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Abstract This work proposes a mathematical framework to increase the robustness
to rare events of digital twins modelled with graphical models. We incorporate prob-
abilistic model-checking and linear programming into a dynamic Bayesian network
to enable the construction of risk-averse digital twins. By modeling with a random
variable the probability of the asset to transition from one state to another, we define
a parametric Markov decision process. By solving this Markov decision process, we
compute a policy that defines state-dependent optimal actions to take. To account for
rare events connected to failures we leverage risk measures associated with the distri-
bution of the random variables describing the transition probabilities. We refine the
optimal policy at every time step resulting in a better trade off between operational
costs and performances. We showcase the capabilities of the proposed framework
with a structural digital twin of an unmanned aerial vehicle and its adaptive mission
replanning.

1 Introduction

When creating a digital twin (DT) it is important to ensure its robustness to different
possible scenarios and rare event occurrences. Moving from considering typical
operational settings to more general scenarios that account for the involved risks
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will foster the development of robust and risk-averse digital twins. The aversion
to risk is particularly important during the deployment of the DT, that is after
the calibration phase is performed, to avoid interruption of the operations due to
the occurrence of rare events. To achieve reliability in an engineering system, it
is important to account for the uncertainties characterizing the physical asset under
consideration, in addition to the uncertainties in its operating environment. The main
contribution of this work it to present a method to increase the robustness of DTs
by using a probabilistic graphical model (PGM) formulation, parametric Markov
decision processes (MDPs), and risk measures to account for rare scenarios. The
potential impact on real-world systems is twofold: reliability of DT deployments can
be increased and operations can be optimized, resulting in lower operational costs
and more effective predictive maintenance.

A DT is distinguished from traditional modeling and simulation through its
personalization, that is, it is linked to the underlying physical asset or process,
allowing it to represent the particular attributes of that specific asset or process. This
DT representation is also dynamically evolving, continually incorporating data from
the physical world, and refining the DT’s predictive capabilities accordingly [1, 2,
3, 4, 5]. Within the digital twin framework, we need to accomplish different tasks
such as data acquisition, solving inverse problems, building computational models,
accounting for uncertainty, and performing future state predictions. In recent years,
DTs have been proposed for diverse applications such as health monitoring and
maintenance planning for spacecrafts [6], railway systems [7], civil engineering
structures [8, 9], and unmanned aerial vehicles [10, 11, 12].

A common framework for modeling decision-making in the presence of uncer-
tainty is based on Markov decision processes [13]. MDPs are widely used in rein-
forcement learning [14], robotics, and planning [15]. Oftentimes, the transitions in
an MDP are unrealistically assumed to be precisely known. In this work, we leverage
parametric MDPs with transition probabilities modeled as random variables with a
given distribution. Parametric MDPs describe models where some probabilities are
unknown but explicitly related. Such models form a natural pairing with a digital
twin framework where information on one transition probability may inform future
decisions. Probabilistic model-checking [16] provides a general framework to verify
whether an implemented policy satisfies a wide range of constraints.

The probabilistic graphical model we use is a dynamic Bayesian network with
decision nodes, also called dynamic decision network [17, 15, 18, 19]. The PGM
encodes the relationships between the variables describing the physical asset and
its digital counterpart. The edges in the PGM represent relationships between the
connected variables through conditional probability distributions. The uncertainty
is thus propagated in the entire graph, making it a powerful tool to account for risk.
Among these conditional probability distributions the state transition probability dis-
tributions, which encode how the state evolves after taking a given action, are usually
set a priori. In this paper, we propose a numerical method to dynamically update the
state transition probabilities with a Bayesian approach, feeding the parametric MDP
with the new information, and making the graphical model more interconnected with
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the physical asset. Better estimates translate into better policies and a more effective
digital twin.

A sketch of the end-to-end pipeline is depicted in Figure 1, where we consider a
specific physical asset for the sake of clarity. The computational flow starts with the
data acquisition from sensors placed on the unmanned aerial vehicle (UAV) wing.
The noisy data are used to estimate the digital state and the PGM is populated with
another time step. The unrolling is realized by duplicating the nodes and edges of the
graph, at a given time, for the next time step. The policy is then updated by solving
the MDP using the new state transition probability, and the optimal action is issued,
continuing the computational cycle. Future state predictions can be computed for
any time step, using the current estimate of the transition probability.

Data acquisition

State estimation

Graphical model unroll

Future state 
predictions

Posterior update

New action

Fig. 1: Abstract representation of the information flow within the DT formulation,
from sensor data acquisition to the MDP’s optimal policy update. Starting from strain
sensors placed on the wing, we estimate the digital state connected with the structural
integrity of the UAV. We then unroll the graphical model with all the variables for
a new time step and we update the posterior estimates of the transition probability.
We recompute the new optimal policy and we issue a new action to perform. This
policy is also used to compute future actions in the prediction phase happening in
the digital space.

