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Outline

Learning from data

The imperative of physics-based
modeling & inverse theory

Reduced-order modeling

A critical enabler for accelerating predictive
computations in support of engineering design

Operator Inference

Combining model reduction & machine learning
to learn predictive reduced-order models

Outlook



Forward simulations

The backbone of Uncertainty quantification
engineering analysis Design for reliability

< (BSOS Optimization

Optimal design, inverse problems,
control, parameter estimation

<> e Scientific machine learning
Blending physics modeling
< O & data-driven learning

<O

Computational science has
been enabling engineering
design for six decades



Scientific Machine Learning

What are the opportunities and challenges
of machine learning in complex applications
across science, engineering, and medicine?

BASIC RESEARCH NEEDS FOR
Scientific Machine Learning

Core Technologies for Artificial Intelligence

Embed domain Integrate sparse, - Support
heterogeneous, noisy high-consequence

knowledge & incomplete data decisions

Respect physical Bring interpretability Make predictions with
constraints to results quantified uncertainties




THIS 1S YOUR MACHINE LEARNING SYSTET]?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT I THE ANSIERS ARE WJRONG? J

JUST STIR THE PILE INTIL
THEY START (DOKING RIGHT.

https://xkcd.com/1838/



www.nal .com/natcomputscl  March 2021 Vol. 1No. 3

nature
computational
science

\
a

" .. *
‘ﬂl

Colocalizationfor
high-resolution microscopy

comment W) Check for updates

The imperative of physics-based modeling and
inverse theory in computational science

To best learn from data about large-scale complex systems, physics-based models representing the laws of nature
must be integrated into the learning process. Inverse theory provides a crucial perspective for addressing the
challenges of ill-posedness, uncertainty, nonlinearity and under-sampling.

Karen E. Willcox, Omar Ghattas and Patrick Heimbach

he notions of “artificial intelligence

{Al) for science’ and ‘scientific

machine learning’ (SciML) are
gaining widespread attention in the
scientific community. These initiatives
target development and adoption of Al
approaches in scientific and engineering
fields with the goal of accelerating research
and development breakthroughs in energy,
basic science, engineering, medicine and
national security. For the past six decades,
these fields have been advanced through
the synergistic and principled use of

geological processes evolve. Physics-based
models typically encode knowledge in the
form of conservation and constitutive laws,
often based on decades if not centuries of
theoretical development and experimental
validation. These laws often manifest as
systems of differential equations that are
solved numerically with high-performance
computing (HPC).

In his famous 1960 article, Fugene
Wigner wrote about “The unreasonable
effectiveness of mathematics in the natural
sciences™, pointing to “the ‘laws of nature’

constraints, purely data-driven approaches
are unlikely to be predictive, no matter how
expressive the underlying representation.
Even when physical models are not
well-established (such as for many
biological processes, in constitutive laws
for complex materials, or in subgrid

scale models for unresolved physics), we
know that certain universal properties

and relationships must hold, such as
conservation properties, material frame
indifference, objectivity, symmetries, or
other invariants. The learning-from-data



PHYSICS-BASED MODELS are POWERFUL
and bring PREDICTIVE CAPABILITIES

but they can be
COMPUTATIONALLY
EXPENSIVE '



COMPUTATIONAL
SCIENCE

enables
AEROSPACE
DESIGN

2

Reduced-order modeling

A critical enabler for accelerating predictive
computations in support of engineering design

10



Reduced-order models are critical enablers
for data-driven learning & engineering design

high-fidelity physics-based simulation projection-based reduced-order model
= +
dimension 103 — 10° dimension 10! — 103
solution time ~minutes / hours / days solution time ~seconds / minutes

1 Train: Solve PDEs to generate training data (snapshots)
2 ldentify structure: Compute a low-dimensional basis
3 Reduce: Project PDE model onto the low-dimensional subspace

11
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An Approximate Analysis T
for Design Calculations

R. L. Fox* axp H. Mrurat
Case Weslern Reserve University, Cleveland, Ohio

1 Introduction

N the design of complex structures, it is often necessary or
desirable to employ approximations in the analysis to re-
duce computational cost and required computer storage. In
automated or computer assisted design applications, it is
often necessary to analyze a considerable number of designs,
and it is the computational cost of these analyses that in-
hibits applications in many cases. Although no specific
optimization problem is formulated in this Note, the method
proposed is particularly applicable to such problems.

