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Feedback Control for Systems with Uncertain Parameters Using Online-Adaptive
Reduced Models∗
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Abstract. We consider control and stabilization for large-scale dynamical systems with uncertain, time-varying
parameters. The time-critical task of controlling a dynamical system poses major challenges: using
large-scale models is prohibitive, and accurately inferring parameters can be expensive, too. We
address both problems by proposing an offline-online strategy for controlling systems with time-
varying parameters. During the offline phase, we use a high-fidelity model to compute a library
of optimal feedback controller gains over a sampled set of parameter values. Then, during the
online phase, in which the uncertain parameter changes over time, we learn a reduced-order model
from system data. The learned reduced-order model is employed within an optimization routine to
update the feedback control throughout the online phase. Since the system data naturally reflects
the uncertain parameter, the data-driven updating of the controller gains is achieved without an
explicit parameter estimation step. We consider two numerical test problems in the form of partial
differential equations: a convection-diffusion system, and a model for flow through a porous medium.
We demonstrate on those models that the proposed method successfully stabilizes the system model
in the presence of process noise.
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1. Introduction. We consider stabilization and control of large-scale dynamical systems
with uncertain, time-varying parameters, which bear significant challenges for control engi-
neers. Mathematical models for industrial systems are often parameter-dependent, and the
parameters in turn time-varying. Changes in parameters, such as boundary conditions, the
viscosity of a fluid, material coefficients in solids, etc., alter the system responses to other-
wise similar inputs and external disturbances. More specifically, such systems show various
degrees of sensitivity with respect to their governing parameters. A parametrized change in
a system can occur suddenly in a discontinuous fashion, e.g., in the damage of an aircraft
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wing. In contrast, parameters can also change slowly and gradually, e.g., in fatigue scenarios
of mechanical structures.

When the parameters are critical for stability or performance of the plant, appropriate
control action has to be taken to ensure that effects on the dynamics due to changes of the
underlying parameters are properly controlled. Model-based feedback control provides an
elegant and mathematically sound way to design a controller. However, there are several
challenges that have to be addressed in order to design a model-based feedback controller for
large-scale, parameter-dependent dynamical systems. First, in industrial practice, assembling
and extracting parameter-dependent system matrices is a delicate task, due to the complex
structure of legacy codes; doing so for a real-time control application that needs repeated
access to those matrices is even more challenging. Second, if partial differential equation
(PDE) models are available, their discretizations are large-scale, rendering them infeasible for
optimization and control in time-critical applications. Third, it is often difficult and expensive
to estimate the underlying parameters accurately during operation of the plant.

We address these challenges by proposing an offline-online strategy that can handle un-
certain parameters that change over time. In particular, we build on recent methods in
data-driven reduced-order modeling [34], to enable reduced-order feedback control of large-
scale dynamical systems with uncertain parameters. We use the expensive high-fidelity model
only during the offline phase; we learn a reduced-order model (ROM) from system data in the
online phase. The learned ROM is employed within a computationally efficient optimization
routine to update the feedback control as data is gathered throughout the online phase. Since
the system data naturally reflects the uncertain parameter, this data-driven updating of the
controller gains is achieved without an explicit parameter estimation step.

This work is related to diverse work in control, numerical linear algebra, and model learn-
ing. When a system model itself is not readily available, one can either deviate from model-
based control altogether, or estimate system models from data. In this light, the combination
of statistical learning theory and control methods opens new pathways for designing efficient
controllers. In the early work of [28], a neural network was used during real-time operation, in
order to train the control law from data. In the recent work [17], statistical learning ideas are
used in a model-free, data-driven framework to compute the controller online. Moreover, the
authors in [20] design a dynamic observer (the dual problem to control) in a data-driven setup.
Another alternative when models are unavailable is to employ system identification techniques,
as used by [29, 19] to estimate the linear time-invariant (LTI) operators of the underlying sys-
tem. However, rapid changes to the underlying plant might require fast adaptation of the con-
trol, whereas learning techniques may need more data to adapt and confidently infer the model.

There is also a significant amount of work on learning (projection-based) reduced models
directly from snapshot data, rather than explicitly performing projection with the system
matrices. The Loewner framework provides a nonintrusive approach for constructing reduced
models of LTI systems [32, 21]. The reduced model is extracted directly from transfer function
values, without requiring the system matrices of the full LTI system. Vector fitting [18, 15]
fits rational interpolants to frequency response data of LTI systems. The eigensystem re-
alization algorithm is another example of a system identification approach for LTI systems
[25, 22, 13, 24]. Dynamic mode decomposition (DMD) learns a linear reduced dynamical sys-
tem that best fits a snapshot trajectory in the L2 norm [41, 37, 40] and has been extended
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to incorporate control actions in [36]. Originally introduced for analyzing the behavior of
dynamical systems, DMD models have been shown to have a predictive capability as well [46].
The work [11] uses sparsity-promoting learning techniques to select and fit basis functions of
a library to data.

For systems with time-varying but known parameters, gain scheduling approaches were
proposed in [5, 48], where controllers are designed for specific solutions of interest, such as
desired operating conditions of the plant. To circumvent the problem of large-scale models,
the authors in [35] suggest using parametric ROMs as surrogates for the high-fidelity model.
Therein, ROMs are generated for the linearized equations at fixed parameter values, and
interpolated online for new parameters. In both cases, it is assumed that the governing
parameters (i.e., Reynolds number) are accessible in real-time, an assumption we shall not
make in this work.

The work of Mathelin and co-workers [30, 31] divides the control design problem into an
offline and online phase. In the offline stage, high-fidelity feedback laws are computed with
varying initial conditions. The authors parametrize the control through the initial condi-
tions. During an online stage, a compressed sensing approach determines the current state
of the plant, and the control is obtained by an interpolation of the expensively computed
feedback laws. Moreover, the authors in [12, 39] design offline libraries of dynamic regimes
for classification of data in an online routine.

This paper differs from these large bodies of work by considering the case of unknown
time-varying parameters. Moreover, we do not assume access to a system matrix during
operation of the controller, and therefore propose to learn and update a reduced LTI system
representation of the system for feedback control.