The paper is organized as follows. In Section 2 we describe the PGM and its
predictive capabilities. Section 3 presents the underlying parametric MDP and how
the optimal policy is updated using different risk measures. The numerical results
with a test mission and two different scenarios are explained in Section 4. Finally,
we draw conclusions in Section 5.
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2 Probabilistic graphical model formulation for digital twins

This section introduces the PGM and how the variables are connected with the MDP.
We follow the approach of Ref. [10] for the PGM formulation.

Figure 2 depicts the encoding of the interactions between the physical and the
digital assets through a dynamic decision network, starting from 𝑡 = 0 to the current
time 𝑡 = 𝑡𝑐 = 2. We indicate with 𝑡 a generic non-dimensional discretized time step.
Circle nodes in the graph represent random variables, diamonds indicate output
functions, while square nodes denote the decisions taken to enact specific actions.
Following the edges we track the dependencies between variables. Notice how we
can unroll the directed graphical model for every time step just by repeating its core
structure. We consider the following time-dependent random variables: the unknown
underlying physical state 𝑆, the observed sensor measurements 𝑂, the digital state
𝐷, the actions 𝑈 (also called controls) that can be issued, and the reward 𝑅. The
direct solid edges encode the temporal dependencies between the variables through
conditional probability distributions.
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Fig. 2: Representation of the dynamic decision network used to encode the relation-
ships between the physical and the digital spaces for the first 3 time steps. Square
nodes denote actions, while diamond nodes denote the reward function. Bold outlines
represent observed (deterministic) quantities, while thin outlines stand for estimated
(random) variables.

Decision-making is achieved by leveraging MDPs. Let S be the set of possible
states, A be the set of possible actions, P be a set of transition probabilities, and
R be the reward set. In the remainder of the work we assume all these sets are
finite. A finite Markov decision process is defined by the tuple (S,A,P,R). The
state transition probability 𝑝 : S × S × A → [0, 1] describes the probability of
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transitioning from the state 𝑠 to 𝑠′ at time 𝑡 − 1 after taking the action 𝑢. It is defined
as:

𝑝(𝑠′ | 𝑠, 𝑢) := Pr{𝑆𝑡 = 𝑠′ | 𝑆𝑡−1 = 𝑠,𝑈𝑡−1 = 𝑢}. (1)

Analogously the reward function 𝑅 is defined as:

𝑅(𝑠′, 𝑠, 𝑢) := Pr{𝑟𝑡 | 𝑆𝑡 = 𝑠′, 𝑆𝑡−1 = 𝑠,𝑈𝑡−1 = 𝑢}, (2)

where 𝑟𝑡 is the reward at time 𝑡. The probability of taking an action 𝑢 at time 𝑡 is
given by a policy 𝜋𝑡 : S × A → [0, 1] defined as:

𝜋𝑡 (𝑠, 𝑢) := Pr{𝑈𝑡 = 𝑢 | 𝑆𝑡−1 = 𝑠}. (3)

To issue an actual action 𝑢𝑡 we take the argmax𝑢∈A 𝜋𝑡 (𝑠, 𝑢). A classical MDP
satisfies the Markov property [13], that is

Pr{𝑆𝑡 = 𝑠′ | 𝑆𝑡−1 = 𝑠𝑡−1,𝑈𝑡−1 = 𝑢𝑡−1, . . . , 𝑆1 = 𝑠1,𝑈1 = 𝑢1} =
Pr{𝑆𝑡 = 𝑠′ | 𝑆𝑡−1 = 𝑠𝑡−1,𝑈𝑡−1 = 𝑢𝑡−1}.

(4)

The goal is to leverage the resolution of an MDP to find the optimal sequence of
actions to issue to maximize the expected reward. The MDP is thus a key component
to provide optimal decision-making capabilities to the PGM. For more general cases
where the Markov property does not hold, the topology of the graph should reflect
that by adding more edges connecting all the necessary time instants.

We now show how uncertainty is propagated through the graph from data acqui-
sition to future state predictions. We denote by 𝑝(𝑑𝑡 ) the probability distribution of
𝐷𝑡 = 𝑑𝑡 , for any possible digital state 𝑑𝑡 , with similar notation employed for the
other random variables comprising the graphical model. We have 𝑆𝑡 ∼ 𝑝(𝑠𝑡 ) for the
physical state, 𝑂𝑡 ∼ 𝑝(𝑜𝑡 ) for the observational data, 𝑈𝑡 ∼ 𝑝(𝑢𝑡 ) for the action, and
𝑅𝑡 ∼ 𝑝(𝑟𝑡 ) for the reward. We can factorize the joint distributions of some of the
variables conditioned on the observed ones, as in the following:

𝑝(𝐷0, . . . , 𝐷𝑡𝑐 , 𝑅0, . . . , 𝑅𝑡𝑐 | 𝑜0, . . . , 𝑜𝑡𝑐 , 𝑢0, . . . , 𝑢𝑡𝑐 ) ∝
𝑡𝑐∏
𝑡=0

[
𝜙data
𝑡 𝜙

dynamics
𝑡 𝜙reward

𝑡

]
,

where the factors are:

𝜙data
𝑡 = 𝑝(𝑂𝑡 = 𝑜𝑡 | 𝐷𝑡 ), (5)

𝜙
dynamics
𝑡 = 𝑝(𝐷𝑡 | 𝐷𝑡−1,𝑈𝑡−1 = 𝑢𝑡−1), (6)

𝜙reward
𝑡 = 𝑝(𝑅𝑡 | 𝐷𝑡 ,𝑈𝑡 = 𝑢𝑡 ). (7)

The factor 𝜙data
𝑡 encodes the assimilation of the sensor measurements. With 𝜙

dynamics
𝑡

we factorize the belief about the digital state at the current time step, given the
digital state at the previous time step and the last enacted control. Finally 𝜙reward

𝑡

encodes the evaluation of the reward function which is a performance measure.
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The state space and the action space are discrete so the conditional probabilities
involving these spaces are encoded in the graph through conditional probability
tables (CPTs). These CPTs are usually set a priori, extrapolated from historical
mission logs or manufacturer’s blueprints of the physical asset. The structure of
the CPTs describing 𝜙

dynamics
𝑡 , also called transition probability matrices, is further

analyzed in Section 3.1.
The prediction for future time steps is performed using just a subset of the variables

comprising the DT framework, as depicted in Figure 3. To decide which action to
perform we query the policy 𝜋, mapping the current digital state to a distribution of
actions. The action with the highest density is the one that maximizes the total future
rewards. After updating the transition probability estimates in the graph at every
time step, we need to recompute the corresponding optimal policy. The policy used
for all the times 𝑡 ≥ 𝑡𝑐 is denoted with 𝜋𝑡𝑐 and incorporates the most updated state
transition probability estimates for all the possible actions. Notice how in Figure 3
the actions 𝑈𝑡 are depicted as random variables and not anymore as decision nodes
since we propagate the uncertainty throughout all the prediction stages. We have
indeed that 𝑈𝑡𝑐+𝑖 ∼ 𝜋𝑡𝑐 (𝐷𝑡𝑐+𝑖) for 𝑖 = 0, 1, 2.
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Fig. 3: Dynamic Bayesian network used for the prediction of the digital state evolution
with the associated uncertainty. We assume to have the estimation of 𝐷𝑡𝑐 given the
observations from the physical asset 𝑂𝑡𝑐 , the previous issued action 𝑈𝑡𝑐−1, and the
previous digital state 𝐷𝑡𝑐−1. From the current time 𝑡𝑐 we show the graph used to
predict the next 3 actions and digital states, using the policy 𝜋𝑡𝑐 .

The target belief state is extended as in the following:

𝑝(𝐷0, . . . , 𝐷𝑡𝑝 , 𝑅0, . . . , 𝑅𝑡𝑐 ,𝑈𝑡𝑐+1, . . . ,𝑈𝑡𝑝 | 𝑜0, . . . , 𝑜𝑡𝑐 , 𝑢0, . . . , 𝑢𝑡𝑐 )

∝
𝑡𝑐∏
𝑡=0

[
𝜙data
𝑡 𝜙

dynamics
𝑡 𝜙reward

𝑡

] 𝑡𝑝∏
𝑡=𝑡𝑐+1

[
𝜙

step
𝑡 𝜙control

𝑡

]
, (8)

where 𝜙control
𝑡 = 𝑝(𝑈𝑡 | 𝐷𝑡 ) is given by the last computed policy 𝜋𝑡𝑐 , and 𝜙

step
𝑡 =

𝑝(𝐷𝑡 | 𝐷𝑡−1,𝑈𝑡−1).
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3 Online adaptivity of risk-aware parametrized policies

Section 3.1 introduces parametric Markov decision processes defined by random
variables and how the state transition probability is refined after each data acqui-
sition step. Section 3.2 presents how risk measures are incorporated into the PGM
formulation.

