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GEOMETRIC SUBSPACE UPDATES WITH APPLICATIONS TO
ONLINE ADAPTIVE NONLINEAR MODEL REDUCTION∗

RALF ZIMMERMANN† , BENJAMIN PEHERSTORFER‡ , AND KAREN WILLCOX§

Abstract. In many scientific applications, including model reduction and image processing,
subspaces are used as ansatz spaces for the low-dimensional approximation and reconstruction of
the state vectors of interest. We introduce a procedure for adapting an existing subspace based on
information from the least-squares problem that underlies the approximation problem of interest
such that the associated least-squares residual vanishes exactly. The method builds on a Riemman-
nian optimization procedure on the Grassmann manifold of low-dimensional subspaces, namely the
Grassmannian Rank-One Update Subspace Estimation (GROUSE). We establish for GROUSE a
closed-form expression for the residual function along the geodesic descent direction. Specific appli-
cations of subspace adaptation are discussed in the context of image processing and model reduction
of nonlinear partial differential equation systems.
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1. Introduction. Dimension reduction techniques play an important role in the
application of computational methods—identifying inherent low-dimensional struc-
ture in the problem at hand can often lead to significant reductions in computational
complexity. Consider a set of state vectors embedded in the n-dimensional Euclidean
space Rn, n ∈ N. The goal of dimension reduction is to restrict the space of state
vector candidates to a subspace of Rn of low dimension p � n. In doing so, the
n-degree-of-freedom problem of computing full-scale state vectors is replaced by the
task of determining the p coefficients of a basis expansion in the reduced subspace.
If, for example, the state vectors are solutions of a computational model, then this
dimension reduction underlies the derivation of a projection-based reduced model. As
another example, the state vectors might represent experimental data or other system
samples such as representations of an image. In those cases, the dimension reduction
seeks an efficient compression of the data and a low-dimensional subspace in which
to reconstruct unknown states. When n is large, dimension reduction often leads to a
tremendous reduction in computational complexity; however, acceptable accuracy is
only retained if the full state vectors can be approximated well in the p-dimensional
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subspace. Thus, the identification and numerical representation of subspaces plays a
critical role.

In classical projection-based model reduction, the reduced subspace is determined
once in a so-called offline phase. Subsequently, it stays fixed while the reduced model
is evaluated during the so-called online phase. Online adaptive model reduction breaks
this division, and modifies the subspace during the evaluation process to better meet
the current conditions for the reduced state vector prediction.

Online subspace adaptation can be approached from a geometric perspective:
The set of all subspaces U ⊂ Rn of a certain fixed dimension p forms the Grassmann
manifold [2]. Subspaces are spatial locations on this manifold and are represented in
numerical schemes by column-orthogonal matrices in Rn×p. One-parameter subspace
modifications correspond to curves on the Grassmannian.

In the special case, where the subspace adaptation is based on a linear least-
squares residual function, the Grassmannian Rank-One Update Subspace Estimation
(GROUSE, [8]) applies: When approximating an unsampled state vector in the sub-
space U based on partial information, the associated least-squares residual is then
related to a velocity vector of a geodesic curve on the Grassmannian. GROUSE shows
that this geodesic curve corresponds to a matrix curve of rank-one modifications on
the underlying column-orthogonal matrices that act as subspace representatives.

Main contributions. We show that the GROUSE geodesic of rank-one updates
crosses a subspace U∗ that allows for an exact representation of the given partial
information. Mathematically, this is a nonlinear root-finding problem on the Grass-
mann manifold. We derive a closed-form expression for the residual with respect to
the partial information along the GROUSE geodesic. In particular, this allows us to
read off the root, but it may be of potential use in general when analyzing GROUSE
with other step size schemes. As an auxiliary, we establish a general formula for the
rank-one update of orthogonal projectors. Moreover, we generalize the method to
subspace adaptation based on general least-squares systems and to the adaptation of
a subspace of the subspace in question.

In the results section, we demonstrate that the proposed method applies in com-
bination with the following well-established dimension reduction techniques: gappy
proper orthogonal decomposition (gappy POD, [27, 18]) and discrete empirical inter-
polation method (DEIM, [22]). More precisely, we consider an application to gappy
POD image processing, and we combine the subspace adaptation with the DEIM to
construct an adaptive reduced model for the time-dependent nonlinear FitzHugh–
Nagumo partial differential equation system, which models the electrical activity in a
neuron. In contrast to the standard use case in the GROUSE literature [8, 49], our
focus is not on estimating a subspace from scratch based on potentially noisy data but
to adapt a given subspace of valid approximations based on incomplete but noise-free
observations. In the DEIM setting, it is not the final subspace that is of main interest
but rather the enhanced approximation capabilities after each adaptation.

Context and related work. The Grassmann manifold can be represented as a ma-
trix manifold. For comprehensive background information on optimization on matrix
manifolds, we refer the reader to [2] and its extensive bibliography. Matrix manifolds
appear frequently in image processing and computer vision [35], where they often take
the form of subspace identification problems. A related field of application is low-rank
matrix factorizations, which arise in data analysis problems of various kinds, among
them matrix completion [8, 15]. The GROUSE method was introduced in [8] as a tool
for both subspace identification from incomplete and/or noisy data and the matrix
completion problem and was further developed and analyzed in [10, 31, 48, 49].
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A recent survey of model reduction methods for parametric systems is [14]. Most
online adaptive model reduction techniques rely on precomputed quantities that re-
strict the way the reduced space can be changed online. One example is parametric
model reduction based on the interpolation of reduced models, where reduced op-
erators are interpolated on matrix manifolds [3, 23, 38, 4, 36, 50]. There are also
dictionary approaches [30, 34] that construct a reduced space online from a subset of
a large number of precomputed basis vectors, and localized reduced modeling tech-
niques [5, 40, 26, 24] that select online one of several precomputed reduced models.

In contrast, we are interested here in online adaptive model reduction methods
that derive updates to the reduced model with information that is obtained from
the full model in the online phase; thus, the adaptation uses information that is
unavailable in the offline phase. There are several approaches that generate new data
from the full model in the online phase, or derive new reduced basis vectors with
an h-refinement [21] based on an adjoint model of the full model, and then rebuild
the reduced model [37, 39, 44, 45]; however, this is often computationally expensive.
An efficient online adaptation that uses new data online was presented in [46, 6]
for localized reduced models. A reference state is subtracted from the snapshots of
localized reduced models. It is shown that this corresponds to a rank-one update of
the reduced space corresponding to the localized reduced models; however, this is only
a limited form of adapting a reduced model because each snapshot receives the same
change. In [42, 41], dynamic reduced models are introduced that adapt to changes
in the full model without requiring access to the high-fidelity operators; however, the
approach is limited to linear problems and to problems where high-resolution sensor
information is available that provides approximations of the full state vectors. For
nonlinear problems, an adaptive DEIM was presented in [43], which derives low-rank
updates to the DEIM basis from sparse data of nonlinear terms. In this paper we
draw on the theory of Grassman manifolds and subspace updates to introduce a more
flexible method for adaptive model reduction that applies to nonlinear problems and
reproduces the inputted sparse data exactly.

Notation and preliminaries. The (p×p)-identity matrix is denoted by Ip ∈ Rp×p.
If the dimension is clear, we will simply write I. The (p × p)-orthogonal group, i.e.,
the set of all square orthogonal matrices, is denoted by

Op = {R ∈ Rp×p|RTR = RRT = Ip}.

For a matrix U ∈ Rn×p, the subspace spanned by the columns of U is denoted by
U := colspan(U) := {Uα ∈ Rn| α ∈ Rp} ⊂ Rn. The set of all p-dimensional
subspaces U ⊂ Rn forms the Grassmann manifold

Gr(n, p) := {U ⊂ Rn| U subspace, dim(U) = p}.

The Stiefel manifold is the compact matrix manifold of all column-orthogonal
rectangular matrices

St(n, p) := {U ∈ Rn×p| UTU = Ip}.

The Grassmann manifold can be realized as a quotient manifold of the Stiefel manifold

(1) Gr(n, p) = St(n, p)/Op = {[U ]| U ∈ St(n, p)},

where [U ] = {UR| R ∈ Op} is the orbit, or equivalence class of U under actions of the

orthogonal group. Hence, by definition, two matrices U, Ũ ∈ St(n, p) are in the same
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Op-orbit if they differ by a (p× p)-orthogonal matrix:

[U ] = [Ũ ] :⇔ ∃R ∈ Op : U = ŨR.

A matrix U ∈ St(n, p) is called a matrix representative of a subspace U ∈ Gr(n, p) if
U = colspan(U). We will also consider the orbit [U ] and the subspace U = colspan(U)
as the same object. As in [25], we will make use throughout of the quotient representa-
tion (1) of the Grassmann manifold with matrices in St(n, p) acting as representatives
in numerical computations. From the manifold perspective, each p-dimensional sub-
space of Rn is a single point on Gr(n, p).

For a rectangular, full column rank matrix X ∈ Rn×p, the orthogonal projection
onto the column span of X is

(2) ΠX : Rn → colspanX, y 7→ X(XTX)−1XT y.

We will consider special orthogonal projectors associated with the Cartesian coordi-
nate directions. Let ej ∈ Rn denote the jth canonical unit vector, j = 1, . . . , n. Given
a subset of m ∈ N indices J = {j1, . . . , jm} ⊂ {1, . . . , n}, the (column-orthogonal)
matrix P = (ej1 , . . . , ejm) ∈ {0, 1}n×m is called the mask matrix corresponding to
the index set J . Left-multiplication of a vector with the transpose of P realizes
the projection onto the selected components in the same order as listed in J , i.e.,
PT y = (yj1 , . . . , yjm)T ∈ Rm for all y ∈ Rn. The matrix PPT is the canonical
orthogonal projection onto the coordinate axes j1, . . . , jm.