This paper is organized as follows. In section 2, we state the problem formulation and
briefly review the optimal control problem for dynamical systems. We discuss solution ap-
proaches for fixed parameters based on low-rank methods. In section 3 we detail the proposed
method, including the steps necessary for library generation and online detection. Section 4
then shows numerical results for two PDE test problems. Section 5 offers a brief summary
and conclusions.

2. Problem formulation and background. We start by defining the motivating prob-
lem for this research in section 2.1. The subsequent sections then introduce the necessary
background material: section 2.2 discusses the optimal control problem for a fixed set of
parameters, and section 2.3 introduces low-rank solution strategies for the optimal control
problem. We complete this section by stating our contributions in section 2.4.

2.1. Problem formulation. Consider the large-scale dynamical system with time-varying
parameters

ż(t; q(t)) = A(q(t))z(t; q(t)) +Bu(t; q(t)), q(0) = q0 ∈ Rd, z(0; q0) = z0 ∈ Rn,(1)
y(t; q(t)) = Cz(t; q(t)),(2)

for all t > 0. The system matrix A(q(t)) ∈ Rn×n depends on the time-varying parameter
q(t) ∈ Rd, resulting in a time-varying system matrix. The input matrix B ∈ Rn×m and
the output matrix C ∈ Rp×n are considered to be fixed. The controls u(t; q(t)) ∈ Rm, the
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controlled outputs y(t; q(t)) ∈ Rp, and the states z(t; q(t)) ∈ Rn depend on the parameters, as
indicated by the (·; q(t)) notation. We also refer to system (1)–(2) as the high-fidelity model.
When system (1)–(2) stems from the spatial discretization of a PDE, the state vector contains
the unknowns corresponding to the spatially discretized PDE state variable. Our objective is
to find a control u(t; q(t)) that minimizes the convex cost

J(z, u; q) =
∫ ∞

0
||Cz(t; q(t))||22 + ||Ru(t; q(t))||22 dt,(3)

subject to the dynamic constraints (1). The matrix 0 < R ∈ Rm×m contains the control
weights. The time horizon is chosen infinite, since we assume no information as to when our
controller process terminates.

We model the time-dependency in the parameters by a piecewise constant function in
time, that is

q(t) = qTi for t ∈ Ti = [ti−1, ti], i = 1, 2, . . . .

However, it is not known a priori when the parameter changes, so the switching times ti are
unknown, and hence have to be detected during online operation of the plant. Therefore, the
time interval Ti has unknown starting and end points. We discuss in section 3.3.2 a technical
assumption on the length of the time intervals Ti. Owing to the piecewise continuity of the
parameters, the control takes piecewise form

u(t; q(t)) = u(t; qTi), t ∈ Ti.

Throughout this paper, we shall use the term offline to denote non-time-critical situations,
such as the process of control design. In the offline stage, we assume that computational time
is not of major concern, so that large-scale simulations/optimization and computationally
expensive tasks can be carried out. By online stage, we refer to time-critical scenarios, when
the plant (modeled by the dynamical system) is under operation and data streamed. These
data need to be processed, used, and computed with in a time-critical manner.

Problem 2.1. Let the system matrix A(q(t)) be accessible offline, but not online. More-
over, assume that B,C are stored and available online. For time-varying, piecewise constant
parameters q(t) ≡ qTi for t ∈ Ti = [ti−1, ti] for i ∈ N with the switching times ti unknown a
priori, solve the minimization problem

∀i ∈ N : min
zTi ,uTi

J(zTi , uTi ; qTi)

s.t. żTi(t) = A(qTi)zTi(t) +BuTi(t),

where the cost function is given by (3) and the subscripts indicate the state and control in the
interval Ti = [ti−1, ti].

2.2. Optimal control for dynamical systems with time-invariant parameters. We briefly
review the optimal control problem and its solution for time-invariant parameters, which then
illustrates the additional challenges imposed by time-varying parameters. For a time-invariant
parameter q, the problem of controlling (and stabilizing) the state z(t) = z(t; q) of (1) to



CONTROL FOR SYSTEMS WITH UNCERTAIN PARAMETERS 1567

a desired target state as t → ∞ independent of the initial condition z0 has been studied
extensively. Indeed, a sound mathematical theory for the performance of a feedback control
exists [27] for the case of state (or measured) feedback u(t) = u(z(t)).

Definition 2.2. The linear quadratic regulator (LQR) control problem for fixed parameter
q is as follows:

min
z,u

J(z, u)

s.t. ż(t) = A(q)z(t) +Bu(t),

where

J(z, u) =
∫ ∞

0
||Cz(t)||22 + ||Ru(t)||22 dt.

The first term under the integral in (3) penalizes the deviation of the controlled output y(t)
from zero. The second term penalizes a weighted control action, such that a balance between
achieving the goal of driving the controlled output back to zero and the control effort used
is found. Therefore, the LQR problem defines a family of controllers, parametrized by the
control weights R.

The LQR problem has a well known solution [27, sect. 3.4] in the form of linear state
feedback

u(t) = −K(q)z(t).(4)

Here, K(q) denotes the gain matrix, containing the feedback gains as rows. The feedback
gains contain relevant information about the impact of the state on the control action; for
instance, feedback gains can be used to optimize sensor and actuator locations [1]. For a fixed
parameter q, and under mild assumptions (the pair A(q), B must be stabilizable, see [3, 27]),
the gain matrix and control can be computed by solving the algebraic Riccati equation (ARE)
for the unique symmetric and positive definite solution Π:

A(q)T Π(q) + Π(q)A(q)−Π(q)BBT Π(q) + CTC = 0,(5)

so that

K(q) = R−1BT Π(q).(6)

Throughout this paper we assume that the Riccati equation (5) has a unique positive definite
solution for all parameter values q.

2.3. Low-rank methods to solve control problem. For a fixed parameter q, significant
advances have been made to solve the ARE (5) in a large-scale setting; see for instance the
survey in [8]. When n is large, storing an n × n matrix is computationally infeasible—even
more so when the solution is needed in an online fashion—and exploiting additional structure
is inevitable. As it turns out, methods that devise a low-rank factorization

Π(q) = W (q)W (q)T , W (q) ∈ Rn×r,(7)
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have been successful [42, 7, 16, 6, 43]. The rank of a matrix is defined by the maximum
number of linearly independent rows or columns. Notably, one only has to store the matrix
W (q) of size n × r, where r � n, and computing K(q) = R−1BTW (q)[W (q)T ] does not
require processing a square matrix anymore. One way to arrive at a low-rank approximation
of Π(q) is by considering a Galerkin projection framework. In [42], the authors showed that
projection-based methods provide a viable path to solving (5) efficiently. More generally,
physics-based ROMs derived via Galerkin projection have provided viable surrogates used in
real-time estimation and control [26, 4, 9, 38, 2, 33, 45].