3.1 Parametric Markov decision processes

For every possible action, there is a corresponding transition probability matrix en-
coding the conditional probabilities for all the combinations of states. The transition
probability matrix 𝑃 associated to the action 𝑢 ∈ A is defined as

𝑃(𝑢) := (𝑝𝑖 𝑗 )𝑛𝑖, 𝑗=1 = (𝑝(𝑠 𝑗 | 𝑠𝑖 , 𝑢))𝑛𝑖, 𝑗=1, for 𝑠𝑖 , 𝑠 𝑗 ∈ S, (9)

that is:

𝑃(𝑢) =
©«
𝑝(𝑠1 | 𝑠1, 𝑢) 𝑝(𝑠2 | 𝑠1, 𝑢) . . . 𝑝(𝑠𝑛 | 𝑠1, 𝑢)
𝑝(𝑠1 | 𝑠2, 𝑢) 𝑝(𝑠2 | 𝑠2, 𝑢) . . . 𝑝(𝑠𝑛 | 𝑠2, 𝑢)

...
...

. . .
...

𝑝(𝑠1 | 𝑠𝑛, 𝑢) 𝑝(𝑠2 | 𝑠𝑛, 𝑢) . . . 𝑝(𝑠𝑛 | 𝑠𝑛, 𝑢)

ª®®®®¬
, (10)

where 𝑝𝑖 𝑗 ≥ 0, and
∑𝑛

𝑗=1 𝑝𝑖 𝑗 = 1, for all 𝑖 ∈ [1, . . . , 𝑛]. This matrix can take different
forms depending on the underlying MDP.

We assume there exists a set of actions, denoted by A𝐷 ⊂ A, which produces a
deterministic outcome such as moving towards a known direction, for example. We
define A𝐷 as

A𝐷 := {𝑢 ∈ A | ∀𝑠 ∈ S, ∃ 𝑠′ ∈ S s.t. 𝑝(𝑠′ | 𝑠, 𝑢) = 1}. (11)

We denote its complementary set with A𝑁 = A \ A𝐷 and we define it as

A𝑁 := {𝑢 ∈ A | ∀𝑠 ∈ S \ {𝑠}, ∃ 𝑠′, 𝑠′′ ∈ S, 𝑠′ ≠ 𝑠′′, ∃ 𝑞 ∈ (0, 1) s.t. (12)
𝑝(𝑠′ | 𝑠, 𝑢) = 𝑞, 𝑝(𝑠′′ | 𝑠, 𝑢) = 1 − 𝑞},

where 𝑠 is the only state for which 𝑝(𝑠 | 𝑠, 𝑢) = 1.
We restrict to the case for which only two outcomes are possible, i.e., the state

varies smoothly without abrupt changes that lead to the transition to many possible
states. This assumption is not too restrictive because we can always decrease the
acquisition time step up to a certain computational threshold. Moreover, 𝑠′ and 𝑠′′

in Eq. (12) will always be two consecutive discretized states.
Let us consider an action 𝑢𝐷 ∈ A𝐷 , then we have that 𝑃(𝑢𝐷) is a permutation of

the identity matrix, which is known a priori. If, instead, we consider an action 𝑢𝑁 ∈
A𝑁 , then we can parametrize 𝑃(𝑢𝑁 ) with the parameter 𝑞 introduced in Eq. (12).
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We introduce 𝑃(𝑢𝑁 ; 𝑞), an upper bidiagonal matrix1, which has the following form:

𝑃(𝑢𝑁 ; 𝑞) =

©«

1 − 𝑞 𝑞 0 . . . 0 0
0 1 − 𝑞 𝑞 . . . 0 0
...

...
...
. . .

...
...

0 0 0 . . . 1 − 𝑞 𝑞

0 0 0 . . . 0 1

ª®®®®®®¬
. (13)

We refer to this case as state-invariant transition, because the probability of transi-
tioning from the current state to the contiguous discretized state does not depend
on the current state. In particular, if 𝑠 is a scalar, the superdiagonal elements are
equal to 𝑞, while the main diagonal elements are 1 − 𝑞, except the last one which is
1. Figure 4 illustrates the different transition probability matrices arising from our
setting. The general case with a state-dependent transition, denoted as 𝑃(𝑢; 𝑞(𝑠)) in
Figure 4, will be considered in future studies.

𝑃 (𝑢) ∀𝑢 ∈ A𝐷

𝑠

𝑠′

𝑃 (𝑢; 𝑞) , 𝑢 ∈ A𝑁

𝑠

𝑠′

𝑃 (𝑢; 𝑞 (𝑠) ) , 𝑢 ∈ A𝑁

𝑠

𝑠′

Fig. 4: Illustration of the types of transition matrices considered in this work. On the
left panel the matrix for the actions in A𝐷 , where green stands for 1 and white for 0.
In the central panel we have the upper bidiagonal with fixed transitions for actions in
A𝑁 , where red stands for 1 − 𝑞 and blue for 𝑞. On the right panel the generic upper
bidiagonal for transition probabilities varying between states.