Throughout, whenever a mask matrix P ∈ Rn×m is applied to a subspace repre-
sentative U ∈ St(n, p), we assume that m > p and that the matrix of selected rows
PTU ∈ Rm×p has full column rank p.

Organization. Section 2 recaps the GROUSE approach and transfers the idea of
the geometric subspace adaptation to the context of model reduction. It also reviews
the essentials on the numerical treatment of Grassmann manifolds. Section 3 presents
the core methodological contributions of this paper, where we derive a closed-form
of the Grassmann rank-one update that solves the underlying least-squares residual
equation exactly. Example applications in the context of adaptive model reduction
and image processing are presented in section 4, and section 5 concludes the paper.

2. Problem statement. In this section, we first summarize GROUSE following
[8]. We then develop the connection between the theory of GROUSE and the task of
adapting a low-dimensional subspace for model reduction. Lastly, we discuss relevant
concepts in the numerical treatment of Grassmann manifolds.

2.1. GROUSE. Let P = (ej1 , . . . , ejm) ∈ {0, 1}n×m be a mask matrix, let U0 ⊂
Rn be a p-dimensional subspace with matrix representation U0 = [U0], U0 ∈ St(n, p),
and let b ∈ Rm be a given data vector, p < m < n. GROUSE considers the masked
least-squares problem

(3) y(U0) := arg min
ỹ∈U0

‖PT ỹ − b‖22 ,

which features the (subspace dependent) unique solution

(4) y(U0) = U0α(U0) ∈ Rn, α(U0) = (UT0 PP
TU0)−1UT0 Pb ∈ Rp.

The corresponding residual vector r(U0) := b − PT y(U0) is, in general, nonzero. For
a fixed mask matrix P and a fixed right-hand side b, the residual vector is associated
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with a differentiable function on Gr(n, p), the residual norm function

(5) FP,b : Gr(n, p)→ R, U 7→ ‖r(U)‖22 = bT b− bTPTU(UTPPTU)−1UTPb;

see [8, eqs. (2) and (3)]. (The matrix U in the definition of FP,b can be any repre-
sentative U ∈ St(n, p) of the subspace U ; see (1). The subscripts P, b will be dropped
when clear from the context.) Given a sequence of incomplete observations in the
form of data vectors bs ∈ Rm, s = 1, 2, . . . , with corresponding mask matrices Ps,
GROUSE adapts the initial subspace such that the objective

(6) U 7→
∞∑
s=1

FPs,bs(U) =

∞∑
s=1

‖PTs y(U)− bs‖2

is minimized; see [8, eq. (5)].1

The GROUSE algorithm works sequentially by addressing one data vector bs at
a time. It performs a step along the geodesic line on Gr(n, p) [25], [2, section 4] in
the direction of steepest descent, which is given by the negative of the gradient of (5)
with respect to the subspace U0 = [U0]. The gradient is represented by the rank-one
matrix G = −2P

(
bs − PTU0αs

)
αTs with αs = (UT0 PP

TU0)−1UT0 Pbs; see [8, eq. (9)],
[25, eq. (2.70)]. The direction of steepest descent is H = −G. Because H is rank-one,
its thin SVD H = ΦΣV T reduces to H = Pr

‖r‖ (σ1)vT , where r is the residual vector,

v = αs
‖αs‖ and σ1 = 2‖r‖‖α‖ is the single nonzero singular value of H. Evaluating the

Grassmann geodesic [25, section 2.5.1] along this descent direction leads to

(7) t 7→ U0(t) = U0 +

(
(cos(tσ1)− 1)U0v + sin(tσ1)

Pr

‖r‖

)
vT =: U0 + x̂(t)vT ;

see [8, eqs. (11) and (12)]. At each iteration s = 1, 2, . . . , the GROUSE algorithm [8,
Alg. 1] chooses a step size t = ηs and replaces the previous subspace representative
Us−1 by Us = Us−1(ηs) according to (7). Local and global convergence results are
given in [9, 48, 49].

2.2. Subspace adaptation and model reduction. We consider here projec-
tion-based model reduction methods. These methods make use of a subspace U0 ⊂ Rn
of comparatively low dimension dim(U0) = p � n that is assumed to contain the
essential information about a set X ⊂ Rn of state vectors over a range of operating
conditions. More precisely, the fundamental assumption underlying the dimension
reduction is that the n-dimensional state vectors y ∈ X may be approximated up to
sufficient accuracy with only p degrees of freedom via

(8) y ≈ ỹ(α) = U0α, α ∈ Rp,

where U0 ∈ St(n, p) is a matrix representative of U0. The standard case in model
reduction is that the set of state vectors X is the solution manifold of a parametric
partial differential equation (PDE).

In the following, we consider the special case that only incomplete information
on a state vector y ∈ X is available. This case is encountered in the model reduction
techniques gappy POD [27] and DEIM [22]. The incomplete data imposes equality

1For complete data vectors bs ∈ Rn, (6) is the same as [49, eq. (2)].
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constraints on the m < n components yj1 , . . . , yjm of a state vector y ∈ X via the
equation

(9) PT y =

yj1...
yjm

 =: b, P = (ej1 , . . . , ejm) ∈ {0, 1}n×m.

Under the requirement that y be contained in U0, the underdetermined equation (9)
translates into the overdetermined masked least-squares problem (3) with correspond-
ing solution (4). This establishes a direct link to the GROUSE approach.

The objective of our work is to find a subspace U∗ ∈ Gr(n, p) close to U0 such
that the best subspace-restricted least-squares solution y(U∗) features an exact zero
residual, ‖r(U∗)‖2 = 0. In solving this equation for the unknown U∗, we adapt
the original reduced subspace U0 according to the least-squares problem arising from
the new (partial) information about y. The requirement of U∗ being close to U0 is
important in the context of model reduction because we want the approximation (8)
to remain valid for U∗.

We formalize the objective. Define the feasibility set

(10) Z :=
{
U ∈ Gr(n, p)| min

ỹ∈U
‖PT ỹ − b‖2 = 0

}
.

The set Z is nonempty.2 From GROUSE, it is known that the geodesic curve t 7→ U(t)
that starts in U(0) = U0 with velocity given by the direction of steepest descent of the
residual norm function (5) is a matrix curve of rank-one updates on the initial subspace
U0; see (7). We will show that this curve crosses the feasibility set Z and determine the
first intersection point. By writing the residual vector as r(U0) = b− ΠPTU0

b, where
ΠPTU0

is the orthogonal projection (2) onto colspan(PTU0), this objective becomes
a nonlinear equation on the Grassmann manifold:

(11) solve b−ΠPTU(t∗)b = 0 for t∗ ∈ R.

The condition b−ΠPTU(t∗)b = 0 is equivalent to [U(t∗)] ∈ Z.
A contribution of this paper is an explicit formula for the time-dependent residual

r(U(t)) = b − ΠPTU(t)b derived in section 3, from which the solution to (11) can be
read off in closed form. In contrast to GROUSE, whose overall aim is the iterative
global minimization of (6), we focus on the single adaptation steps and the nonlinear
residual equation on Gr(n, p). We arrive in this way at the same formula for t∗ that
was obtained in [49, Alg. 1, section 3.1, App. C] as the optimal greedy step size in an
iterative subspace updating scheme based on complete right-hand side vectors.

In summary, our approach is a method for determining a subspace U∗ contained
in the set Z from (10) that can be reached via a geodesic path along the descent
direction starting in U0. Figure 1 and section SM1 from the supplement illustrate
this principle. In subsection 3.3, we show that this is not restricted to the special
case of masked least-squares problems ‖PT ỹ− b‖2 but can be generalized to arbitrary
underdetermined systems ‖Aỹ − b‖2, A ∈ Rm×n.

2.3. Numerical aspects of the Grassmann manifold. Our approach to solve
(11) is presented in section 3 and builds on geometric concepts on the Grassmann
manifold Gr(n, p). This subsection reviews a few essential aspects of the numerical
treatment of Grassmann manifolds. We refer the reader to [1, 2, 25] for details.

2Any subspace U that contains a vector y = Pb+ v, where v ∈ Rn is in the (n−m)-dimensional
kernel of PT is in Z.
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Fig. 1. Graphical illustration of the geometric subspace adaptation: The sphere visualizes the
Grassmann manifold Gr(n, p). The solid line marks the set Z of all subspaces in Gr(n, p) that
contain zero-residual solutions to the least-squares problem (3). The black triangle shows the initial
subspace U0. The dashed line is the geodesic starting in U0 with velocity given by minus the gradient
of the least-squares residual function. Our goal is to compute the subspace U∗, where the geodesic
meets the set Z.

Tangent spaces and normal coordinates. The tangent space TUGr(n, p) at a point
U ∈ Gr(n, p) can be thought of as the space of velocity vectors of differentiable
curves on Gr(n, p) passing through U . For any matrix representative U ∈ St(n, p) of
U ∈ Gr(n, p) the tangent space of Gr(n, p) at U is represented by

TUGr(n, p) =
{

∆ ∈ Rn×p| UT∆ = 0
}
⊂ Rn×p,

its canonical metric being 〈∆, ∆̃〉Gr = tr(∆T ∆̃) [25, section 2.5]. Endowing each tan-
gent space with this metric turns Gr(n, p) into a Riemannian manifold. A geodesic
t 7→ U(t) on Gr(n, p) is a locally length-minimizing curve. A geodesic is uniquely de-
termined by its starting point U(0) and its starting velocity U̇(0) = ∆ ∈ TU0Gr(n, p),
[2, p. 102].

The corresponding Riemannian exponential mapping is

ExpU0 : TU0Gr(n, p)→ Gr(n, p), ∆ 7→ ExpU0(∆) := U(1).