In this Note, a simple method is proposed with which one
can obtain approximate results for analyses of modified de-
signs based upon a limited number of exact analysis results.
The idea of this method is based on the practically experi-
enced fact that the number of design variables are usually far
smaller than the degrees of freedom of the system, and the
further observation that often large numbers of analysis
degrees of freedom are dictated by the topology of the design
rather than by the expected complexity of its behavior.

Some encouraging numerical examples, computed for space
truss structures, are presented.

2 Approximate Method
In the static analysis of a structure using the displacement
method, the system is expressed in the form

K X=P (1)
aXn nX1 nx1

where K is the stiffiness matrix, X is the vector of displacement
degrees of freedom, and P is the load vector. If the structure
has ¢ design variables (di,ds, . . . di), we can consider this set
as a vector D in t-dimensional space. In this design space,
consider the r “basic” designs given by a set of the design
vectors Dy,Ds, . .. D, Corresponding to these basic design
vectors, the stiffness matrices K, Ks, . . . K, are obtained, and
by solving the  sets of simultaneous equations,

KX:=Pi=12...,r @)
basic displacement vectors X, . . . X, are computed.

Table 1 Basic designs

Member 1
T~18 10wt 02nF  1.0wF  1.Qnt  1.0m7
19~d2 100 10 03 10 1.0
43~72 20 . 20 20 04 20
B~124 0.5 05 05 0.5 01

Received July 13, 1970; revision received September 23, 1970.

* Associate Professor of Engineering. Member ATAA.
1 Graduate Assistant.

Consider now a new design vector Dy in the nei
of the basic design vectors. The stiffness matrix ¢
ing to Dy can be computed as Ky, and the exact di¢
vector due to the external load P would ordinax
tained by solving a set of simultaneous equations:

KiXy = P

Here it is assumed that Xy can be approxima:
linear combination of basic displacement vectors
X

Xy~ Xy = pXi + Ko + ...+ 3 X

1£X,Xs, . . . X, are lincarly independent and r = n
the exact solution, but we are now considering a ¢
n. In matrix form, Eq. (4) will be expressed

Xy =TY
where

- [xx £
n E
Y2 @

Y _ B

ot H
Yr

The vector Y is then determined by solving a st
of Egs. (6), which is obtained by substituting &
Eq. (3) assuming Xy & Xy and premultiplying
7, e,

T Ke T Y _Tr P

rXn nxn aXr rxX1 T rXnax1
Introducing the notation

Ke = T'K;

on December 30, 2021 | hitp:

; Pe=TP

we have

Kz = Pr
rXrrx1 T X1

In short, an approximate displacement vector Xy

z
2
E
<
3

Fig.1 Example structure.
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Reduced Basis Technique for Nonlinear Analysis of Structures

Ahmed K. Noor* and Jeanne M. Peterst
George Washington University Center, NASA Langley Research Center, Hampton, Va.

A reduced basis technique and a computational”algorithm are presented for predic
response of structures. A fotal Lagrangian formul

ion s used and the structure

g the nonlinear static
discretized by using

displacement finite element models. The nodal displacement vector is expressed as a linear combination of a
small number of basis vectors and a Rayleigh-Ritz technique is used imate the fini equations

by a reduced system of nonlinear equations. The Rayleigh-Ritz approximation functions (basis vectors) are
chosen o be those commonly used in the static perturbation technique namely, a nonlinear solution and a
number of its path derivatives. A procedure is outlined for automatically selecting the load (or displacement)
step size and monitoring the solution accuracy. The high accuracy and effectiveness of the proposed approach is

demonstrated by means of numerical examples.

Nomenclature

A ross sectional area

E ‘oung’s modulus of the material

e =error norm defined by Eq. (16)

(f(X,q)} and

fh.a)) =vectors defined in Egs. () and (4),
respectively

G hear modulus of the material

(G(X)) ector of nonlinear terms

(GW)) =vector of nonlinear terms of the reduced
system

h =arch thickness

1 =moment of inertia

K1 stiffness matrix of the

1] =linear stiffness matrix of the reduced

. system

k; 4 +0G, 10X,

L =length of beam

0.0 engths of vectors { X} and { X}

[on] ram matrix of basis vectors

N =normal force

n =total number of degrees-of-freedom in the
finite element model

P ¢

)]

(0}

q

R

(R}

r umber of basis vectors (reduced degrees-
of-freedom)

S urrent stiffness parameter corresponding

to ith load (or displacement) increment
U =total strain energy
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uw =tangential (circumferential) ai
(radial) displacement compo
center line of the arch