In general, 𝑞 is unknown and possibly varying in time. When the parameter
𝑞 is incorporated to the transition probabilities, we can model the system as a
parametric MDP, which describes sets of sets on the transition probabilities. We
model 𝑞 with a random variable 𝑄. By accounting for the unknown nature of 𝑞, we
may compute robust policies covering the worst case transitions [20]. As we gather
more information on the true value of 𝑞 the policy will dynamically improve. We
leverage the PGM formulation and the acquired observations to refine our belief on
𝑞 at every time steps. Other approaches to describe uncertainty in parametric MDPs

1 In general the number of diagonals is equal to 2𝑑 , where 𝑑 is the dimension of the state 𝑠.
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use intervals [21, 22, 23], robust MDPs [24] which consider nonconvex sets for the
transition probabilities [25], or temporal specifications [26].

Suppose that the random variable 𝑄 describing the state transition probability
of our parametric MDP is beta-distributed with left parameter 𝛼 > 1 and right
parameter 𝛽 > 1, that is 𝑄 ∼ B𝑒(𝛼, 𝛽). Let us also suppose that 𝑋 = (𝑋1, 𝑋2, . . . )
is a sequence of indicator random variables such that given 𝑄 = 𝑞 ∈ (0, 1), 𝑋 is a
conditionally independent sequence with

Pr{𝑋𝑖 = 1 | 𝑄 = 𝑞} = 𝑞, ∀𝑖 ∈ N+, (14)

then 𝑋 is called a beta-Bernoulli process with parameters 𝛼 and 𝛽. 𝑋𝑖 represents the
outcome of the 𝑖-th trial, with 1 denoting a success and 0 a failure. In our particular
case 𝑋𝑖 = 1 if the state at time 𝑖 is different from the state at time 𝑖 − 1, and 𝑋𝑖 = 0
otherwise.

It can be proven that the conditional distribution of 𝑞 given (𝑋1 = 𝑥1, 𝑋2 =

𝑥2, . . . , 𝑋𝑛 = 𝑥𝑛) is a beta with left parameter 𝛼 + 𝑘 and right parameter 𝛽 + 𝑛 − 𝑘 ,
with 𝑘 =

∑𝑛
𝑖=1 𝑥𝑖 . Since the prior 𝑝(𝑞) and the posterior 𝑝(𝑞 | 𝑋 = 𝑥) belong to

the same probability distribution family they are called conjugate distributions. In
particular, the beta distribution is the conjugate prior to the Bernoulli distribution.
This posterior distribution could then be used as the new prior, without the need
for expensive MCMC. The parameters 𝛼 and 𝛽 are updated incorporating new
experience as it comes in a computationally efficient way.

3.2 Risk measures

As we showed above, computing the posterior distribution of the continuous random
variable 𝑄 is computationally efficient. A common choice for the best estimate of
the transition probability would be the maximum a posteriori (MAP) estimate. The
MAP estimate does not account for rare events and the associated risk, an important
aspect in engineering applications where we need to be aware of the risks connected
to failures. To overcome these limitations we use the conditional value at risk (CVaR)
for the posterior estimate of the transition probabilities, thus enhancing the reliability
and the risk-awareness of the digital twin. CVaR was first introduced for portfolio risk
analysis [27, 28, 29], and successfully used over the years in engineering applications
such as in [30, 31, 32, 33, 34].

To define the CVaR we first introduce the value at risk (VaR) [35, 36], also called
𝛼-quantile. For continuous distributions the VaR reads as follows:

VaR1−𝛼 (𝑄) := inf
𝑡∈R

{𝑡 : Pr(𝑄 ≤ 𝑡) ≥ 1 − 𝛼}, 𝛼 ∈ (0, 1] . (15)

CVaR, also called average value at risk or superquantile, is a coherent risk mea-
sure, even though it is derived from the value at risk, which is not. It measures the
expected loss in the lower tail given that a particular threshold has been crossed. It
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provides a measure of the average loss magnitude beyond the 𝛼-quantile level. For
continuous distributions, the CVaR is defined as

CVaR1−𝛼 (𝑄) :=
1
𝛼

∫ 𝛼

0
VaR1−𝑡 (𝑄)𝑑𝑡 = E[𝑄 | 𝑄 ≥ VaR1−𝛼 (𝑄)], 𝛼 ∈ (0, 1] .

It follows that for every𝛼 ∈ (0, 1] this inequality holds: VaR1−𝛼 (𝑄) ≤ CVaR1−𝛼 (𝑄).
Figure 5 depicts the relation between the MAP estimate, the VaR, and the CVaR

for a beta-distributed random variable.

MAP VaR CVaR

VaR1−α(Q) = inft{t : Pr(Q ≤ t) ≥ 1− α}

CVaR1−α(Q) = E[Q|Q ≥ VaR1−α(Q)]

1− α α

Fig. 5: Maximum a posteriori (MAP) estimate, value at risk (VaR), and conditional
value at risk (CVaR) for a generic probability distribution followed by the random
variable 𝑄.