For a fixed parameter q, we thus compute low-dimensional solutions to AREs

Â(q)T Π̂(q) + Π̂(q)Â(q)− Π̂(q)B̂B̂T Π̂(q) + ĈT Ĉ = 0(8)

with a projection matrix V ∈ Rn×r and Â(q) ∈ Rr×r, B̂ ∈ Rr×m, and Ĉ ∈ Rp×r. An
approximation of the feedback matrix is then obtained via

K̂(q) = R−1B̂T Π̂(q),

which then yields the suboptimal feedback controller for the high-fidelity model

ur(t; q) = −K̂(q)V z(t; q).(9)

2.4. Challenges and contribution. The challenge of Problem 2.1 lies in the time-varying
parametric dependence of the control, requiring the computationally expensive gain com-
putation (5)–(6) online. Since an exact solution is computationally infeasible, one has to
approximate (or update) K(q(t)) online by only having system data available, but without
knowing q(t) explicitly. This is further complicated by the fact that A(q(t)) is also unavailable
online, since it is too expensive to evaluate.

To solve this problem, we propose a new two-stage approach based on the LQR theory
introduced in section 2.2. In the offline stage, the ARE (5) is solved with high accuracy for
some pre-selected parameter values, and the resulting feedback gains are stored in a library.
In the online stage (i.e., during operation of the plant), we design a mapping from the state (or
partial state for computational efficiency) to an index of the library elements. This mapping
provides a rapid way to classify a change in the underlying parameters. Based on the outcome
of this classification step, we select a feedback gain from the library, and initiate an opera-
tor inference using real-time state information from the plant. Once a ROM is learned, we
can recompute the feedback gain, leading to suboptimal controllers for the high-dimensional
system. Based on LQR theory, the controllers are of full-state feedback type.

The proposed method exploits the low-rank structure of the Riccati solution Π(q(t)) in
a projection-based framework, but does not require knowing the parameter q(t); instead,
the method uses data to update/infer a reduced-order system representation during online
operation of the plant.

Remark 2.3. In an ideal situation where 1) the parameter function q(t) is known for all
times, and 2) the system matrices are available online and of moderate dimension (where
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ARE can be solved rather cheaply online), one can solve the optimal control, for instance with
projection-based intrusive ROMs. We address the situation where both of these assumptions
fail, and where the incorporation of real system data enables us to compute model-based
feedback controllers.

3. Closed-loop control: Combining model libraries and model learning. Our proposed
method learns a state-space representation for control and combines this with a library of
precomputed feedback gains, to arrive at a control strategy for systems with time-varying and
unknown parameters. We outline the methodology in Figure 1, and give details of the method
below.

Section 3.1 briefly introduces the reduced-order modeling framework, on which we build
in the following subsections. The offline stage is formulated in section 3.2, including the
computation of the library of feedback gains and low-dimensional bases. In this stage, we
work with the expensive high-fidelity model.

The online part of our proposed method avoids expensive computations and is described
in section 3.3. The method detects changes in the parameters, and acts on the information
by immediately switching to a feedback gain from the library, and by learning a new model
to update the gains. The online section ends with a statement of the complete algorithm.

We subsequently ease our notation by using q = q(t) except in places where it is necessary
to emphasize the time-dependence. However, the reader should note that the time-dependency

initialize parameters

FOM

bases high-fidelity feedback gains

library

com
pute compute

sto
restore

(a) Offline stage: For an initial set of parameters,
the high-fidelity model is used for the expensive com-
putation of bases needed for model learning and pa-
rameter detection, as well as for the computation of
feedback gains. The high-fidelity information is then
stored in the library.

system
plant

classification to library controller

model learning

recompute feedback

data

initial gain
data

identified basisdata

ROM

updated gain

(b) Online stage: System data is classified by
mapping the data to an index in the library
of bases; see section 3.3.1. Then, model
learning is initiated, and a feedback gain ini-
tialized. Once the learned model is avail-
able, feedback is recomputed, updated, and
applied to the system.

Figure 1. Outline of the proposed offline-online method.



1570 BORIS KRAMER, BENJAMIN PEHERSTORFER, AND KAREN WILLCOX

of the parameters makes the control problem significantly more challenging than considering
only fixed parameters.

3.1. Reduced-order models to represent dynamics. In the offline and online stages, we
build on results from reduced-order modeling of large-scale systems; see Antoulas’ book [3].
The key observation in reduced-order modeling is that the state of the dynamical system
(1)–(2) can often be represented with a basis of drastically reduced dimensions, i.e.,

z(t; q) ≈ V (q)ẑ(t; q), V (q) ∈ Rn×r, r � n,

where V (q) contains basis vectors for a low-dimensional, accurate representation of the dy-
namics of (1)–(2). Inserting this approximation into system (1)–(2), and multiplying by V (q)T

from the left leads to a ROM of similar structure

˙̂z(t; q) = Â(q)ẑ(t; q) + B̂u(t), q(0) = q0 ∈ Rd, ẑ(0; q0) = ẑ0 ∈ Rr,(10)
y(t; q) = Cz(t; q),(11)

where Â(q) = V (q)TA(q)V (q) is the reduced-order system matrix and B̂(q) = V (q)TB. The
states of the ROM evolve in the low-dimensional subspace V (q). Subsequently, we compute
a low-dimensional basis both for learning a ROM, as well as for detection of changes in the
time-varying parameter.

3.2. Offline: High fidelity library generation. In the offline stage, a set of M parameters
{q1, . . . , qM} is chosen. The aim is to sample over parameters that are representative of the
conditions one might expect during operation of the system. This can be done by expert opin-
ion, a greedy-type sampling approach, or heuristic considerations. The offline stage requires
three steps.