The Riemannian exponential maps a tangent vector ∆ ∈ TU0Gr(n, p) to the endpoint
U(1) of a geodesic path U : [0, 1] → Gr(n, p) starting at U(0) = U0 ∈ Gr(n, p) with
velocity ∆ ∈ TU0Gr(n, p).

An efficient algorithm for evaluating the Grassmann exponential is derived in [25,
section 2.5.1]. The explicit form of the associated geodesic is

(12) U(t) = ExpU0(t∆) = [U0V cos(tΣ)V T + Φ sin(tΣ)V T ], ∆
SVD
= ΦΣV T .

The exponential mapping gives a local parametrization from the (flat, Euclidean)
tangent space to the manifold. This is also referred to as representing the manifold
in normal coordinates [32, section III.8], [33, Lem. 5.10].

Distance between subspaces. Given two subspaces [U ], [Ũ ] ∈ Gr(n, p), the ith
canonical or principal angle between [U ] and [Ũ ] is θi := arccos(σi) ∈ [0, π2 ], where σi
is the ith-largest singular value of UT Ũ ∈ Rp×p [29, section 12.4.3].
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The Riemannian distance between [U ], [Ũ ] ∈ Gr(n, p) is

(13) dist([U ], [Ũ ]) := ‖Θ‖2, Θ = (θ1, . . . , θp) ∈ Rp.

Normal coordinates are radially isometric with respect to the Riemannian dis-
tance on Gr(n, p) and the canonical metric on TU0Gr(n, p) in the following sense: the
length of a tangent vector ∆ as measured by the metric in TU0Gr(n, p) is the same
as the Riemannian distance dist(U0, ExpU0(∆)) on Gr(n, p), provided that ∆ is in a
neighborhood of 0 ∈ TU0Gr(n, p), where the exponential is invertible [33, Lem. 5.10
and Cor. 6.11].

The Grassmann manifold is a compact homogeneous space [32]. In particular, by
[47, Thm. 8(b)], any two points on Gr(n, p) can be connected by a geodesic of length

≤
√
p

2 π. This is related to the so-called injectivity radius of the Grassmann manifold
[47], which is the maximal radius ρ such that the exponential map at any point
[U ] ∈ Gr(n, p) is a diffeomorphism onto the open ball B(0, ρ) ⊂ T[U ]Gr(n, p) around
the origin in the corresponding tangent space. The injectivity radius of the Grassmann
manifold is ρ = π

2 [47]. This concept is relevant to the step of conducting the line
search within Grassmann optimization schemes. We make the following observation:
Using the explicit formulas for the exponential mapping and its (local) inverse, called
the logarithmic mapping Log[U ] (see [12, section 3]), one can show that Log[U ] ◦
Exp[U ](∆) = ∆ for all tangent vectors ∆ of spectral norm ‖∆‖2 = σ1(∆) < π/2,
where σ1(∆) is the largest singular value of ∆. As a consequence, we have the following
observation.

Observation 1. For all [U ] ∈ Gr(n, p), let

B[U ],spec(0, π/2) :=
{

∆ ∈ T[U ]Gr(n, p)| σ1(∆) <
π

2

}
.

Then the exponential mapping Exp[U ] is a radial isometry on B[U ],spec(0, π/2).

This observation is important for numerical computations because

B[U ],spec(0, π/2) ⊃
{

∆ ∈ T[U ]Gr(n, p)|
√
〈∆,∆〉Gr = ‖(σ1, . . . , σp)T ‖2 <

π

2

}
,

i.e., the spectral π/2-ball in the tangent space encloses the canonical π/2-ball in
the tangent space. The above observation leads to the next proposition which has
implications on the uniqueness of solutions to (11).

Proposition 1. Let [U ] ∈ Gr(n, p), ∆ ∈ T[U ]Gr(n, p), and Ũ = Exp[U ](∆). If

‖∆‖2 < π
2 , then dist

(
[U ], [Ũ ]

)
= ‖∆‖Gr. In particular, the length of the geodesic path

starting in [U ] and ending in [Ũ ] is less than
√
p

2 π.

Proof. Let ∆
SVD
= ΦΣV T with Σ = diag(σ1, . . . , σp) and let σ1 = ‖∆‖2 < π

2 . The

exponential projection of ∆ onto Gr(n, p) is [Ũ ] = Exp[U ](∆) = [UV cos(Σ)V T +
Φ sin(Σ)V T ].

The SVD of UT Ũ is V cos(Σ)V T , so that 0 ≤ θk := arccos(cos(σk)) = σk <
π
2 .

Hence, (σ1, . . . , σp)
T = (θ1, . . . , θp)

T := Θ ∈ Rp is precisely the vector of canonical

angles between [U ] and [Ũ ] (when listing the canonical angles in descending order);
see (13). As a consequence,

dist
(

[U ], [Ũ ]
)

= ‖Θ‖2 =
√
tr(Σ2) =

√
tr(∆T∆) = ‖∆‖Gr.

Since σ1 <
π
2 , we have ‖∆‖Gr =

(∑p
i=1 σ

2
p

)1/2
<
√
p

2 π.
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A subtlety of Proposition 1 is that the length condition on ∆ is with respect to
the spectral norm rather than the canonical norm.

3. Solving the Grassmann residual equation. We now return to our goal
formulated in subsection 2.2: the solution of (11). In subsection 3.1, we derive a
general update formula for orthogonal projectors under rank-one modifications. Sub-
section 3.2 derives an explicit time-dependent expression for the Grassmann residual
along the GROUSE geodesic. In particular, this allows us to read off the closed-form
solution to (11). A generalization to least-squares systems featuring arbitrary matri-
ces rather than mask matrices as operators is given in subsection 3.3. Subsequently,
subsection 3.4 introduces an extension for performing the Grassmann subspace adap-
tation over selected directions of the subspace only.

3.1. A closed-form rank-one update for orthogonal projectors. In this
subsection, we derive a formula for orthogonal projectors under rank-one updates that
turns out to be an essential building block in solving (11). As this result is also of
independent interest, we state it in a more general setting.

Let X ∈ Rm×p. Recall from (2) that the orthogonal projection onto colspanX is

ΠX = X(XTX)−1XT . Let X
SVD
= QΣRT be the thin SVD of X with Q ∈ St(m, p),

Σ ∈ Rp×p diagonal, R ∈ Op orthogonal. Then ΠX is expressed alternatively as
ΠX = QQT .

Let x ∈ Rm, v ∈ Rp, and consider the rank-one update

Xnew = X + xvT ∈ Rm×p.

We are interested in an expression ΠXnew = QnewQ
T
new, where Qnew ∈ St(m, p). One

standard way to approach this is via rank-one SVD updates [19, 17]. However, this
requires an auxiliary SVD of a (p× p)-matrix. Here, we can avoid this, since we are

not interested in the fully updated Xnew
SVD
= QnewΣnewR

T
new or even in Qnew alone

but only in QnewQ
T
new.

Lemma 2. As in the above setting, let X
SVD
= QΣRT , Xnew = X + xvT , and

define

q̃ = x−QQTx, q =
q̃

‖q̃‖2
∈ Rm,(14a)

g =

(
gp
gp+1

)
=

(
−Σ−1RT v

1
‖q̃‖2 (1 + xTQΣ−1RT v)

)
∈ Rp+1.(14b)

Then the orthogonal projection onto colspan(Xnew) is

(15) ΠXnew = (Q, q)

(
QT

qT

)
− 1

‖g‖22
(Q, q)ggT

(
QT

qT

)
.

Proof. We start with a decomposition inspired by [17, eq. (3)]. Note that (Q, q) ∈
St(m, p+ 1) by construction. It holds that

X + xvT = (Q, q)

(
ΣRT +QTxvT

‖q̃‖vT
)

=: (Q, q)M,

where M ∈ R(p+1)×p. Let M
SVD
= Q̃Σ̃R̃T be the thin SVD of M , i.e., Q̃ ∈ St(p +

1, p), Σ̃, R̃T ∈ Rp×p. Formally, the updated SVD is

X + xvT =
(

(Q, q)Q̃
)

Σ̃R̃T =: QnewΣnewR
T
new.
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Let g ∈ Rp+1 be such that (Q̃, g
‖g‖ ) ∈ Op+1 is an orthogonal completion of Q̃. Because

of Ip+1 = (Q̃, g
‖g‖ )(Q̃,

g
‖g‖ )

T , we have

Q̃Q̃T = Ip+1 −
1

‖g‖2
ggT

and, as a consequence,

(16) QnewQ
T
new = (Q, q)Q̃Q̃T

(
QT

qT

)
= (Q, q)

(
Ip+1 −

1

‖g‖2
ggT

)(
QT

qT

)
.

Hence, it is sufficient to determine g, which is characterized up to a scalar factor by
Q̃T g = 0. Since colspan(M) = colspan(Q̃), this condition is equivalent to MT g = 0.
Let gp ∈ Rp denote the first p components of g and let gp+1 ∈ R be the last entry
such that gT = (gTp , gp+1). When writing the equation gTM = 0 as

(gTp , gp+1)

(
Σ QTx
0 ‖q̃‖2

)(
RT

vT

)
= 0,

it is straightforward to show that

g =

(
−Σ−1RT v

1
‖q̃‖2 (1 + xTQΣ−1RT v)

)
∈ Rp+1

and any scalar multiple of this vector is a valid solution. Using this vector in (16)
proves the lemma.

3.2. An explicit expression for the Grassmann residual function along
the GROUSE geodesic. We now state our main theorem on the solution of the
nonlinear equation (11).