[34] =vector of unknown nodal disp

(X}, (i=Itor) =basisvectors

(X),{X),1X) =derivatives of {X] with res
parameter A

8 = condition number of [9]

r =matrix of basis vectors

[ = half subtended angle of the ar
= path parameter

(€7 = vector of undetermined coeffi

Introduction
ARGE deflection nonlinear analysis has rec
the focus of intense efforts because of the i
of new lightweight materials (such as fibrous cc
aircraft and aerospace structures and the harsh ¢
to which these structures are often subjected.
progress has been made in the development of
powerful finite element discretization methods
improved numerical methods and programmin
for nonlinear analysis of structures (see, for exan
4). In spite of these advances, the solutions of mc
nonlinear structural problems require excessive
computer time and, therefore, are not economica
The large numbers of degrees-of-freedom
structural systems are often dictated by their toy
than by the expected complexity of the behavior.
been recognized and used to advantage in au
timum design and vibration analysis*” and mor
nonlinear analysis. ! In the latter case a hybrid ;
been used which combines contemporary finite
classical Rayleigh-Ritz approximations, thereb
the modeling versatility inherent in the finite eler
and, at the same time, reducing the number o
freedom through Rayleigh-Ritz approximation.
Since the effectiveness of this approach fi
analysis depends, to a great extent, on the appro
of the Rayleigh-Ritz approximation functions «
tors, it will be referred to herein as reduced basis
Refs. 8-10, the linear bifurcation buckling modes
basis vectors and only mildly nonlinear prc
considered. In contrast, Ref. 11 used the linear
corrections to it as basis vectors and presented ¢
controlling the errors in nonlinear analysis.
The aforementioned choices for basis vectors d
to realize the full potential of the reduced basis t
the one hand, the generation of bifurcation

455 ')
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B Abstract The interaction of a flexible structure with a flowing fluid in which it
is submersed or by which it is surrounded gives rise to a rich variety of physical phe-
nomena with applications in many fields of engineering, for example, the stability and
response of aircraft wings, the flow of blood through arteries, the response of bridges
and tall buildings to winds, the vibration of turbine and compressor blades, and the
oscillation of heat excl To und d these ph we need to model both
the structure and the fluid. However, in keeping with the overall theme of this volume,
the emphasis here is on the fluid models. Also, the applications are largely drawn from
aerospace engineering although the methods and fundamental physical phenomena
have much wider applications. In the present article, we emphasize recent develop-
ments and future challenges. To provide a context for these, the article begins with a
description of the various physical models for a fluid undergoing time-dependent mo-
tion, then moves to a discussion of the distinction between linear and nonlinear models,
time-linearized models and their solution in either the time or frequency domains, and
various methods for treating nonlinear models, including time marching, harmonic
balance, and systems identification. We conclude with an extended treatment of the
modal character of time-dependent flows and the construction of reduced-order models
based on an expansion in terms of fluid modes. The emphasis is on the enhanced phys-
ical understanding and dramatic reductions in computational cost made possible by
reduced-order models, time linearization, and methodologies drawn from d 1
system theory.

CONTENTS
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Our
blends model reduction & machine learning

A A physics-based model Define the structure of the
Typically described by PDEs or ODEs reduced model

O Lens of projection to define the form of a X =AX+ Bu+ H(x R X)
structure-preserving low-dimensional model \l/

Non-intrusive learning by inferring reduced
model operators A, B, H from simulation data

Learning from data through the lens of
a reduced-order physics-based model

[Peherstorfer & Willcox, CMAME 2016] 13



What is a physics-based model?

A representation of the In solving the governing equations
governing laws of nature that of the system, we constrain the
innately embeds the concepts of predictions to lie on the solution
time, space, and causality manifold defined by the laws of nature
. 2 a mathematical
Exam_ple. p o — g + g +F = E[Vu + (Tw)T] o=C:¢ + boundary conditions model of how solid
equations at?> dx dy 2 + initial conditions objects deform,
: lati t
of Ilnggr equation’ of motion strain-disp!acement constit.utive :r:irg;ir:;zgément
elasticity (Newton’s 2" |aw) equations equations u, and loading F

Solving a physics-based model:

Given initial conditions, boundary conditions > //'
loading conditions, and system parameters | /%» / A predictive
==y window on

Compute solution trajectories a(x,y,t),e(x,y,t), ulx,y,t), ... the future



What is a physics-based model?