First, for each of the selected parameters, we use the high-fidelity matrices A(qi), B,C
to compute a high-fidelity LQR feedback matrix K(qi) from (6). This requires solving the
ARE (5). We then store the resulting feedback matrices in a library—a memory location
(e.g., array) that is easily and quickly accessible during operation of the system. Having the
feedback matrices in the library allows us to quickly react to changes in the parameters in the
online phase.

In the second offline step, we compute detection bases VD(qi), i = 1, . . . ,M , which provide
a low-dimensional approximation of the system state and which are later needed for detection
of parametric changes. Through a projection of the system measurements onto the detection
basis in the online phase, we are able to infer the parameter qi that generated the data. In
this work, we use the method of proper orthogonal decomposition (POD) (see, e.g., [47] for a
detailed description of POD). The POD method requires the generation of S ∈ N snapshots
of the dynamical system (1) through initial excitation, or by using a time-dependent input
function. The snapshots are stored in the matrix

Z(qi) = [z(t1; qi), z(t2; qi), . . . , z(tS ; qi)] ∈ Rn×S ,(12)

which is the starting point to extract a low-dimensional basis to best represent the data in
an L2 sense. For large-scale systems, one likely has n � S, so that the method of snapshots
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[44] provides an efficient way of computing the basis. Thus, compute the singular value
decomposition

Z(qi)TZ(qi) = ΨΣΨT ∈ RS×S ,(13)

let Σr̃i be the leading r̃i × r̃i submatrix of Σ, and let Ψr̃i denote the matrix containing the
leading r̃i columns of Ψ. We then compute the proper orthogonal basis, and store it in the
library for later use as the detection basis

VD(qi) = Z(qi)Ψr̃iΣ
1/2
r̃i
.(14)

A decision on how many POD basis vectors to keep is often based on the decay of the
singular values σj = Σjj of the snapshot matrix, that is, by setting an energy threshold
ε ≤

∑r̃i
j=1 σ

2
j \
∑S

j=1 σ
2
j .

In the third offline step, we compute an ri-dimensional learning basis VL(qi), i = 1, . . . ,M ,
which provides a low-dimensional basis for online learning of the reduced-order system matrix.
The details of the learning are introduced in section 3.3.2 below. One can use VL(q) = VD(q),
but this is not a requirement. Indeed, we show in the numerical examples that the learning
and detection bases can be different. For instance, the learning basis could be computed
through the eigenvalue decomposition of the system matrix A(qi). Our proposed method is
agnostic to the selection of method to compute the reduced-order basis. Nevertheless, the
basis needs to be well chosen to reflect the dynamics of the system matrix.

The r̃i-dimensional detection basis VD(qi) is used to detect a change in the underlying
parameter by a suitable projection, as described below. Typically, fewer basis vectors are
needed to classify dynamic regimes, compared to accurately representing the dynamics. In
our numerical experiments, we thus use r̃i < ri, as specified in section 4. Moreover, the
number of basis functions can be different for each dynamic regime.

In sum, the library L contains the feedback gains K(qi), the learning bases VL(qi), and
the detection bases VD(qi), for i = 1, . . . ,M ; that is,

L :=



VL(q1)
VD(q1)
K(q1)

 , . . . ,


VL(qM )
VD(qM )
K(qM )


 .(15)

The offline construction of the library allows us to use the precomputed expensive high-fidelity
information in the online stage, when the system is under operation. The details of the online
stage are given in the next section.

3.3. Online: Detecting parameter changes and updating feedback matrix. The online
stage of our algorithm is comprised of two parts. First, we build an classifier that decides if the
underlying system parameter has changed, and subsequently switches the feedback controller
to our best-fit feedback gain from the library. If a sudden parametric change in A(q(t)) occurs,
switching the feedback law can quickly stabilize the dynamics until more information about
the parametric change becomes available (through the observed data). Second, the algorithm
initiates a learning mechanism to subsequently update the feedback gain as more data are
processed.
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We apply the online algorithm to a system with external disturbances g(t) that enter
through Bd ∈ Rn×mg . Adding the disturbance to system (1) yields a disturbed system model

ż(t; q(t)) = A(q)z(t; q(t)) +Bu(t; q(t)) +Bdg(t), t > 0,(16)

with otherwise similar controlled outputs y(t; q(t)) = Cz(t; q(t)), and initial conditions q(0) =
q0 and z(0; q0) = z0. Note that this does not alter the solution to the LQR problem, yet it
provides a more realistic model of a system plant, and it allows us to test the robustness of
our derived controller with respect to external disturbances.

3.3.1. Detection of parametric changes. As the time-varying parameters q(t) undergo
piecewise constant transitions that alter the system dynamics, it is key for our control method
to quickly detect such changes. After identification of a change in the parameter, we can
quickly access the feedback gains from the library L defined above to change the control,
u(t; q(t)) = −K(q(t))z(t; q(t)), and provide the proper basis for learning the model, VL. For
classification, we use p′ ∈ {1, . . . , n} entries of the full state z(t; q(t)), where p′ = n would imply
using all states, but for computational efficiency reasons—classification happens online—we
use only p′ � n. Let S be a selection operator that selects p′ entries from the states z(t; q(t)).
Then, we define a classifier, i.e., a mapping from a subset of the state vector z to the index of
the parameters in the library, h : Rp′ → {1, . . . ,M} via

h(Sz(t; qk)) = k.(17)

The choice of the classification function h(·) and selection operator S is important for the
success of the proposed method and at the same time a challenging task. In machine learning,
various classifiers have been introduced that optimize different performance and selection
metrics; see, e.g., [49]. However, in the context of modeling physical systems, classification
relies on additional design choices, such as sensor placement. Classification methods that
explicitly take into account the placement of sensors have been recently shown to successfully
classify states of dynamical systems into regimes of characteristic behaviors [12, 39, 11, 23, 10],
and further improvements are ongoing. The suitability of a given classification approach also
depends on the problem character. For PDE-type systems, especially fluid flows, we follow
the classification approach in [23] based on random selection of p′ ∈ {1, . . . , n} elements,
which relies on compressed sensing [14]. It was observed in [23] that the approach is robust
to measurement noise and external disturbances g(t).