Theorem 3. Let U0 = [U0] ∈ Gr(n, p) be represented by U0 ∈ St(n, p). Let
P = (ej1 , . . . , ejm) ∈ {0, 1}(n×m) be a mask matrix. Moreover, let b ∈ Rm and suppose

that UT0 Pb 6= 0.
Let α = (UT0 PP

TU0)−1UT0 Pb be the optimal coefficient vector corresponding to
the masked least-squares problem

min
α̃∈Rp

‖PTU0α̃− b‖2

and let r = b − PTU0α the associated residual vector. Set v = α
‖α‖2 and s1 =

2‖r‖2‖α‖2. Moreover, write PTU0
SVD
= QΣRT ∈ Rm×p and gp = −Σ−1RT v. The

t-dependent residual vector along the geodesic descent direction is

r([U(t)]) = b−ΠPTU(t)b =
‖r‖2 − ‖α‖2 tan(ts1)

1 + tan2(ts1)‖gp‖2

(
r

‖r‖2
− tan(ts1)

‖α‖2
QΣ−2QT b

)
.

Proof. Reconsider (7) and let

x(t) = PT x̂(t) = (cos(ts1)− 1)PTU0v + sin(ts1)
r

‖r‖2
,

v =
α

‖α‖2
, α = (UT0 PP

TU0)−1UT0 Pb,
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so that
PTU(t) = PTU0 + x(t)vT .

Since PTU(t) is a rank-one update of PTU0, Lemma 2 applies. Introducing PTU0
SVD
=

QΣRT ∈ Rm×p, we obtain r = b − QQT b and α = RΣ−1QT b. The t-dependent
orthogonal projection onto colspan(PTU(t)) is

(18) ΠPTU(t) = (Q, q(t))

(
QT

qT (t)

)
− 1

‖g(t)‖22
(Q, q(t))g(t)gT (t)

(
QT

qT (t)

)
,

where

q̃(t) = x(t)−QQTx(t), q(t) =
q̃(t)

‖q̃(t)‖2
∈ Rm,

g(t) =

(
gp

gp+1(t)

)
=

(
−Σ−1RT v

1
‖q̃(t)‖2 (1 + xT (t)QΣ−1RT v)

)
∈ Rp+1.

We have QT r = 0 and thus QTx(t) = cos(ts1)−1
‖α‖2 QT b. This leads to q̃(t) = sin(t)

‖r‖2 r

and ‖q̃(t)‖2 = | sin(t)| as well as q(t) = sign(sin(t)) r
‖r‖2 = ±q, where we standardize

q = r
‖r‖2 . Moreover,

xT (t)QΣ−1RT v =
1

‖α‖22
(cos(ts1)− 1) bTQΣ−2QT b︸ ︷︷ ︸

‖α‖22

= (cos(ts1)− 1),

so that g(t) is

g(t) =

(
− 1
‖α‖2 Σ−2QT b

cos(ts1)
| sin(ts1)|

)
∈ Rp+1.

It holds that cos(ts1)
| sin(ts1)|q(t) = cos(ts1)

sin(ts1)
q. Hence, according to (18), we may consistently

work with +q and cos(ts1)
sin(ts1)

= cot(ts1). In order to evaluate the updated projection

(18), we compute

(Q, q)

(
gp

gp+1(t)

)
= − 1

‖α‖2
QΣ−2QT b+ cot(ts1)q,

gTp Q
T b = − 1

‖α‖2
bTQΣ−2QT b = −‖α‖2, and

qT b =
1

‖r‖2
rT b =

1

‖r‖2
(bT b− bTQQT b︸ ︷︷ ︸

‖r‖22

) = ‖r‖2.

Substituting these identities in (18), we arrive at

r([U(t)]) = b−ΠPTU(t)b = b−QQT b− qqT b(20)

+
1

‖g(t)‖2
(
Qgp + cot(ts1)q

) (
gTp Q

T b+ cot(ts1)qT b
)

=
cot(ts1)‖r‖2 − ‖α‖2

‖g(t)‖22

(
cot(ts1)

r

‖r‖2
− 1

‖α‖2
QΣ−2QT b

)
,

as was claimed.
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Note that the only special property of P that is exploited in the proof is that
PTPr = r. Hence, the result holds when P is replaced with an arbitrary column-
orthogonal matrix.

There is a number of conclusions that can be drawn from Theorem 3.

Corollary 4.
1. The t-dependent residual norm along the steepest descent direction is

(21) ‖r([U(t)])‖2 = ‖b−ΠPTU(t)b‖2 =
|‖r‖2 − ‖α‖2 tan(ts1)|√

1 + ‖gp‖22 tan2(ts1)
.

2. The residual norm function is continuous and π
s1

-periodic along the steepest
descent direction with

‖r([U(0)])‖2 = ‖r‖2 and ‖r
([
U

(
π

2s1

)])
‖2 =

‖α‖2
‖gp‖2

=
‖α‖22

‖QΣ−2QT b‖2
.

3. The first root along the geodesic descent direction is at

(22) t∗ =
1

s1
arctan

(
‖r‖2
‖α‖2

)
∈
(

0,
π

2s1

)
.

The associated matrix U∗ := U0 +
(
(cos(t∗s1) − 1)U0v + sin(t∗s1) Pr‖r‖

)
vT is

such that the subspace U∗ := [U∗] is contained in the set Z from (10), i.e.,

(23) F (U∗) = min
α̃∈Rp

‖PTU∗α̃− b‖2 = 0.

Stated differently, it holds that b is contained in colspan (PTU∗), that is,
b = ΠPTU∗b.

4. The coefficient vector associated with U∗ = [U∗] = (23) is α∗ =
√

1 +
‖r‖22
‖α‖22

α.

The associated y∗ ∈ Rn is y∗ = U∗α∗ = U0α + Pr = U0α + P (b − PTU0α).
Hence, y∗ can be readily obtained without computing any of t∗, α∗, U∗.

5. The first maximum along the geodesic descent direction is at

tmax =
1

s1

(
π − arctan

(
‖α‖2

‖r‖2‖gp‖22

))
∈
(
π

2s1
,
π

s1

)
with corresponding value ‖r([U(tmax)])‖2 =

√
‖r‖22 +

‖α‖22
‖gp‖22

.

Proof. By taking into account that r is orthogonal to colspan(Q), Pythagoras’

theorem gives ‖
(

cot(ts1) r
‖r‖2 −

1
‖α‖2QΣ−2QT b

)
‖2 =

√
cot2(ts1) + ‖gp‖22 = ‖g(t)‖2.

The formula (21) is now an immediate consequence of (20). From (21), statements 2,
3, and 5 of the corollary are straightforward.

On statement 4: From statement 3, we know that there exists α∗ ∈ Rp such that
PTU∗α∗ − b = 0. After plugging in the explicit expression for U∗, we obtain the
equation

PTU0

(
α∗ − αTα∗

‖α‖22
α

)
+

(
αTα∗

‖α‖2
√
‖α‖22 + ‖r‖22

− 1

)
b = 0.

If the unmodified least-squares problem (3) features a nonzero residual, then b is not
contained in colspanPTU0. Hence, both quantities in the round brackets must be

zero, which leads to α∗ = αTα∗

‖α‖22
α =

√
‖α‖22+‖r‖22
‖α‖2 α. The calculation of y∗ is, therefore,

straightforward.



246 R. ZIMMERMANN, B. PEHERSTORFER, AND K. WILLCOX

Appendix A features a shortcut to statements 3 and 4 of Corollary 4. An example
of a plot of the residual norm function (21) from a practical application is displayed
in Figure 5.

Remark 5. The GROUSE convergence analysis in [10] is based on local consider-

ations and a step length of t̃ = 1
s1

arcsin
( ‖r‖2
‖α‖2

)
, which matches the t∗ in (22) up to

terms of third order, when the residual and, therefore, the ratio ‖r‖2/‖α‖2 are small.
In the fully sampled case, that is, when complete right-hand side data is available,
[49] shows that the same t∗ of (22) is also the greedy-optimal step with respect to the
determinant-similarity and the Frobenius norm discrepancy of two subspaces in an
iterative subspace updating scheme; see [49, section 3.1 and App. C]. In contrast, we
arrived at t∗ from the independent approach of solving the nonlinear equation (11)
and with a different proof that relies on Lemma 2. Combining these facts shows that
the subspace discrepancy is maximal if and only if the subspace update is such that
the residual vanishes exactly.

The proof of Proposition 1 shows that the distance between the subspaces [U0]

and [U∗] is t∗s1 = arctan
( ‖r‖2
‖α‖2

)
< π

2 . Hence, when performing the t∗-optimal rank-

one update on [U0] according to Corollary 4, we stay within the injectivity radius. As
a consequence from general differential geometry, the geodesic t 7→ [U(t)] is length-
minimizing, that is, there is no shorter curve on Gr(n, p) that connects [U0] and
[U∗].3

We emphasize that the update formula of Lemma 2 for orthogonal projectors
under rank-one modifications was used as an intermediate theoretical fact in proving
Theorem 3 but that it is not required to actually compute the rank-one update and
the associated quantities Q, q, g in order to obtain the optimal t∗ and the subspace
[U∗] = [U(t∗)]. MATLAB code that considers this fact is in the supplement section
SM4.

We draw a corollary that corresponds to the special case where the mask matrix
P is the identity In, i.e., the case where complete data is available. Recall that the
best least-squares approximation to a given vector b that is contained in a subspace
U0 is the orthogonal projection U0U

T
0 b of b onto U0, with an associated residual of

r = b−U0U
T
0 b. The SVD of PTU0 is now trivially PTU0 = QΣRT = U0IpI

T
p so that

the expressions involving Q,Σ, R simplify.

Corollary 6. Let U0 = [U0] ∈ Gr(n, p) be represented by U0 ∈ St(n, p). Let
b ∈ Rn and suppose that α := UT0 b 6= 0. Set v = α

‖α‖2 and s1 = 2‖r‖2‖α‖2. Then the

t-dependent residual norm is

‖r([U(t)])‖2 = ‖b−ΠU(t)b‖2 =
|‖r‖2 − ‖α‖2 tan(ts1)|√

1 + tan2(ts1)
.