4 Numerical results

This section presents two approaches to planning using robust policy optimization
for a parametric MDP. The first is a risk-averse planning structure, whereby the
model checking tool will compute the set of policies that are guaranteed to satisfy
a given safety specification and then select the optimal. The second is used when
we cannot make an almost-sure guarantee on safety but we seek to minimize the
total cost of a high-impact safety incident (such as wing failure). In the next section
we will describe the conditions that allow for the first form and planning and the
subsequent modifications that inform the second. The probabilistic graphical model
framework is implemented using the open source Python library pgmpy [37].
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4.1 Example scenarios

We present two case studies for UAV applications where our proposed framework
provides impact when planning. These cases are described as:

1. UAV delivery (Figure 6a) – a UAV is delivering items in a gridworld environment
with a series of target points. At each time interval there is a time-based cost for
transit and a non-zero probability 𝑞 ∈ (0, 1] that the wings may incur some
damage in the panels, i.e., local stiffness degradation, shown in Figure 1. The
UAV may elect to take an aggressive or gentle maneuver. An aggressive maneuver
results in a faster transition between states (i.e., a higher reward 𝑟agg > 𝑟gen) but
it has a higher probability of incurring damage on one of the wing panels (i.e.,
𝑞agg > 𝑞gen).

2. Aircraft collision avoidance (Figure 6b) – a modified MDP model [38] in a
similar environment to the UAV delivery, an aircraft is attempting to deconflict
with an oncoming vehicle by selecting the appropriate altitude band. At each time-
interval they may select from one of five decisions for their next altitude band,
three decisions {𝑔up, 𝑔flat, 𝑔down} form the gentle band (which carry probability
𝑞gen of causing damage to the wing panel) and two decisions {𝑎up, 𝑎down} are more
aggressive maneuvers that reach further states at the cost of higher probability
𝑞agg of causing damage to the wings. The scenario is concluded after the vehicles
occupy the middle band of points. If both vehicles are at the same altitude in this
trajectory then they are determined to have a risk of crash and are considered safe
otherwise. The opponent moves stochastically between altitude bands according
to some known distribution [38].

Vertiport

No fly zones

Client A

Client C

Client B

(a) The UAV departs from a warehouse or a ver-
tiport and has to deliver the package to one of the
clients in the served area. The agent computes
the best path and the associated maneuvers to
take at every time step.

(b) Aircraft attempts to avoid an incoming ve-
hicle using the same 𝑥-𝑦 trajectory. It may se-
lect a band of altitude with a gentle maneu-
ver (𝑔up, 𝑔flat, 𝑔down) or an aggressive one
(𝑎up, 𝑎down).

Fig. 6: (a) Last mile delivery and (b) Vertical air collision avoidance examples.

These scenarios can be modeled by a parametric MDP with two parameters: the
probability that the aggressive maneuver causes damage (𝑞agg) and the probability
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that the gentle maneuver causes damage (𝑞gen). There are numerous methods for
synthesizing policies that ensure an agent modeled as a parametric MDP will adhere
to a temporal logic specification [39, 40, 41]. In this work, we must both ensure
a probability of reaching a goal state with the minimization of an expected cost
and therefore we employ the probabilistic model checker Storm [42]. Using Storm,
we instantiate the worst case values for the damage probability and formulate the
problem as a linear program [43]. The computed policy is the policy that minimizes
the expected cost to reach the goal while ensuring the UAV will remain below
the damage threshold. Additionally, since Storm is an efficient probabilistic model
checker, we may update the expected value of the parameters as the aircraft makes
decisions and computes updates to the policy online.

In these examples, the worst case value of the parameter is predictable and
therefore we chose an efficient tool to compute the policy. When it is uncertain how
a given parameter value will affect the property, one may employ methods such
as sequential convex programming [20]. For other approaches for verification of
uncertain parametric MDPs see [44].

In each case above the objective of the aircraft can be described using a temporal
logic formula such as 𝜙 = ¬𝐶 ∪ 𝐺, i.e., do not crash until you reach the goal where
𝐶 describes a crash state such as wing damage, occupying the same altitude band
as an opponent or violating a no-fly region, and 𝐺 is some goal condition such as
delivering an object or passing an opponent in a different altitude band.

In both scenarios we seek to ensure that:

1. we successfully navigate to a goal 𝐺;
2. without incurring catastrophic structural damage to our wings ¬𝐶;
3. with the minimum expected cost of arrival.