A representation of the
governing laws of nature that
innately embeds the concepts of
time, space, and causality

In solving the governing equations

of the system, we constrain the
predictions to lie on the solution
manifold defined by the laws of nature

Example: 0°u _ do N do F 1 . T

equations |3z ~ ax ' oy e =5 u+ Wl
of linear equation of motion strain-displacement
elasticity (Newton’s 2" |aw) equations

a mathematical

o=C:¢ + boundary conditions model of how solid

+ initial conditions

constitutive
equations

objects deform,
relating stress o,
strain &, displacement
u, and loading F

A mathematical model solved with computational science

Discretize:

Spatially discretized
computational fluid
dynamic (CFD) model

X = AX + Bu + f(x,u)

discretized state x contains

physical states at N, spatial grid X

points — N,~0(10* — 10°)

e.g., nodal displacements



Full-order model (FOM) % = AX + Bu Projecting a
state x € RV linear system

Approximate
X =~ VX,
/= ]RN Xr

Residual: N eqs > r dof

r = Vx,, — AVx,. — Bu

Project

Wir=0

(Galerkin: W = V)
Reduced-order model

(ROM)
state x,, € R"

A, =VTAV

X, =AX,+ B,u B. = VTR
——




Linear Model Quadratic Model

FOM: X = AX + Bu FOM: x=Ax+ H(XQ x)+ Bu

v

ROM: x, =A,x,+B,u ROM: x,. = A,x, + H.(x, ® x,)) + B,u

Precompute the ROM matrices: Precompute the ROM matrices and tensor:

A.=VTAV, B, =V'B H.=VTHVQ® V)

projection preserves structure <— structure embeds physical constraints



COMPUTATIONAL
SCIENCE
enables
AEROSPACE
DESIGN

3  Operator Inference

Combining model reduction & machine learning
to learn predictive reduced-order models

18



The problem

Given (1) a physical/natural system with known governing equations, and
(2) a set of data in the form of state snapshots (experimental or simulation)

Infer a reduced-order model that recovers the given data and provides a
predictive capability to rapidly simulate unseen conditions

We will use:

mgn IDO — R||

0 : low-dimensional operators that define
the reduced model .

D, R : data matrix / forcing from simulation
and/or experimental data

the physics to define the structured form of the
model we seek

projection-based model reduction to cast the
inference in a reduced coordinate space and to
provide error estimates in some settings

inverse theory to analyze the structure of the
resulting problem and treat it numerically

numerical linear algebra to achieve efficient
scalable algorithms



Our

blends model reduction & machine learning

1. A physics-based model \
Typically described by PDEs or ODEs

2. Lens of projection to define the form of a >

structure-preserving low-dimensional model /

Define the structure of the
reduced model

X—Ax+Bu+H(X®X)

{

Non-intrusive learning by inferring reduced
snapshots generated from operators from simulation data [penerstorfer & W., 2016]

low-dimensional projected simulation data
operators define the
reduced model

as a dynamical

e f\ng% HXTAT+(X®X) HT + UTBT — XTH

minimum residual
formulation leads to

» Regularization is key [Mcauarrie, Huang & W., 2021]

linear least squares

If data are Markovian, Operator Inference recovers the intrusive POD ROM (peherstorfer, 2020]



Our
blends model reduction & machine learning

1. A physics-based model \
Typically described by PDEs or ODEs

2. Lens of projection to define the form of a
structure-preserving low-dimensional model j

Define the structure of the
> reduced model

X—Ax+Bu+H(X®X)

{

Non-intrusive learning by inferring reduced
operators from simulation data [peherstorfer & w., 2016]

IS hon-intrusive; requires only snapshot data
1.  Generate snapshots from high-fidelity simulation

2. Compute POD basis (SVD) and snapshot low-dimensional representation

3. Solve linear least squares minimization problem to infer the low-dimensional model



Jomparature 2D injector reacting flow model
1s00 200 2700 (McQuarrie & Huang)

Operator Inference ROMs are GEMS N = 308K

competitive in accuracy with W m m

state-of-the-art intrusive ROMs  op e - = 70

but are much faster/simpler to 1 e 3
implement and faster to solve m m m

0
-0.02 0.02 y 0.02 y 0.02 y

t t15,000 = 0.0165 s. b) t = t20,000 = 0.0170 s. t tos,000 = 0.0175 s.