Define

t∗ =
1

s1
arctan

(
‖r‖2
‖α‖2

)
.

Then U∗ := U(t∗) := U0 +
(
(cos(t∗s1) − 1)U0v + sin(t∗s1) r

‖r‖
)
vT is such that b is

contained in the subspace U∗ := [U∗], i.e., b = ΠU∗b.

Remark 7. Corollary 6 has a connection with rank-one SVD updates as consid-
ered in [19, 16, 17]. One application in [17, Table 1] is to revise an existing SVD

3This does not necessarily mean that there is no other point [Ũ∗] ∈ Z that is closer to [U0].
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U0Σ0V
T
0 = (X, c) such that the column c is replaced with a column b in the modified

SVD U ′Σ′V ′T = (X, b). In terms of the associated orthogonal projectors, we have
U ′U ′T b = b. With Corollary 6, we obtain a subspace [U∗] that also contains b. Yet,
this is not achieved by explicitly exchanging a column c of the original data matrix for
the new column b. Rather, via the update U0 +

(
(cos(t∗s1)− 1)U0v+ sin(t∗s1) r

‖r‖
)
vT

=: U0 + x∗vT , the missing residual part is distributed over all columns of the original
representative U0. In order to emulate this with the “revise”-approach of [17, Table
1], one first has to rotate the subspace representative with Φ = (v⊥, v) ∈ Op, so that
(U0 + x∗vT )Φ = U0Φ + (0, . . . , 0, x∗), i.e., the rank-one update acts on a single direc-
tion of the new representative U0Φ. Allowing for rotations of the representative U0

in the update scheme enables more general updates than when working with a fixed
representative U0. Hence, we expect that dist([U0], [U∗]) ≤ dist([U0], [U ′]). This is
confirmed in the example featured in subsection 4.2.

Another relation between GROUSE and the incremental SVD of [16] was exposed
in [9]. The approach considered in [9] corresponds to first attaching new column
data to a given subspace representative. Then, the SVD update is performed on
the augmented matrix representative and consequently retruncated to its original
dimensions. It is shown that this procedure can be emulated via GROUSE when
a specific step size is chosen for the rank-one increment. However, the modified U ′

obtained in this way does not feature the property U ′U ′T b = b, i.e., it does not
correspond to a subspace that reproduces b exactly. More details can be found in
supplemental section SM2.

3.3. The general case. When the operator in the underlying least-squares
problem (3) is not a mask matrix but an arbitrary real matrix, then the Grassmann
gradient associated with the residual function is still rank-one so that GROUSE con-
tinues to apply. Convergence results for GROUSE with arbitrary sampling matrices
are given in [48].

Mind that Corollary 4 remains valid with the same proof, when the mask matrix
P is replaced with an arbitrary column-orthogonal matrix. For general subspace-
restricted least-squares problems

min
α̃∈Rp

‖AU0α̃− b‖2,

where the operator A ∈ Rm×n, m ≤ n, is arbitrary but such that AU0 has full column
rank, we can proceed as follows. Let QR = AT be the thin qr-decomposition of AT

with Q ∈ St(n,m), R ∈ Rp×p. Then

‖AU0α̃− b‖2 = ‖RT
(
QTU0α̃− (RT )−1b

)
‖2.

Since Q is column-orthogonal, we may apply Theorem 3 and Corollary 4 to the least-
squares problem

min
α̃
‖QTU0α̃− (RT )−1b‖2

to produce a modified U∗ such that α̂ := arg minα̃∈Rp ‖QTU∗α̃− (RT )−1b‖2 fulfills
0 = ‖QTU∗α̂ − (RT )−1b‖2. As a consequence, ‖AU∗α̂ − b‖2 = 0. In summary, we
present the following theorem.

Theorem 8. Let p < m ≤ n. Consider the general subspace restricted least-
squares problem

min
α̃∈Rp

‖AU0α̃− b‖2, A ∈ Rm×n, b ∈ Rm, [U0] ∈ Gr(n, p), rank(AU0) = p.
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Let QR = AT and suppose that R is regular. Then there exists a subspace [U∗] ∈
Gr(n, p) such that

min
α̃∈Rp

‖AU∗α̃− b‖2 = 0 and dist([U0], [U∗]) = arctan

(
‖r‖2
‖α‖2

)
= τ∗,

where α = arg minα̃∈Rp ‖QTU0α̃− (RT )−1b‖2, r = (RT )−1b−QTU0α. The subspace
U∗ is given by

U∗ = U0 +

(
(cos(τ∗)− 1)U0

α

‖α‖2
+ sin(τ∗)

Qr

‖r‖2

)
αT

‖α‖2
.

3.4. Adapting a subspace of a subspace. There are many applications where
it might be desirable to keep some directions of a given subspace fixed while adapting
the remaining ones. In the context of adaptive model reduction, such situations are
likely to occur if the columns spanning the subspace in question stem from a principal
component analysis or proper orthogonal decomposition (POD), and are thus ordered
by information content. In these cases, the user might want to keep the most dominant
subspace directions fixed, while adapting the portion of the subspace spanned by
the less important basis vectors. This subsection describes the modifications to the
methodology for doing so; a sample application is presented in subsection 4.2.

Let f : Gr(n, p) → R, [U ] 7→ f([U ]) be a differentiable function. Let us divide
the column set of a subspace representative U ∈ St(n, p) into a constant portion
Uc ∈ St(n, p − l) and a portion Ul ∈ St(n, l) that is subject to change, so that
U = (Uc, Ul) ∈ St(n, p−l)×St(n, l). By fixing Uc, we obtain a function fl : Gr(n, l)→
R, fl([Ul]) = f([Uc, Ul]) with gradient Gl := ∇fl([Ul]) ∈ Rn×l. The gradient induces
the search direction Hl = −Gl. The geodesic associated with the search direction

Hl
SVD
= ΦlSlV

T
l ∈ Rn×l is represented by

(24) Ul(t) = Exp[Ul](tHl) = UlVl cos(tSl)V
T
l + Φl sin(tSl)V

T
l .

Note that Sl and Vl are (l × l)-matrices. For each t, the matrix Ul(t) ∈ St(n, l) is a
feasible orthogonal subspace representative. Yet, we have to consider the possibility
that the compound matrix (Uc, Ul(t)) ceases to be a valid subspace representative in
St(n, p).4 It is even conceivable that [Ul(t)] moves towards the subspace [Uc] spanned
by the fixed basis vectors so that the compound matrix (Uc, Ul(t)) not only loses the
orthogonal-columns property but even becomes rank deficient. One way to avoid this
is to reorthogonalize Ul(t) against Uc, say, by conducting an extra Gram–Schmidt
procedure. However, Proposition 9 below implies that the orthogonality between the
columns of the matrices Ul(t) and the constant columns of the matrix block Uc is
preserved along the geodesic path in direction of the least-squares gradient, so that in
this case, the corresponding compound matrix (Uc, Ul(t)) is also an orthogonal matrix
representative in St(n, p) and a Gram–Schmidt reorthogonalization is unnecessary.

Proposition 9. Let f : Gr(n(, p)→ R be differentiable. Suppose that

(25) T[U]Gr(n,p) 3 ∇[U ]f =
(
∇[Uc]fc,∇[Ul]fl

)
∈ (T[Uc]Gr(n,p−l))×(T[Ul]

Gr(n,l)),

where it is understood that ∇[Uc]fc and ∇[Ul]fl denote the gradients of the restrictions
fc : [Uc] 7→ f([Uc, Ul]) and fl : [Ul] 7→ f([Uc, Ul]), respectively.

Let [U0] = [(Uc, Ul,0)] ∈ Gr(n, p). Let t 7→ [Ul(t)] ⊂ Gr(n, l) be the geodesic path
along the descent direction −∇[Ul,0]fl. Then UTc Ul(t) = 0 for all t.

4Appendix B shows that this actually may happen even along search directions of rank one.
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Therefore, the corresponding curve of concatenated matrices (Uc, Ul(t)) ⊂ Rn×p
is a curve of orthogonal matrices in St(n, p). Hence, for each t, [(Uc, Ul(t))] ∈ Gr(n, p),
consistent with the quotient space viewpoint (1).

Proof. Let U0 = (Uc, Ul,0) ∈ St(n, p), where Uc ∈ St(n, p− l) and Ul,0 ∈ St(n, l).
The gradient with respect to f is a tangent vector in T[U0]Gr(n, p), hence UT0 ∇[U0]f =
0. By (25),

(26) 0 = UT0 ∇[U0]f =

(
UTc
UTl,0

)(
∇[Uc]fc,∇[Ul,0]fl

)
.

In particular, UTc ∇[Ul,0]fl = 0. Writing ∇[Ul,0]fl
SVD
= −ΦlSlV

T
l ∈ Rn×l, we have

UTc Φl = 0, since the columns of Φl span the same space as the columns of ∇[Ul]fl.
Hence, the geodesic at t, Ul(t) = Ul,0Vl cos(tSl)V

T
l + Φl sin(tSl)V

T
l is also orthogonal

to Uc, i.e., UTc Ul(t) = 0.

As can be seen from the proof, the proposition is not specific to the GROUSE
context nor does it depend on the rank of the gradient. It holds, in general, whenever
the gradient splitting of (25) holds. This, however, is not always the case; see Ap-
pendix B. The objective function F of (5) features this property: When allowing only
the last l directions of (Uc, Ul) to vary, we obtain a differentiable Fl : Gr(n, l) → R
with

Fl([Ul]) = bT b− bTPT (Uc, Ul)

((
UTc
UTl

)
PPT (Uc, Ul)

)−1(
UTc
UTl

)
Pb.

The associated gradient, now a rank-one (n× l)-matrix, reads

Gl := ∇[Ul]Fl = −2P
(
b− PTUα

)
αT
(

0(p−l)×l
Il

)
, α = (UTPPTU)−1UTPb,

where U = (Uc, Ul). The next corollary transfers the result of Corollary 4 to the
setting of adapting only the last l columns of a given subspace representative.