At each decision point, there is a trade-off between taking a cheap, aggressive but
higher-risk action against an expensive, gentle but lower-risk action. For an almost-
sure guarantee on arriving to the goal without incurring catastrophic damage there
needs to be either a zero probability action (i.e., 𝑞gen = 0) for wing damage or a
minimum number of decisions smaller than the number of damage bins on the wing
(e.g., 5 steps to the goal and 10 bins for structural damage transitions to occur). While
there exist many situations where 𝑞gen = 0, we are most interested in presenting the
trade-off between ensuring safety and optimizing for time taken as well as showing
the value of the predictive input of an updating digital twin on the plan. Accordingly,
most results, unless otherwise specified will be minimizing the expected cost, where
the cost of a failure condition is graded as significantly higher than any time-based
action.

For all the test cases we assume that the calibration of the structural DT has
already been performed as in [10]. The initial prior on the transition probabilities is
provided as a beta distribution B𝑒(2, 𝛽) with left parameter 𝛼 = 2 and given mode.
The formula to compute the mode of a beta-distributed random variable given its
parameters is the following:

𝛼 − 1
𝛼 + 𝛽 − 2

, for 𝛼, 𝛽 > 1. (16)
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By using Equation (16) we compute the corresponding right parameter 𝛽. To ensure
the computational model interpretability we round 𝛽 to the closest integer.

4.2 Digital state estimation

This section describes how the digital state is estimated from the noisy observa-
tional data coming from the sensors placed on the wing of the UAV. We emphasize
there are many different methods that can be leveraged to solve the inverse prob-
lem from data to parameters comprising the digital state. The reader can refer to
Bayesian state estimation techniques or more generally to data assimilation meth-
ods [45, 46]. The crucial aspect is to compute the uncertainty associated with the
estimations to fully leverage the graphical model. In this application the digital state
is a four-dimensional vector composed by x ∈ N2, representing the deterministic
UAV position coordinates, and by z ∈ D ⊂ R2, which is a vector comprising the
structural health parameters associated to the UAV wing. Since the UAV position is
not affected by uncertainty in our setting, we focus on z. The vector z is defined as

z = [𝑧1, 𝑧2] ∈ D ⊂ R2, D :=
{(

𝑖

10
,
𝑗

10

) ���� 𝑖, 𝑗 ∈ [0, 1, . . . , 8]
}
. (17)

It represents the percentage of stiffness degradation (from 0% to 80%) of the two red
regions on the wing showed in Figure 1. The vector z is estimated at every time step
through a set of strain measurements 𝝐 = {𝜖 𝑗 }24

𝑗=1, coming from sensors placed on the
UAV. We assume these measurements are corrupted with additive white Gaussian
noise:

𝜖
𝑗
𝑡 = 𝜖

𝑗
𝑡 + 𝑣𝑡 , 𝑣𝑡 ∼ N(0, 𝜎), (18)

where the subscript denotes the time instant, and 𝜎 = 10 so that the sensor model
does not match the simulated measurements. To estimate z we solve the following
inverse problem

min
𝜽

1
2
∥𝐹 (𝜽) − 𝝐 ∥2

2 + ∥𝜽 ∥2, (19)

where 𝜽 ∈ [0, 0.8]2 and 𝝐 ∈ R24 is the vector comprising the noisy strain measure-
ments. We use an 𝐿2 regularization to favor low norm solutions. The 𝜃∗ that realizes
the minimum is then approximated with the nearest point in the discrete space D.
The map 𝐹 : [0, 0.8]2 → R24 describes the evaluation of the reduced order model
based on the static condensation reduced basis element (SCRBE) method developed
in [47, 48, 49] and presented in [50, 51] for the UAV we are considering. The SCRBE
technique brings together the scalability of component-based formulations and the
accuracy of the reduced basis method.

The resulting accuracy of the state estimation is equal to 75.4%. The accuracy is
measured by sampling 100 realizations of the noisy sensor data and then computing
the average of the confusion matrix’ diagonal. In particular, if we look at the estima-
tion of the single components of the vector z, we observe that 𝑧1 is estimated with
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a 100% accuracy, and all the errors are due to 𝑧2, which is in line with the findings
in [10]. These measures are factored in the PGM through 𝜙data

𝑡 .

4.3 Risk-averse case using CVaR

The simulated mission is composed of 40 time steps and it starts from an initial
state z = [0.2, 0.2]. In Figure 7 we show how the data assimilation performs for 𝑧1
(bottom part) and 𝑧2 (top part). The underlying transition probabilities are 3% and
10% for the gentle and aggressive actions, respectively. As we can see the tracking
of 𝑧1 is perfect, while for 𝑧2 we need some time steps to identify a state change. This
is observed also in [10] and it is due to the chosen state discretization levels and the
position on the wing, closer to the tip, which is more sensitive to noise.

Fig. 7: Evolution of the digital states 𝑧1 and 𝑧2 for the test mission. The initial state
z at time 𝑡 = 1 is set to [0.2, 0.2].