Let S select p′ entries from the state uniformly at random. Then, consider the projection
Pi : Rp′ 7→ Rp′ defined as

Pi = SVD(qi)[(SVD(qi))T (SVD(qi))]−1(SVD(qi))T .(18)

Thus, for randomly selected partial states Sz(t; q), we define the online classifier in the sense
of (17) as

k = arg max
i=1,...,M

||Pi(Sz(t; q))||2.(19)

The classifier requires a computationally cheap product of the selected state entries Sz(t; q)
with the p′ × p′ matrices Pi for each basis VD(qi) in the library L.
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We note that the classification problem (i.e., the mapping from the selected states of a
system with time-varying parameters to bases from a library) is different from the task of
optimal state reconstruction. In practice, having a large number of elements in the library
can cause misidentification, thus we must ensure that the library contains a suitable amount
of information for classification. This can be achieved via heuristics, using prior knowledge of
the system and its parametric dependence, or by more rigorous approaches such as measuring
the alignment of the bases and corresponding subspaces, as well as the energy in the subspaces
as presented in [23].

3.3.2. Model learning. The data from the operating plant will in general not be exactly
represented in the precomputed bases of the library. In other words, the current dynamics
may be generated by a parameter that was not in the training set, q̃ /∈ {q1, q2, . . . , qM}. Thus,
we opt to learn and update low-dimensional models from data of the underlying system/plant
with the operator inference procedure as developed in [34]. For ease of notation, let VL =
VL(qi) ∈ Rn×r be the low-dimensional learning basis, computed for a particular parameter qi.
Moreover, let B̂ = V T

L B and B̂d = V T
L Bd, assume that a record of the past control inputs

uk = u(tk; q(tk)), and assume that the disturbance model gk = g(tk) for some sampling times
t1 < t2 < · · · < ts is available and stored in

U = [u1, u2, . . . , us]T ∈ Rs×m, G = [g1, g2, . . . , gs]T ∈ Rs×mg .

Our aim is to estimate a reduced system matrix Â(q̃) ∈ Rr×r from data z(t; q̃) of the system
(16). The reduced states at discrete time instances ti for i = 1, . . . , s are denoted by ẑi :=
V T

L z(ti) and stored in

Ẑ = [ẑ1, ẑ2, . . . , ẑs]T ∈ Rs×r.(20)

The derivative of the reduced state is approximated by a finite differencing scheme with time
step size ∆t, so that ˙̂zi := ẑi+1−ẑi

∆t . The finite differences are recorded in the right-hand-side
matrix

Ô = [ ˙̂z1, ˙̂z2, . . . , ˙̂zs]T ∈ Rs×r.(21)

The operator inference problem for Â = Â(q̃) then becomes

min
Â∈Rr×r

s∑
i=1

∥∥∥ ˙̂zi − Âẑi − B̂ui − B̂dgk

∥∥∥2

2
,(22)

which can be rewritten [34, sect. 3.2] as

min
Â∈Rr×r

‖Ô − UB̂T −GB̂T
d − ẐÂT ‖2F .(23)

The operator inference problem requires s = r linearly independent snapshots of the reduced
state zi and the finite difference approximations ˙̂zi to solve the least-squares problem in
(22). However, s subsequent snapshots of a dynamical system are not necessarily numerically
linearly independent. In practice, we often need to collect s� r snapshots to get a numerically
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well-conditioned least-squares problem. The number of snapshots to solve the least-squares
problem depends on the system dynamics and selected sampling time, as smaller sampling
times are more likely to lead to numerically linearly dependent snapshots. This observation
then translates into a requirement for the parameter q(t), namely that it is constant at least
over a time interval of |Ti| > s∆t during which we can collect numerically linearly independent
snapshots to infer Â.

The operator inference problem can be solved online with a least-squares approximation in
O(sr3) operations. It was shown in [34, Thm. 1] that the inferred matrix Â recovers the matrix
Â(q̃) = V T

L A(q̃)VL that would be obtained from (intrusive) projection of the system matrix
onto the reduced basis VL. The recovery takes place under the condition that a sufficient
amount of data z(t) is available and that the time discretization is convergent. Once the
system matrix is inferred, the ROM reads as

˙̂z(t; q) = Â(q̃)ẑ(t; q) + B̂ũ(t) + B̂dg(t),(24)

and can serve as a computationally cheap surrogate for the high-fidelity model. The updated
ROM is available after s time steps of data are collected. The inferred matrix representations
are subsequently used to compute the solution to a low-dimensional ARE as

ÂT Π̂ + Π̂Â− Π̂B̂B̂T Π̂ + ĈT Ĉ = 0.(25)

An approximation of the feedback gain is then obtained via

K(q̃) ≈ K̂VL(qk)T = R−1BT Π̂V T
L (qk),

which is used to update the current feedback gain, so that the control becomes u(t; q̃) =
−K(q̃)z(t; q̃). Note that we never used the actual value of q̃; we only used data z(t; q̃) of the
system available online.

Remark 3.1. In (23), we learn the parameter-dependent system matrix Â from data. This
approach could be extended to learning the control input matrix B̂ by using a learning step
on [Â B̂] similar to [36, sect. 3.3].

3.3.3. Complete algorithm. In the online stage of the algorithm, we initialize the con-
troller with the feedback gain K(q0). Then, at every time step, we evaluate the classifier
h(y(t; q(t))) from (17). If the result indicates a change to a new regime, say k, the algorithm
then uses the high-fidelity feedback gain K(qk) until a new model is learned. In Algorithm 1
below, we summarize the steps of our hybrid method, which were previously shown in Figure
1 above.

3.3.4. Online costs of the method. This section discusses the costs of adapting the gain
with Algorithm 1. Three steps in Algorithm 1 dominate the costs: (1) detecting the best fit
basis in L (line 2), (2) solving for the reduced operator Â (line 12), and (3) solving the ARE
for Π̂ (line 13). Detecting the best fit basis in line 2 requires projecting the current selected
states Sz(t) ∈ Rp′ onto M bases in the library, with total costs bounded in O(mM2). The
system of linear equations in line 12 is of size s× r, with s being the number of collected data
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Algorithm 1. Online detection and model updating with control.
Input: Model and gain library L, initial K0 ∈ L, data window s

1: Initialize control: u(t; q0)← −K0z(t)
2: Detect basis in L: k = arg maxi=1,...,M ||Piy(t; q(t))||2 as in (18)
3: Use K ← K(qk) ∈ L
4: B̂ ← VL(qk)TB, Ĉ ← CVL(qk) from L
5: for i = 1, . . . , s do
6: ẑi = VL(qk)T z(ti)
7: Ẑ = [ẐT ẑi]T