— r =100
N =18.5M

18.5M dof — GEMS 1.35

.. 1.40
3D injector model " “
(Qian & Farcas)

=

w

S
-
N
S

=
o
oy

=
)
a3

pressure (MPa)
pressure (MPa)

=
w
S

mmm t

Probe 1 Probe 2
15 16 17 18 19 20 15 16 17 18 19 20
time (ms) time (ms)




Rotating
Detonation

Engine (Farcas)

— CFD —— ROM
23M dof r=28

e
-3
ot

Probe 1
Pressure [MPa]
ja=)
g

<
B
St

0.00126 0.00128 0.00130

FOM -\
0.00132 0.00134 0.00136 0.0013 '

<
"~

=
w

Probe 2
Pressure [MPa]

time [sec]

0.00126  0.00128 0.00130 0.00132 0.00134 0.00136 0.0013¢ l

VAT Wlng (Zastrow & Chaudhuri)

Pre‘dl(ted Pressure Contour - 0.564400

0.4

0.1

—0.1
-0.2

-0.3

Actual Pressure Contour - 0.564400

0.3
0.2

N 0.01

0.3
0.2
0.1

—0.1
-0.2

-0.3

| 001‘

—0.4
1.7 1.8 1.9 20 21 22 23 24 25

X

—0.4
1.7 1.8 1.9 20 21 22 23 24 25

X

0.74333
0.73000
0.71667
0.70333
0.69000
0.67667
0.66333
0.65000

Phase-field modeling (Geelen)

Solidification in additive

manufacturing
(Khodabakhshi)

laser

movement of
laser >

melt pool
powder layer

solidified layer

2 0% Pl

‘AA AA.AALAJ

https://www.bintoa.com/powder-bed-fusion

Temperature

Order Parameter

0.02

=0.01

FOM

ROM
0.02
0.4 0.4
0.3 10.3
0.2 0.01 0.2
0.1 0.1
0 0
01 00— ®.01
0 0.5 1
0.02
1 1
0.8 0.8
0.6 0.6
0.01
0.4 0.4
0.2 0.2
0 0
0
0 0.5 1
X
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Structure + predictivity Non-intrusivity + flexibility
from physics from machine learning

Operator Inference

What more can machine learning
concepts bring to model reduction?

24



Why are many aerospace problems
challenging for model reduction?

Slow decay of the singular values

Snapshot collection _ _ _
— reduced model has high dimension

across different
time steps and
initial conditions

—— (Global basis

(S
—_—
f—
|

'—I

[
=
L

102

s—ls0 s; ] ’.) J‘..C 0 200 400 600 800 1:000

Cahn-Hilliard
phase-field model

normalized singular values

o=

=

I
—
L



Constructing reduced-order models is challenging for
advection-dominated and multiscale problems

« Addressed by: adaptive model reduction, —— Global basis
interpolation, nonlinear manifolds, N
dictionaries of ROMs, problem-specific

registration, domain decomposition, ...
[Amsallem, Beran, Farhat, Haasdonk, Ohlberger, Patera,
Peherstorfer, Rozza, Ryckelynck, Stamm, Vega, Zahr, ...]

&
=
=]
2]
=
[
o
—
=
&l
—
=
=y
]
a=.
|1;|
B
- -
—
5]
=
=
£y
|:I
=

« These approaches are all intrusive, limiting 300 d00 600 800 T000

— Localized Operator Inference:
non-intrusive physics-based (Operator Inference) +
approximation power of dictionaries of localized ROMs



Localized Operator Inference — Divide & Conquer

[Geelen & W., Phil. Trans. Royal Society A, 2021]

Offline

1. Data collection & clustering
using unsupervised learning methods

2. Train a classifier
for selecting the local ROM

/ clustering

classification

3. Learn a set of cluster-specific ROMs

Online
1. Select ROM - using the state as an indicator, - SALE
select which local ROM to employ /- ~.

reduced state 67), :&p, ﬁp, ﬁp

2. Solve — evaluate the ROM using reduced model o i,
operators corresponding to the selected local ROM




Reducing a Cahn-Hilliard phase-field model

%S(x, t)=MV* (Sg(xn £) = s(x, 1) — £V s(x. t))

time
:

(@) t/T=0.1 (b) t/T =0.2 ©)t/T=0.5 (d)t/T=1

Different initial conditions
give rise to different
kinematics across

different temporal
o .