In Figure 8 we report the expected cost to complete the mission at every time
step, and the actual cumulative cost spent to follow the optimal policy. To estimate
the transition probabilities we use the conditional value at risk with 𝛼 = 0.25, i.e.,
the CVaR at the upper quantile. The adaptive policy results in a reduced cost equal
to 22%. This reduction is due to the policy refinement and the posterior updates.
If we consider the last-mile delivery scenario, the cost reduction translates to faster
deliveries without incurring a fatal crash, while accounting for the risk associated
with extreme events. By looking at the actual cost slope we can identify the switch
between gentle and aggressive actions, which correspond to a cost equal to 25 and
10, respectively. The priors associated to the gentle and aggressive maneuvers are
B𝑒(2, 66) and B𝑒(2, 20), respectively. They are reported in Figure 9 together with
the corresponding posteriors after 40 time steps. We can see that in both cases we
are converging to the unknown underlying transitions.
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Fig. 8: Expected and effective cost to complete a mission using the conditional value
at risk to estimate the transition probability matrices.
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Fig. 9: Prior and posterior distributions corresponding to the gentle maneuver (left
panel) and to the aggressive maneuver (right panel) for the risk-averse test case.

4.4 Best estimate case using MAP

For this test case we use the maximum a posteriori estimate of the beta distributions
to approximate the transition probabilities. The initial state at 𝑡 = 1 and the costs
associated with the two actions are the same as in the previous test case. The
underlying transition probability for the gentle maneuver is equal to 2%, while for
the aggressive maneuver is 10%.

By comparing the expected cost to goal and the actual cumulative cost we notice
a similar reduction as before equal to 22.07%, as we can see in Figure 10. The
similarities are due to the fact that we have a limited set of possible actions and the
length of the mission is also the same in the two scenarios.

The priors for gentle and aggressive actions are B𝑒(2, 14) and B𝑒(2, 5), respec-
tively. They correspond to a MAP equal to 7% and 20%. In Figure 11 we also plotted
the posteriors after the last time step 𝑡 = 40. For the aggressive maneuver the MAP
estimate identifies almost perfectly the ground truth mode, while for the gentle action
we need more time steps.
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Fig. 10: Expected and effective cost to complete a mission using the maximum a
posteriori estimate to estimate the transition probability matrices.
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Fig. 11: Prior and posterior distributions corresponding to the gentle maneuver (left
panel) and to the aggressive maneuver (right panel) for the maximum a posteriori
estimate test case.

4.5 Digital state predictions

The PGM allows making predictions by propagating all the uncertainties in the
graph. By leveraging the subgraph presented in Figure 3, we compute the evolution
of the digital state with the policy 𝜋𝑡𝑐 . Figure 12 depicts the digital state starting from
𝑡𝑐 = 0, where we have a discrete distribution corresponding to a 75% probability of
being at the state [0, 0] and a 25% probability of being in [0, 0.1]. The prediction
horizon is extended over 70 time steps in the future so that 𝑡𝑝 = 𝑡𝑐 + 70. In the
central panel we show the estimates at half of the time horizon, while in the right
panel the final estimates. In this example we employ a posterior estimate of the
transition probabilities equal to 2% and 10% for the gentle and aggressive actions,
respectively. The DT formulation informs about the expected future degradation of
structural health, allowing to planning of preventive interventions and maintenance.
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Fig. 12: Digital state predictions. Initial estimate in the left panel (𝑡 = 0), predictions
after 35 time steps in the central panel, and after 70 time steps in the right panel. The
colorbar represents the probability of being in a particular state [𝑧1, 𝑧2].

5 Conclusions and future perspectives

In this paper we integrated uncertainty quantification, risk-awareness, adaptive plan-
ning for autonomous systems, and predictive capabilities using a probabilistic graph-
ical model for digital twins. We showed how it is possible to dynamically update the
underlying assumptions in the creation of a PGM using parametric Markov decision
processes. We demonstrated that the decision-making agent will deploy a robust pol-
icy while dynamically refining its belief from new sensor data. The dynamic update
of the policy is a crucial characteristic that every digital twin should have since it
increases personalization and provides better decision-making while accounting for
risk and rare events. Not only is the DT able to monitor the physical asset in a more
realistic way, but also the graphical model improves the DT’s prediction accuracy.
The increased personalization of the DT represents a stepping stone for enhanced
predictive maintenance and monitoring.

The need of recomputing the optimal policy at every time step could be compu-
tationally demanding depending on the dimension of the discretized variables and
on the actual computational power on board. Therefore, the ability to accurately
describe the real-world scenario by the MDP is limited by the actual controller in-
stalled on the UAV. Nevertheless, the methods presented in this work aim at setting
a general formulation for digital twins that are able to adapt to sensed scenarios
by recomputing optimal policies, and accounting for risk. Future studies will be
conducted considering more general parametrized transition probabilities.
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