8: U = [U uT
i ]T

9: G = [g1, g2, . . . , gs]T

10: O = [O ˙̂zT
i ]T , where ˙̂zi := (ẑi − ẑi−1)\(ti − ti−1)

11: end for
12: Solve

min
Â∈Rr×r

‖R− UB̂T
k − ẐÂT ‖2F(26)

For instance, in Matlab Â = (Ẑ\[R− UB̂T
k ])T

13: Solve ARE for Π̂:

ÂT Π̂ + Π̂Â− Π̂B̂R−1B̂T Π̂ + ĈĈT = 0 ∈ Rr×r

14: Update gain: K ← R−1BT Π̂VL(qk)T

15: Apply control to system u(t)← −Kz(t)

for learning the model online, and r being the ROM dimension of the learned model, where
typically s � r. A crude upper bound on solving an s × r least-squares problem is O(sr3).
Solving the ARE in line 13 is bounded in O(r3). In total, the costs of adapting the gain with
Algorithm 1 are in O(p′M2 + sr3).

4. Numerical results. We present numerical results for two PDE models of fluids.
Section 4.1 considers a two-dimensional model of a flow through a porous medium, where
the permeability field is uncertain. The model in section 4.2 is a convection-diffusion equation
in two dimensions, where the uncertain parameter is the viscosity of the fluid.

4.1. Permeability of porous media.

4.1.1. Problem setup. We consider a two-dimensional PDE that models flow through a
porous medium. The material’s permeability, a spatially varying parameter field, describes
the ability of a porous medium to allow fluids to pass through it. The resulting model is given
by a Laplace equation of the form

∂

∂t
θ(t,x) = ν(t,x) ·

(
∂2

∂x2
1

+
∂2

∂x2
2

)
θ(t,x) + b(x)u(t) + b1d(x)g1(t) + b2d(x)g2(t),
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where the state x = [x1, x2]T ∈ Ω = [0, 1]2, and the time t ∈ (0,∞). Here, ν(t,x) is
the uncertain permeability field, assumed to be zero on the boundary of the domain. The
function b(·) is a bivariate normal distribution with mean at x = [.6, .7]T and standard-
deviation 3 × 10−2. The external disturbances enter through b1d(·) (bivariate normal with
mean x = [.3, .5]T and standard deviation 3× 10−2) and b2d(·), which is also bivariate normal
with the same standard deviation, but mean at x = [.3, .7]T . Moreover, θ(t,x) is interpreted
as the velocity of the flow at time t and space coordinate x. As boundary conditions for the
velocity of the fluid, we impose the Dirichlet conditions

θ(t, x1, 0) = 0, θ(t, 1, x2) = 0, θ(t, x1, 1) = 0, θ(t, 0, x2) = 0.5.

The controlled output of the model is given by

η(t) =
∫

Ω
c(x)θ(t,x)dx,(27)

where the function c(·) is modeled as a bivariate normal distribution with mean at x = [.5, .6]T

and the same standard deviation 3×10−2. A spatial discretization with finite differences leads
to the system of ordinary differential equations

ż(t) = A(q(t))z(t) +Bu(t) +Bdg(t),(28)
y(t) = Cz(t),(29)

where z(t) is the finite-dimensional state variable and y(t) the controlled output of the model.
Similarly, the parameters q(t) are the spatially discretized version of ν(t,x). The matrix Bd

consequently has two columns, and B only a single column. The measurement matrix C has
one row.

4.1.2. Offline stage. To compute the library of high-fidelity gains, as well as detection
and learning bases, we generated three different permeability fields ν1(x), ν2(x), ν3(x) leading
to spatially discretized parameters q1, q2, q3. The two-dimensional permeability fields νi(x) are
generated as follows: All three fields are initialized identically. Then, for each νi(x) we select
a different area where its permeability is 0.5, 0.7, 0.6 times its baseline value, respectively.
This results in the permeability fields being parametrized by the multiples above, and the
location of the deviation from the baseline value. The permeability q1 leads to a stable
dynamical system, whereas the parameters q2 and q3 lead to unstable dynamical systems. For
the unstable cases, stabilization through the controller is most important, so that unbounded
growth can be prevented. The penalty on the control action is set to R = 0.1 · In.

For each permeability field, we compute the eigenbasis of A(qi) and keep the leading 20
basis vectors, which we then store as the learning basis VL(qi), for i = 1, 2, 3. For detection,
we compute a POD basis from simulation of the closed-loop system (28) with two external
disturbances g(t) = [g1(t), g2(t)]T , modeled as a Gaussian noise process with mean six and
variance σ = 3. The initial condition is set to zero. The system is simulated for 500 time units
with a backward Euler time integration scheme with time step 5 × 10−2. Then, S = 10, 000
snapshots are used to compute the POD basis. We store the POD basis of order 20 as a
detection basis in VD(qi), for i = 1, 2, 3 in the library L.
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detection function h(·).
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known and optimal controllers are available (−).

Figure 2. Switches in the permeabilities, as indicated by the index, together with the results of the detection
function (a). The controlled output of the system with a learned model, and hence learned controller, is compared
to a hypothetical situation where we have perfect knowledge of the parameters and their transitions. In the latter
case, we used a controller computed from an intrusive projection-based model (b).

4.1.3. Online stage. The online stage of the algorithm considers a time horizon of tf =
900 time units, where the backward Euler time integration methods takes time steps of size
3 × 10−2. We choose the time-varying parameter q(t) as in Figure 2(a). The time-varying
parameter changes between q1 and q2 at the transition times ti = {60, 150, 270, 390}, resulting
in five time intervals Ti. The time evolution of q(t) is not known to our online adaptive control
algorithm, and has to be detected. Thus, Figure 2(a) also shows the results of the detection
method from section 3.3, which our proposed algorithm uses to detect parametric changes
during online operation. We switched the dynamic regime to the new indicated index k by
using (19) if the past ten classification steps yielded identical results. The projection method
provided the correct regime in more than 94% of the cases. We purposely neglected the third
dynamic regime with q3, but included it in the library. The detection results from Figure 2(a)
also illustrate that there was not a single instance where parameter q3 was detected.