Corollary 10. Let U0 = [U0] ∈ Gr(n, p) be represented by U0 ∈ St(n, p). Let
P = (ej1 , . . . , ejm) ∈ {0, 1}(n×m) be a mask matrix and let b ∈ Rm.

Let α = (UT0 PP
TU0)−1UT0 Pb be the optimal coefficient vector corresponding to

the masked least-squares problem

min
α̃∈Rp

‖PTU0α̃− b‖2

and let r = b − PTU0α be the associated residual vector. Let l ∈ N, l ≤ p and write
columnwise U0 = (Uc, Ul,0), Uc =

(
u10, . . . , u

p−l
0

)
, Ul,0 =

(
up−l+1
0 , . . . , up0

)
. Moreover,

let αl =
(
0(p−l)×l, Il

)
α and vl = αl

‖αl‖2 ∈ Rl.
Set s1 = 2‖r‖2‖αl‖2 and define

t∗ =
1

s1
arctan

(
‖r‖2
‖αl‖2

)
and Ul(t

∗) = Ul,0 +
(
(cos(t∗s1)− 1)Ulvl + sin(t∗s1) Pr‖r‖

)
vTl .

Then U∗ := U(t∗) := (Uc, Ul(t
∗)) is such that the subspace U∗ := [U∗] is contained

in the set Z from (10), i.e.,

F (U∗) = min
α̃∈Rp

‖PTU∗α̃− b‖2 = 0,

which means that t∗ solves (11).
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Proof. According to Proposition 9, the concatenated matrix (Uc, Ul(t)) is a valid
subspace representative in St(n, p) for all t. Applying the mask operator P to
(Uc, Ul(t)) leads to the matrix curve

PTU(t) = PT (Uc, Ul(t)) = PT (Uc, UlVl cos(tSl)V
T
l + Φl sin(tSl)V

T
l ).

Because Φl, Sl, Vl stem from an SVD of the rank-one gradient −Gl, we have that
Sl = diag(s1, 0, . . . , 0), s1 = 2‖r‖2‖αl‖2. It follows that

PTU(t) = PT (Uc, Ul,0) +
(

0n×(p−l), (cos(ts1)− 1)PTUlvl + sin(ts1) r
‖r‖2

)
= PT (Uc, Ul,0) + x(t)

(
01×(p−l), v

T
l

)
,

where vl = αl
‖αl‖2 is the first column of Vl. This is again a rank-one update on PTU(t)

and the rest of the proof is analogous to the proof of Theorem 3.

Remark 11. When we are adapting only the last column up0 of the initial matrix
U0 = (u10, . . . , u

p
0) ∈ St(n, p), then the resulting U∗ is given by (u10, . . . , u

p−1
0 , up0(t∗)),

where the last column evaluates to up0(t∗) = 1√
‖r‖22+|αp|2

(up0αp + Pr). This is pre-

cisely the same result that is obtained by replacing the last column of U0 with the
vector U0α+Pr and reorthogonalization the new last column against the columns of
Up−10 := (u10, . . . , u

p−1
0 ) via a single Gram–Schmidt step (I − Up−10 (Up−10 )T )(U0α +

Pr) = (up0αp + Pr). In this case, the t∗-GROUSE update applied to the last column
of the subspace representative U0 and the ([U ]-part of the) “revise” SVD update of
[17, Table 1, p. 23] coincide; cf. Remark 7. For more details, see supplemental section
SM2.

4. Application to adaptive model reduction. This section applies the geo-
metric rank-one subspace update in the specific contexts of online adaptive model re-
duction and image reconstruction. For each application, we describe how the subspace
adaptation is employed and we demonstrate the method with numerical examples.

4.1. Adaptation for POD-DEIM reduced models. We present an online
adaptive DEIM that is based on our geometric rank-one subspace update. In contrast
to the standard use case in the GROUSE literature [8, 49], the focus here is not
on estimating a subspace from scratch based on a global objective function (6) but
adapting a subspace that is already a good approximant for the underlying simulation
process during the online phase.

We first formulate our online adaptive DEIM for nonlinear dynamical systems and
then present numerical results for the FitzHugh–Nagumo system. To ease exposition
and to focus on benchmarking our online adaptive DEIM reduced models, we consider
dynamical systems without parameters and inputs. Thus, the aim of the following
reduced models is to reproduce well the solution of the full-order dynamical system,
instead of predicting solutions for new parameters and inputs. We note, however,
that the following POD-DEIM and our online adaptive POD-DEIM reduced models
are applicable to parametrized models and models with inputs; see [43, 14].

4.1.1. POD-DEIM-Galerkin reduced models. Consider a nonlinear dynam-
ical system in the time interval [0, T ] ⊂ R, with end time T > 0. Let t0, t1, . . . , tK ∈
[0, T ] ⊂ R be K + 1 ∈ N time steps with t0 = 0 and tK = T . Discretizing with, e.g.,
the forward Euler method leads to the system of equations

(27) Eyi = Ayi−1 + f(yi−1) , i = 1, . . . ,K ,
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corresponding to the time steps t1, . . . , tK , respectively. Let n ∈ N denote the di-
mension of the discrete state space. We have the system matrices A ∈ Rn×n and
E ∈ Rn×n. The nonlinear function f : Rn → Rn corresponds to the nonlinear terms
of the dynamical system. The state vector at time step ti is denoted as yi ∈ Rn. The
initial condition is y0 ∈ Rn. We consider here the case where the nonlinear function f
is evaluated componentwise at the state vector yi; see, e.g., [22]. We further assume
the well-posedness of (27).

To derive a reduced model of the full model (27), we select a set of ns ∈ N
snapshots {yj1 , . . . , yjns } ⊂ {y1, . . . , yK} at the time steps tj1 , . . . , tjns with indices
j1, . . . , jns ∈ {1, . . . ,K}. POD constructs orthonormal basis vectors v1, . . . , vnr ∈ Rn
of the nr-dimensional POD space that is the solution to the minimization problem

min
v1,...,vnr∈Rn

ns∑
i=1

∥∥∥∥∥yji −
nr∑
l=1

(vTl yji)vl

∥∥∥∥∥
2

2

.

The POD basis V = (v1, . . . , vnr ) is formed of the left-singular vectors of the snapshot
matrix Y = (yj1 , . . . , yjns ) ∈ Rn×ns corresponding to the nr largest singular values.
The POD-Galerkin reduced model of (27) is

(28) Ẽỹi = Ãỹi−1 + V T f(V ỹi−1) ,

where ỹi ∈ Rnr is the reduced state vector at time step ti for i = 1, . . . ,K, and
Ẽ = V TEV, Ã = V TAV are the reduced operators.

Solving (28) requires evaluating the nonlinear function f(V ỹi−1) at the n-dimen-
sional vector V ỹi−1 ∈ Rn, which can be computationally expensive. DEIM derives
an approximation of f(V ỹi−1) to avoid evaluating f at all n components of V ỹi−1.
To this end, DEIM constructs p ∈ N DEIM basis vectors u1, . . . , up ∈ Rn using
POD on the nonlinear snapshots f(yj1), . . . , f(yjns ) ∈ Rn. The DEIM basis vectors
are the columns of the DEIM basis matrix U = (u1, . . . , up) ∈ Rn×p. Additionally,
DEIM selects p ∈ N DEIM interpolation points q1, . . . , qp ∈ {1, . . . , n} using a greedy
strategy; see [22]. The DEIM mask matrix is P = (eq1 , . . . , eqp) ∈ {0, 1}n×p. The
DEIM interpolant is the pair (U,P ). The DEIM approximation of the nonlinear
function f evaluated at the vector V ỹi is given as

(29) f(V ỹi) ≈ U(PTU)−1PT f(V ỹi) .

The POD-DEIM-Galerkin reduced model of (27) at a time step ti, i = 1, . . . ,K, is

(30) Ẽỹi = Ãỹi−1 + V TU(PTU)−1PT f(V ỹi−1) .

The reduced model (30) is often orders of magnitude faster to solve than the full model
(27) and the reduced state vectors ỹ1, . . . , ỹK ∈ Rnr lead to accurate approximations
V ỹ1, . . . , V ỹK ∈ Rn of the full state vectors y1, . . . , yK ∈ Rn, respectively.

4.1.2. Online adaptive model reduction. We adapt the DEIM interpolant
of the nonlinear function f in the online phase, i.e., we adapt the DEIM basis U
and the DEIM mask matrix P during the time stepping. We proceed as follows.
Let U0 denote the DEIM basis matrix, which is derived using POD as discussed in
subsection 4.1.1. Further, let q01 , . . . , q

0
p ∈ {1, . . . , n} be the DEIM interpolation points

and P0 = (eq01 , . . . , eq0p) the mask matrix that are derived with the DEIM procedure
in the offline phase; see subsection 4.1.1. Consider now the online phase at time step
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t1. To compute the reduced state vector ỹ1, we first adapt the DEIM basis matrix U0

and the mask matrix P0 to U1 and P1, respectively, and then use the adapted DEIM
interpolant (U1, P1) in the reduced model (30) to compute the reduced state vector
ỹ1. The DEIM basis matrix U0 is adapted to U1 using the GROUSE rank-one update,
as we will discuss in detail in subsection 4.1.3. This process is continued iteratively,
i.e., at time step ti, we adapt Ui−1 and Pi−1 to obtain Ui and Pi, respectively, and
then use the adapted interpolant (Ui, Pi) for computing the reduced state vector ỹi at
time step ti. Note that the POD basis matrix V and the reduced linear operators Ẽ
and Ã are kept unchanged online (although in principle they too could be adapted).

