through the prior
and the data. Although two different sensor configurations were considered in this paper, the question of optimal
sensor placement for strain-based sensing strategies will be addressed in future work. Future work will also consider
aerothermal heating effects, which impact the strain response of the vehicle. The developments in this paper, as well as
the planned studies, are critical steps towards a deployable strain-based aerodynamic measurement strategy for controls,
ground and flight testing in hypersonics.
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