The corresponding output y(t) of the controlled system (28) for two different controllers is
shown in Figure 2(b). Our proposed control strategy follows Algorithm 1, which first detects
the parameter switches as indicated in plot (a), learns the system matrices from data online,
and then recomputes the feedback gains. We compare this approach to an ideal scenario,
where it is assumed that the system matrix A(q(t)) and the correct low-dimensional basis for
projection are known at all times. In that case, we can compute projection-based (intrusive)
ROMs, and obtain the feedback matrix by solving the low-dimensional Riccati equation.
From Figure 2(b), we see that our offline-online strategy successfully stabilizes the large-scale
system, and rejects the external disturbances. In the online phase, the algorithm solely relies
on the precomputed library L and data of the system.
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Figure 3. Control cost function J(z, u) for both controllers on the full-order model.

Figure 2 shows that the controller successfully drives the controlled output to zero, and
holds it there in the presence of external disturbances g(t). A quantitative metric for the
performance of a controller is given by the control cost (objective function in (3)). In Figure 3
we plot the control cost function for both controllers, i.e., the “ideal” ROM controller obtained
from the perfect model and parameter knowledge, and the one computed by learning the
reduced-order model from data.

Let us now compare the feedback gains computed from both approaches. In Figure 4, the
left two plots show the feedback gains computed from the intrusive projection-based reduced-
order model. The right two plots then show the feedback gains computed from the learned
ROMs. The results are shown at t = 122, which corresponds to the permeability q2, and at
time t = 574, which corresponds to the permeability q1. Figure 4 then shows that the learned
feedback gains indeed look qualitatively similar to their intrusively computed counterparts.

4.2. Convection-diffusion equation.

4.2.1. Problem setup. We consider another model from fluid dynamics, namely the
convection-diffusion equation as a model for particle transfer. To that end, let θ(t,x) be
a species concentration satisfying the PDE

∂θ

∂t
(t,x) + x2

∂θ

∂x2
(t,x) = q(t)

(
∂2

∂x2
1

+
∂2

∂x2
2

)
θ(t,x) + b(x)u(t) + bd(x)g(t)

for x = [x1, x2]T ∈ Ω = [0, 1]2 with Dirichlet boundary conditions on the bottom, right, and
top walls:

θ(t, x1, 0) = 0, θ(t, 1, x2) = 0, θ(t, x1, 1) = 0,

and Neumann boundary condition on the left wall:

∂θ

∂x1
(t, 0, x2) = 0.
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(a) Feedback gains at t = 122s.
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(b) Feedback gains at t = 574s.

Figure 4. The feedback gains computed from an intrusive ROM, where it is assumed that the permeability is
known, so that the system matrix can be projected onto the POD basis (left); computed from the learned model
without any knowledge of the parameters (right).

We choose b(x) = 5 if x1 ≥ 1/2 and 0 otherwise. The uncertain parameter is q(t) ∈ R+ for all
t > 0, the diffusivity, which undergoes piecewise constant transitions in time. However, the
time instances at which the transitions occur are again unknown, and have to be detected by
our online routine. The controlled output is a weighted average of the concentration:

η(t) =
∫

Ω
5 · θ(t,x)dx.

The model is discretized in space with a finite element method with piecewise linear basis
functions, leading to a state-space dimension n = 3540, so that the high-fidelity model with
external disturbances reads as

ż(t; q) = A(q(t))z(t; q) +Bũ(t) +Bdg(t), z(0) = z0 ∈ Rn,(30)
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Figure 5. The two eigenvalues with largest real part of the system matrix A(qi) from the convection-diffusion
equation. The eigenvalues move closer to the imaginary axis as the Péclet number grows, and convection
dominates.

with corresponding output

y(t) = Cz(t) ∈ R.

Here, m = 1, so there is only one control input, and the disturbance g(·) enters through the
left boundary of the domain at 0 ≤ x1 ≤ 0.05. In this setting, a characteristic non-dimensional
quantity that qualitatively describes the flow behavior is given by the Péclet number, which
quantifies the relative importance of the convection with respect to the diffusion. High Péclet
numbers indicate strongly convective flows.

4.2.2. Offline stage. To generate the library L, we pick four different diffusivity values,
namely q1 = 5×10−1, q2 = 10−1, q3 = 5×10−2, and q4 = 10−3. This leads to Péclet numbers
Pe ∈ {2, 10, 50, 1000}. We first illustrate the qualitative and quantitative differences in the
dynamics when Pe changes.

Figure 5 shows the two eigenvalues with largest real part of the parameter-dependent
system matrix A(qi) with corresponding Péclet numbers. The larger the Péclet number, the
closer the spectrum of the system matrix to the imaginary axis. By design, stabilization and
control will move the spectrum of the closed-loop system matrix [A(qi)−BK(qi)] further away
from the imaginary axis.

Figure 6 shows the open loop outputs y(t) of the convection-diffusion model for two Péclet
numbers, Pe1 = 2 and Pe4 = 1000, respectively. These outputs are generated starting from
the initial condition z0 = 15 sin(2πx1) sin(πx2), and by imposing an external excitation g(t)
in the form of Gaussian noise with variance σ = 0.5. The backward Euler time discretization
was solved until tf = 1 time units, with time step size ∆t = 10−3. In the case where the
Péclet number is small, the output quickly returns to zero. However, for the larger Péclet
number, the output grows initially, then crosses zero and becomes negative; see Figure 6(b).
Such a scenario requires more control action to drive the output back to zero. Recall that
the control cost function (3) penalizes the deviation of the controlled output from zero, and
balances this with the invested control cost.
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Figure 6. Output y(t) of the open loop convection-diffusion system, excited with nonzero initial condition
z0 = 15 sin(2πx) sin(πy) and Gaussian disturbance g(t) with variance σ = 0.5 applied through a disturbance
term at 0 ≤ x1 ≤ 0.05. For low Péclet number, the uncontrolled output returns to the zero state by the end of
the simulation (a), whereas for high Péclet number the system remains away from the zero state (b).

To generate the library L, we compute high-fidelity LQR feedback gains from equations
(5)–(6) with control penalty R = 0.1 for the four selected Péclet numbers. The resulting
optimal feedback gains are plotted in Figure 7 with similar scaling. The feedback gains show
significant differences, both qualitatively and quantitatively. Hence, adapting the control
when the ratio of convection to diffusion changes becomes important. This can be seen both
by looking at the feedback gains in Figure 7 as well as by considering the spectrum of the
open loop operators in Figure 5.