4.1.3. Subspace adaptation in online adaptive model reduction. We use
the GROUSE rank-one update with the residual-annihilating step size (22) to adapt
the DEIM basis matrix. Consider time step ti for i = 1, . . . ,K. To adapt the DEIM
basis matrix Ui−1 to Ui at time step ti, we follow [43] and oversample the DEIM
approximation. Let {qip+1, . . . , q

i
p+s} ⊂ {1, . . . , n} \ {qi−11 , . . . , qi−1p } be a set of s ∈ N

additional indices that are drawn uniformly from the set {1, . . . , n}\{qi−11 , . . . , qi−1p },
where qi−11 , . . . , qi−1p are the DEIM interpolation points of the previous time step ti−1.
The extended mask matrix Si ∈ {0, 1}n×m, m = p+s, is assembled from the points in
the set {qi−11 , . . . , qi−1p , qip+1, . . . , q

i
p+s} as Si = (eqi−1

1
, . . . , eqi−1

p
, eqip+1

, . . . , eqip+s). The

matrix Si corresponds to m = p+s > p point indices, and therefore, the interpolation
problem (29) of the classical DEIM approximation with the interpolant (Ui−1, Pi−1)
becomes an overdetermined least-squares problem using the extended mask matrix Si

(31) α = arg min
α̃∈Rp

‖STi Ui−1α̃− STi f(V ỹi−1)‖22

with

f(V ỹi−1) ≈ Ui−1α .

The solution α of (31) is

α = (UTi−1SiS
T
i Ui−1)−1UTi−1SiS

T
i f(V ỹi−1) .

The regression problem (31) fits into the framework of the GROUSE subspace adapta-
tion approach of subsection 2.2, so that we can find the adapted DEIM basis matrix Ui
with the low-rank update derived in Corollary 4. In addition to updating the DEIM
basis matrix, the DEIM interpolation points qi−11 , . . . , qi−1p are updated to qi1, . . . , q

i
p.

For this task we use the algorithm introduced in [43, section 4]. The entire DEIM
online adaptivity procedure is summarized in Algorithm 1.

4.1.4. Example of DEIM subspace adaptation. We apply the online sub-
space adaptation to the DEIM interpolant of a reduced model of the FitzHugh–
Nagumo system. The FitzHugh–Nagumo system is used in the original DEIM paper
[22] as a benchmark example. The number of time steps is K = 106 and the dimension
of the discretized state space is n = 2048. The state vectors y0, y1000, y2000, . . . , yK ∈
Rn at every 1000th time step are used as snapshots to construct nr = 10 POD basis
vectors and the corresponding POD basis matrix V ∈ Rn×nr . The nonlinear func-
tion is evaluated at the snapshot time instances to obtain the nonlinear snapshots
f(y(t0)), f(y(t1000)), f(y(t2000)), . . . , f(y(tK)).

We compare the error of a static reduced model without online subspace adap-
tation to the error of an adaptive reduced model as in Algorithm 1. We report the
average of the relative L2 error of the approximation V ỹi to the reference yi at the
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Algorithm 1. Time stepping a reduced model with online adaptive DEIM.

Input: System matrices E,A, nonlinear function f , initial condition y0, POD basis
matrix V , DEIM basis matrix U0, DEIM interpolation points matrix P0, number
of sampling points s, adaptation interval l

1: Set ỹ0 = V T y0
2: for i = 1, . . . ,K do
3: if mod (i, l) == 0 then
4: {Adapt DEIM interpolant every lth time step}
5: Set qi−11 , . . . , qi−1p to the interpolation points of Pi−1
6: Draw qip+1, . . . , q

i
p+s uniformly from {1, . . . , n} \ {qi−11 , . . . , qi−1p }

7: Construct mask matrix Si from points qi−11 , . . . , qi−1p , qip+1, . . . , q
i
p+s

8: Evaluate nonlinear function at sampling points b = STi f(V ỹi−1)
9: {Employ Corollary 4 to adapt Ui−1}

10: Set α = (UTi−1SiS
T
i Ui−1)−1UTi−1Sib and r = b− STi Ui−1α

11: Set v = α/‖α‖2, s1 = 2‖r‖2‖α‖2, and t∗ = s−11 arctan(‖r‖2/‖α‖2)
12: Adapt basis matrix

Ui = Ui−1 + ((cos(t∗s1)− 1)Ui−1v + sin(t∗s1)(Sir)/‖r‖2) vT

13: Adapt interpolation points matrix Pi−1 to Pi with [43, Algorithm 2]
14: else
15: Set Ui = Ui−1 and Pi = Pi−1 {No adaptation}
16: end if
17: f̃i = V TUi(P

T
i Ui)

−1PTi f(V ỹi−1) {Approximate nonlinear function}
18: Solve reduced model Ẽỹi = Ãỹi−1 + f̃i for ỹi
19: end for
Output: Reduced states ỹ0, . . . , ỹK

time steps t500, t1500, . . . , tK−500. Thus, the error is measured at time steps other than
where the snapshots were taken.

Figure 2(a) compares the L2 error of the states of the reduced model (30) with
a static DEIM interpolant to the error of the reduced model with an adaptive DEIM
interpolation. The dimension of the DEIM subspace is varied over the range p ∈
{2, 4, 6, 8, 10}. The DEIM subspace and the DEIM interpolation points are adapted
every 50th time step, which means that we set l = 50 in Algorithm 1. At each
adaptation step, the geometric rank-one update of Corollary 4 is performed to adapt
the DEIM basis matrix based on s ∈ {200, 400, 600} sampling points. Note that the
computational costs of the rank-one update are bounded by O(np). The error of the
static and the online adaptive reduced model decreases with the DEIM dimension,
which shows that the POD space, which is static and derived from snapshots taken
over the whole time interval, approximates well the full-order state vectors; see sub-
section 4.1.1. The online adaptive DEIM interpolant can further reduce the error
by about an order of magnitude. Figure 2(b) reports results for the online adaptive
reduced model, where the DEIM interpolant is adapted every 50th, 100th, and 200th
time step with a fixed number of s = 200 samples. This means that Algorithm 1 is run
with l = 50, 100, 200, respectively. The results confirm that increasing the number of
adaptivity steps increases the accuracy of the results.

Figure 3 shows results for the online adaptive DEIM interpolant where different
step sizes are used. We compare four different step size selections in Figure 3. The
curve with the label “adapt, optimal” refers to the residual annihilator t∗, which is
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Fig. 2. The average relative L2 error of a static reduced model is compared to the error of
a reduced model with an online adaptive DEIM interpolant. The online adaptation based on the
low-rank updates achieves up to an order of magnitude improvement in the L2 error compared to
the static DEIM interpolant.

derived in Corollary 4 and implemented in Algorithm 1. The curve with label “adapt,

asym. optimal” corresponds to the step size t̃ = 1
s1

arcsin
( ‖r‖2
‖α‖2

)
that is discussed

in the GROUSE convergence analysis of [10]; see also Remark 5. We additionally
compare to the constant step size 0.05 in “adapt, constant” and a decaying step size
0.05/i in “adapt, decaying step size,” as in, e.g., the GROUSE numerical experiments
in [8], where i is the counter variable in the for-loop in Algorithm 1. The number
of samples is set to s = 400 and the DEIM subspace and the DEIM interpolation
points are adapted every 50th time step. The optimal and the asymptotically optimal
step size lead to similar results (the curves are on top of each other), which was to
be expected, since the functions arctan and arcsin match up to terms of third order.
The less sophisticated choices “adapt, constant” and “adapt, decaying step size” lead
to poor results which are even worse than those produced by the static subspace for
DEIM basis dimensions of 8 and 10. This shows that for the application at hand,

it is crucial to select a residual-related step size based on the ratio ‖r‖2
‖α‖2 , e.g., the

minimizer t∗ from Corollary 4.

4.2. Subspace adaptation for gappy POD image reconstruction. In this
section, the geometric subspace update is applied in combination with the method of
gappy POD [27, 18] on an image processing problem, where we use the method to
implant a new feature into a given subspace.

We briefly summarize gappy POD. Given a set of snapshots {yk| k = 1, . . . , ns} ⊂
Rn, let U = colspan(U) be the associated POD subspace represented by U ∈ St(n, p)
with p ≤ ns. Further, let yg ∈ Rn be an incomplete snapshot associated with an index
set J = {j1, . . . , jm} ⊂ {1, . . . , n} of cardinality m ∈ N; yg is incomplete in the sense
that only components with indices in J are considered as accurate information. Gappy
POD computes a vector contained in U that best fits the incomplete snapshot yg in
a least-squares sense. Employing the mask matrix P = (ej1 , . . . , ejm) ∈ {0, 1}n×m,
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Fig. 3. The plot reports the error of the online adaptive POD-DEIM reduced model for different
step sizes. The label “adapt, optimal” refers to the residual annihilator derived in Corollary 4,
“adapt, asym. optimal” refers to the step size t̃ mentioned in Remark 5, “adapt, constant” refers
to the constant step size 0.05, and “adapt, decaying step size” refers to the step size 0.05/i, where
i is the counter variable in Algorithm 1. Note that the curves of “adapt, optimal” and “adapt,
asym. optimal” are on top of each other.

Fig. 4. Face database used for gappy POD example.

the gappy POD approximation ygpod ∈ Rn is determined by the masked least-squares
minimization problem

(32) ygpod = Uαgpod, αgpod = arg min
α∈Rp

‖PTUα− PT yg‖2.