and spatial scales

28



Localized Operator Inference: Offline Phase

Step 1 — Data collection & clustering Snapshot collection

across different

« Snapshot training data (e.g., from high-fidelity codes) timesteps and / _|
initial conditions
l ) - l ll l ] .
S=1|so S1 Sk|,S = SO Sl Sk JU=lu uy Uy
| | | | | | |

 Compute a global POD basis V € RN*4
(compression for clustering and classification)

 Low-dimensional data representation S = V'S:

* Partition training data into n,, snapshot clusters using unsupervised learning

cluster 1 cluster 2 cluster ny

29



Localized Operator Inference: Offline Phase

Step 2 — Train the classifier o e

* Nearest neighbor classifier maps from
low-dimensional state S to cluster index

ifier: § h) SR QE'!
classifier: § — {1,2,..,n,} Jo)Nlee
cluster 1 cluster 2

ROM 1 ROM 2

Step 3 — Learn n,, cluster-specific Operator Inference ROMs

 Localized ROMs have cubic form (inherits structure of Cahn Hilliard):

9 0) = Ao 0) + Gy 55(0) 95,0 95,0

« Solve linear least squares to infer localized operators Kp and Gp

~ ~ [~ A A~ =12 ~ ~
arg min ( HAPSP +Gp (Sp ©S,® Sp) - SPHF + ALl ApllE + )\2,pGp%—‘)
A,.Gp

&

cluster Ny
ROM ny,

30



Localized Operator Inference: Online Phase

Step 1 — Compute indicator and evaluate classifier

§=V'V,5,€R? — {12,..,n,} s / [ csering J\
G1A, LB, ]— —[agﬁﬁ
(OpInf) (Oplnf)
—O-F-F—LPY li ———————————————— > { classification }i ———————————————————————
ONLINE /» ‘\
. reduced state ép, f&p, ﬁp, ﬁp
Step 2 — ROM evaluation N o

+ pth ROM:
d R ~ ~ Y o~ ~
Esp(t) = Apsp(t) + Gp (sp(t) @ 5p(t) ®5p(t))

* When switching from cluster/ROM b to a, project the reduced state

§a — VCTVb §b € Rra

31



Localization via clustering (unsupervised learning)
is one way to mitigate slow singular value decay

(X '\',,‘" ‘o '
(2 RIS RGNS

D74 (eeesee seessten
2 L\‘O...:’.O.o.“ :.O.o:.’.o..::«

%s(x, )= M2 (SS(X, t) — s(x,t) — E’V?s(x, t))

snapshots seeded with different initial conditions

1 Global basis
|:] Local basis — np = 8
:| Local basis — np = 32

|—L
3

A global basis would

normalized singular values

|
0 200 400 600 800 1,000

index

require 102—=103 modes



Reduced-order model performance -

concentration
50602 0.08 0.1 0.12 15e01

error

FOM N = 16,384

Error in the autocorrelations

10_2 T T T

[ 1training trajectories
[ Jtesting trajectories

y-coordinate

Localized OpInf ROM with 32 snapshot clusters, r = 15

Mean pointwise error
T
|

-3 L | | |
10 § 9 12 15

Reduced basis dimension r
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COMPUTATIONAL
SCIENCE

enables
AEROSPACE
DESIGN

4 Outlook
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: Scientific
Machine Machine Reduced Order

Learning Learning Modeling

A range of tools for a range of use cases

Training data that cover the Some training data but
search space; need a fast need to issue predictions
efficient look-up table beyond the training data
Trusted expensive code base; Trusted expensive code base;
black box approximations time and expertise to implement

(response surfaces) are sufficient intrusive predictive reduced model



Challenges for
ENGINEERING
DESIGN

in the age of
BIG DATA &
BIG COMPUTE

1

p

4

Predictive modeling for complex systems at scale
Decisions demand a predictive window on the future

Validation, verification & uncertainty quantification

Achieving the levels of reliability and robustness needed for
certified high-consequence decision-making

Data, models and decisions across multiple scales

Scalable algorithms for calibration, data assimilation,
optimization, uncertainty quantification, planning & control

Optimal sensing strategies

Digital twins, integrated sensor design, optimal experimental
design (active learning), intelligent adaptive data acquisition

Legacy codes and processes

Equipping our processes and our people with state-of-the-art

computational science & computer science
36



decisions

building the mathematical foundations and computational methods to
enable design of the next generation of engineered systems

.ODEN.UTEXAS.EDU

FOR COMPUTATIONAL ENGINEERING & SCIENCES
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