We generate the learning basis VL(qi) from the eigendecomposition of the four resulting
system matrices, keeping the leading 10 basis functions. The detection basis VD(qi) is com-
puted with the POD method from S = 1, 000 snapshots from zero to tf = 1, and the leading
30 left singular vectors (i.e., POD basis functions) of the snapshot matrix are kept. We used
the same initial condition z0 as for the open loop simulation above.

4.2.3. Online stage. To test the method online, a longer time horizon of tf = 2.5 is con-
sidered, where the system of ordinary differential equations (30) is solved with the backward
Euler scheme with constant step size ∆t = 1.3 × 10−3. In Figure 8 the performance of the
proposed model is further demonstrated. Part (a) shows the prescribed switches for the four
viscosities, and compares this with the result of the detection function h(Sz(t)). We switched
the dynamic regime to the new indicated index k by using (19) if the past ten classification
steps yielded identical results. In Figure 8 (a), we see that once the controlled output reaches
zero, the detection misidentifies regime 1 for regime 2. Recall that regime 1 is a dynamical
system with a Péclet number Pe = 2, and regime 2 uses a Péclet number Pe = 10. Both
systems are diffusion dominated, and so after approximately t > 1.5 they are very close to the
zero equilibrium solution (same zero solution for both systems), hence the misclassification.
Thus, after some time, the two regimes are similar.
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Figure 7. The feedback gains according to four different viscosities.

Figure 8(b) then shows the controlled output of the full closed-loop model with two dif-
ferent controllers. The control computed from the learned ROM (blue +) is compared to the
controller obtained from a direct projection-based, intrusive model, as in the previous exam-
ple. The latter assumes that the parameter and its prescribed transitions (red line in plot
(a)) are known. While this is unrealistic, it serves as a best-case comparison to the control we
computed with the offline-online method. We conclude by observing that our learning-based
controller is successful in rejecting the disturbance and driving the controlled output to zero,
as targeted by the control cost formulated in (3). We also see that the misclassification after
t > 1.5 does not affect the performance of the controller.

5. Discussion and conclusions. This work combines methods from data-driven reduced-
order modeling, and optimal LQR feedback control to arrive at a computationally feasible
suboptimal control and stabilization strategy for dynamical systems with time-varying pa-
rameters. The system parameters are considered to be uncertain and unknown in real time.
Our method leverages libraries computed offline to avoid the expensive step of estimating the
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Figure 8. In this example, the detection algorithm was correct in more than 85% of the cases, where it
identified the correct basis (a). The output of the learned model with recomputed controller is compared to a
hypothetical situation where we have perfect knowledge of the parameters and their switching times.

uncertain system parameter during operation. In doing so, we combine data-based methods
with physics-based modeling towards control.

By using learned ROMs, our method is feasible for a large class of applications. In partic-
ular, we incorporate data from the system plant into a state-space model learning procedure.
We also use the expensive-to-evaluate high-fidelity model (e.g., industrial legacy code) when
building the library of feedback controllers and low-dimensional bases. This allows us to
extract information from both first-principles modeling and real system data.

Our method circumvents the possible error-prone need to estimate the time-varying un-
certain system parameters before assembling the system matrix. Moreover, from a com-
putational perspective, building Â(q(t)) in an intrusive reduced-order modeling framework
requires estimating the parameters, building a high-fidelity model with the available legacy
code (expensive), and subsequently projecting the model to reduced dimensions—we replace
those three steps with a single step. One instance where this is advantageous is in the treat-
ment of boundary conditions in PDE-based modeling—the boundary conditions are typically
built in to the approximation spaces, as well as the formulation of the dual problem. If the
boundary conditions are unknown and uncertain, building the approximating spaces becomes
a formidable task. However, if we build ROMs from data of the actual system—which auto-
matically reflects the boundary conditions—then the inferred model is built from the proper
set of boundary conditions.

The numerical results for a fluid flowing through a porous medium and a convection-
diffusion flow show that the learned controllers successfully stabilize the plant, and drive
the controlled output back to the zero solution. Moreover, the feedback gains show strong
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similarities to the gains obtained from an intrusive, projection-based model. By learning the
reduced-order state-space model, we are able to learn the control mechanism, as evidenced by
the feedback gains.

In the future, we are looking into extending this data-driven method to use partial state
information for the control task, in the framework of Kalman filtering and linear quadratic
Gaussian (LQG) design. This non-trivial task will include a second learning procedure for
low-dimensional representation and learning of the filtering gains.
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[13] M. Döhler and L. Mevel, Fast multi-order computation of system matrices in subspace-based system
identification, Control Eng. Practice, 20 (2012), pp. 882–894.

[14] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289–1306.
[15] Z. Drmac, S. Gugercin, and C. Beattie, Quadrature-based vector fitting for discretized H2 approxi-

mation, SIAM J. Sci. Comput., 37 (2015), pp. A625–A652.
[16] F. Feitzinger, T. Hylla, and E. W. Sachs, Inexact Kleinman–Newton method for Riccati equations,

SIAM J. Matrix Anal. Appl., 31 (2009), pp. 272–288.
[17] F. Guéniat, L. Mathelin, and M. Hussaini, A statistical learning strategy for closed-loop control

of fluid flows, Theor. Computational Fluid Dyn., 30 (2016), pp. 497–510, https://doi.org/10.1007/
s00162-016-0392-y.

[18] B. Gustavsen and A. Semlyen, Rational approximation of frequency domain responses by vector fitting,
IEEE Trans. Power Delivery, 14 (1999), pp. 1052–1061.

https://doi.org/10.1017/jfm.2015.509
https://doi.org/10.1109/CDC.2008.4738965
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1007/s00162-016-0392-y
https://doi.org/10.1007/s00162-016-0392-y


CONTROL FOR SYSTEMS WITH UNCERTAIN PARAMETERS 1585

[19] A. Herv, D. Sipp, P. J. Schmid, and M. Samuelides, A physics-based approach to flow control using
system identification, J. Fluid Mech., 702 (2012), pp. 26–58, https://doi.org/10.1017/jfm.2012.112.
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