(Notice the similarities to the DEIM approach from subsection 4.1.4. Reference [28]
exposes further details on the relation between gappy POD and the Empirical In-
terpolation Method (EIM, [11]), which predates DEIM.) In our concrete example
of image processing, the snapshot set is taken from the so-called Yale Database [13];
see also [20, section 5.2].5 Representing each image as a snapshot vector yk ∈ Rn,
n = 4096, yields a snapshot matrix of dimension Y ∈ R4096×10. The snapshots are dis-
played in Figure 4. The single image with glasses has been deliberately omitted from
the snapshot set, so that no picture in the snapshot ensemble features the property
“glasses-on.” The “glasses”-detail from this picture, displayed in the lower left corner
of Figure 6, acts as a vector of gappy data yg ∈ R4096 with m = 1336 nonzero entries
and corresponding mask matrix P . The gappy POD objective is to find the linear
combination of snapshots that comes closest to representing the “glasses”-feature in a
least-squares sense. The resulting image is displayed in the second column of Figure 6
with the top picture showing the gappy POD solution and the bottom picture showing
the reference image projected onto the subspace spanned by the POD modes. The

5More precisely, we have used row 11 of the set of 165 Yale images in (64×64)-MATLAB format
provided by Deng Cai at http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.

http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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gappy POD reconstruction is a poor approximation of the reference picture because
the POD space does not contain any information required to represent glasses.
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Fig. 5. Plot of two periods of residual norm function (21) corresponding with the gappy POD
subspace adaptation. The circle locates the first root and the star indicates the global maximum.

Reference

Training set

Gappy POD reconstruction

Reference projection 
onto init. subspace

Gappy POD recon. using
adapted subspace

Reference projection
onto adapted subspace

Gappy POD recon.: Subspace 
with last column adapted

Reference projection onto
 subsp. with last col. adapted

Fig. 6. Gappy POD approximation of a picture excerpt. To be read columnwise: Reference
picture and training excerpt. Gappy POD reconstruction based on the excerpt and projection of
complete reference onto the POD subspace. Gappy POD reconstruction using an adapted POD
subspace and projection of complete reference thereon. Gappy POD reconstruction after adapting
only the last column of POD subspace and projection of complete reference thereon.

Now, we use the GROUSE rank-one update combined with Corollary 4 to annihi-
late the gappy POD residual, which corresponds to solving the nonlinear equation (11)
on Gr(n, p) = Gr(4096, 10). The input data are the mask matrix P ∈ Rn×m associ-
ated with the picture excerpt, the corresponding right-hand side b = PT yg ∈ Rm, and
the subspace representative U0 ∈ St(n, p) stemming from a POD of the input snap-
shots. A plot of the residual norm function along the rank-one update is displayed in
Figure 5.

The update leads to a subspace representative U∗ that allows for a perfect re-
production of the picture excerpt but also makes use of the information that was
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Fig. 7. Initial face data set (bottom row) and its projection onto the corresponding POD
subspace with only the last column adapted to the training excerpt (middle row) and its projection
onto the fully adapted POD subspace (top row).

previously sampled. We repeat the exercise while modifying only the last column of
the initial POD subspace representative U0 according to Corollary 10.

The gappy POD approximations using the adapted subspaces are shown in the
last two columns of Figure 6, again in comparison with the projection of the reference
image onto the respective subspace, as is clear from Corollary 4.6

The important thing is how the adapted subspaces have changed. This can be
visualized by projecting the initial snapshot ensemble onto the adapted subspaces; see
Figure 7. Apart from the fact that the bright white spots in the original data set are
reproduced in a graying way when projected onto the last-column adapted subspace,
these two data sets look almost the same (Figure 7, bottom rows). In contrast, the
original data set projected onto the fully adapted subspace features the property
“glasses-on” throughout (Figure 7, top row). Nevertheless, the subspace distance
between [U0] and the fully adapted [U∗] is 0.1273, while the distance between [U0] and
the subspace [U∗] with only the last column adjusted is 1.2828, more than ten times
as large. Recall from Remark 7 that the latter [U∗] corresponds to an SVD update
with respect to a column-replacement in the original subspace representative U0.

Additional experiments are featured in section SM3 from the supplement. The
supplement also includes MATLAB code for the adapted gappy POD examples dis-
cussed here.

5. Summary and conclusion. Subspace update problems arise in model re-
duction, machine learning, pattern recognition, and computer vision. This paper
focuses on the particular use case of subspace adaptation in combination with the
model reduction methods of gappy POD and DEIM. These methods have in com-
mon that a mask matrix is utilized to extract the features deemed most important
to the underlying problem. In both cases, the objective of the downstream subspace
adaptation is to produce subspaces that contain elements that match the selected
components. We have formalized this objective as a nonlinear equation on the Grass-

6This transfers in an analogous form to the sub-subspace setting of subsection 3.4 in which both
reconstructed images coincide since they both correspond to copying the training set to the respective
entries of the unmodified gappy POD solution.
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mann manifold and have provided a closed-form solution that builds on the GROUSE
approach [8, 49].

In the DEIM test case, discussed in subsection 4.1.4, the mask matrix operates on
vectors contained in the subspace that represents the nonlinear terms of the underlying
discretized PDE. In the gappy POD test cases, discussed in subsection 4.2, the mask
matrix selects the important components from vectors contained in the subspace of
state vector solution candidates. In the test case of DEIM-based model reduction, the
Grassmann subspace update is used as an online adaptation method to improve the fit
of the components sampled from the nonlinear term. The reduced model with online
subspace updating achieves an average error of about one order of magnitude lower
than a classical reduced model without the adaptation. In the gappy POD image
processing example, the Grassmann subspace update is applied to implement a new
feature in the subspace of solution candidates that is not contained in the sample data
set. We expect the method to show similar advantages when used in combination with
the missing point estimation [7, 51], because of the similarities to DEIM and gappy
POD.

Appendix A. A direct solution of the Grassmann residual equation
(11). This appendix features a short solution of (11). Obviously, (11) is solved
if we can find t∗ ∈ R and α∗ ∈ Rp such that PTU(t∗)α∗ = b, where U(t∗) :=
U0+

(
(cos(t∗s1)−1)U0v+sin(t∗s1) Pr‖r‖

)
vT . (All occurring quantities to be understood

were introduced in Theorem 3.) Mind that v = α/‖α‖2. Using an additional real
parameter λ and the ansatz α∗ = λα = λv‖α‖2 leads to the equation

(33) λ cos(t∗s1)

((
1− tan(t∗s1)

‖α‖2
‖r‖2

)
PTU0α+ tan(t∗s1)

‖α‖2
‖r‖2

b

)
= b.

By setting t∗ = 1
s1

arctan
( ‖r‖2
‖α‖2

)
, the terms involving PTU0 cancel, which leaves an

equation for λ:

λ

(
arctan

(
‖r‖2
‖α‖2

))
b = b.

The solution is λ = 1

cos(arctan
(
‖r‖2
‖α‖2

) =
√

1 +
‖r‖22
‖α‖22

.

In addition to its concision, this approach has the advantage that it simultaneously

gives both t∗ and the associated vector of coefficients α∗ =
√

( ‖r‖2‖α‖2 + 1)α ∈ Rp. On

the other hand it does not allow one to keep track of the residual depending on t,
because for t 6= t∗, a defining equation is missing and α(t) and α are not collinear.

Nevertheless, we remark that the above shortcut approach may be adapted to
apply also in the setting of Corollary 10 from subsection 3.4. In this case, one can
work from the ansatz α∗ = (α1, . . . , αp−l, λ(αp−l+1, . . . , αp))

T
.

One may also start by first applying the orthogonal coordinate transformation
Φ = (v, Z) ∈ Op to the subspace representative U0, where Z ∈ Rp×(p−1) contains
an arbitrary orthonormal basis of v⊥, and then work with U0Φ, U(t∗)Φ. This course
of action essentially leads to (33) appearing in the first column of U(t∗)Φ and the
rest of the argument is analogous. See [49, App. C, Proof of Lemma 4] for related
considerations.

Appendix B. Addendum to subsection 3.4. A simple example of a differ-
entiable Grassmann objective function for which Proposition 9 does not hold is

f : Gr(n, p)→ R, [U ] 7→ xTUUT y,
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where x, y ∈ Rn are not orthogonal to [U ].
By using the basic fact that DX(vTXw) =

(
∂

∂xij
vTXw

)
ij

= vwT and the product

rule, we see that the Grassmann gradient is

∇[U ]f = (I − UUT )DUf = (I − UUT )
(
xyT + yxT

)
U,

where DUf =
(
∂f
∂ui,j

)
i,j
∈ Rn×p; see [25, eq. (2.70)]. (Note that ∇[U ]f is of rank two

in general, but of rank one if x = y.) Introducing U = (U1, U2) with U1 ∈ St(n, p− l),
U2 ∈ St(n, l), we may write UUT = U1U

T
1 + U2U

T
2 . By fixing U1, f becomes a

function f2 : Gr(n, l)→ R, [U2] 7→ xTU1U
T
1 y + xTU2U

T
2 y. The gradient is

∇[U2]f2 = (I − U2U
T
2 )
(
xyT + yxT

)
U2 ∈ Rn×l.

Likewise, for f1 : Gr(n, p− l)→ R, [U1] 7→ xTU1U
T
1 y + xTU2U

T
2 y, we obtain

∇[U1]f1 = (I − U1U
T
1 )
(
xyT + yxT

)
U1 ∈ Rn×l.

Splitting up the original gradient into an (n× (p− l)) and an (n× l) matrix gives

∇[U ]f =
(
(I − UUT )(xyT + yxT )U1, (I − UUT )(xyT + yxT )U2

)
6=
(
(I − U1U

T
1 )(xyT + yxT )U1, (I − U2U

T
2 )(xyT + yxT )U2

)
=
(
∇[U1]f1,∇[U2]f2

)
.

In particular, UT1 ∇[U2]f2 = UT1 xy
TU2 + UT1 yx

TU2 6= 0 and the geodesic U2(t) in
Gr(n, l) along the gradient direction ∇[U2]f2 is not orthogonal to U1,

UT1 U2(t) 6= 0.

A sufficient condition for (25) and Proposition 9 to hold is (I − UUT )DUf = DUf
or, in short, UTDUf = 0.
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