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Combining model reduction & machine learning 
to learn predictive reduced-order models
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4 Outlook



Forward simulations
The backbone of 
engineering analysis

Uncertainty quantification
Design for reliability
& robustness

Scientific machine learning
Blending physics modeling
& data-driven learning

Optimization
Optimal design, inverse problems, 
control, parameter estimation

Computational science has 
been enabling engineering 
design for six decades
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Scientific Machine Learning
What are the opportunities and challenges
of machine learning in complex applications
across science, engineering, and medicine?
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Respect physical 
constraints

Embed domain 
knowledge

Bring interpretability
to results

Integrate sparse, 
heterogeneous, noisy

& incomplete data

Make predictions with 
quantified uncertainties

Support
high-consequence 

decisions

BIG
DECISIONS
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https://xkcd.com/1838/





PHYSICS-BASED MODELS are POWERFUL 
and bring PREDICTIVE CAPABILITIES

but they can be 
COMPUTATIONALLY 
EXPENSIVE

root top skin

top skin

bottom skin

spar 
caps

shear 
web

ribs

flaps

aileron 
linkages

circular rods

9



1 Learning from data

The imperative of physics-based 
modeling & inverse theory

2 Reduced-order modeling

A critical enabler for accelerating predictive 
computations in support of engineering design

3 Operator Inference

Combining model reduction & machine learning 
to learn predictive reduced-order models
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4 Outlook

COMPUTATIONAL 
SCIENCE
enables 
AEROSPACE 
DESIGN



Reduced-order models are critical enablers 
for data-driven learning & engineering design

1 Train: Solve PDEs to generate training data (snapshots)
2 Identify structure: Compute a low-dimensional basis
3 Reduce: Project PDE model onto the low-dimensional subspace

= +

dimension 103 − 109
solution time ~minutes / hours / days

dimension 101 − 103
solution time ~seconds / minutes

+=

high-fidelity physics-based simulation projection-based reduced-order model
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 A physics-based model
Typically described by PDEs or ODEs

 Lens of projection to define the form of a 
structure-preserving low-dimensional model

Our Operator Inference approach 
blends model reduction & machine learning 

Non-intrusive learning by inferring reduced 
model operators �𝐀𝐀, �𝐁𝐁, �𝐇𝐇 from simulation data

Define the structure of the 
reduced model

13[Peherstorfer & Willcox, CMAME 2016]

Learning from data through the lens of 
a reduced-order physics-based model



Example:
equations 
of linear 
elasticity

Solving a physics-based model:
Given initial conditions, boundary conditions,
loading conditions, and system parameters
Compute solution trajectories  𝜎𝜎 𝑥𝑥,𝑦𝑦, 𝑡𝑡 , 𝜀𝜀 𝑥𝑥,𝑦𝑦, 𝑡𝑡 , u 𝑥𝑥,𝑦𝑦, 𝑡𝑡 , …

The unreasonable effectiveness of physics-based models [Wigner, 1960]

A representation of the 
governing laws of nature that 
innately embeds the concepts of 
time, space, and causality

In solving the governing equations
of the system, we constrain the 
predictions to lie on the solution 
manifold defined by the laws of nature

𝜀𝜀 =
1
2
𝛻𝛻𝑢𝑢 + 𝛻𝛻𝑢𝑢 ⊤ + boundary conditions

+ initial conditions
𝜎𝜎 = 𝐶𝐶: 𝜀𝜀

equation of motion
(Newton’s 2nd law)

𝜌𝜌
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

=
𝜕𝜕𝜎𝜎
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝜎𝜎
𝜕𝜕𝑦𝑦

+ 𝐹𝐹

strain-displacement 
equations

constitutive 
equations

a mathematical 
model of how solid 
objects deform, 
relating stress 𝜎𝜎, 
strain 𝜀𝜀, displacement 
𝑢𝑢, and loading 𝐹𝐹

What is a physics-based model?

A predictive 
window on 
the future



𝜀𝜀 =
1
2
𝛻𝛻𝑢𝑢 + 𝛻𝛻𝑢𝑢 ⊤ + boundary conditions

+ initial conditions
𝜎𝜎 = 𝐶𝐶: 𝜀𝜀

equation of motion
(Newton’s 2nd law)

𝜌𝜌
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

=
𝜕𝜕𝜎𝜎
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝜎𝜎
𝜕𝜕𝑦𝑦

+ 𝐹𝐹

strain-displacement 
equations

constitutive 
equations

A representation of the 
governing laws of nature that 
innately embeds the concepts of 
time, space, and causality

In solving the governing equations
of the system, we constrain the 
predictions to lie on the solution 
manifold defined by the laws of nature

What is a physics-based model?

Conservation of mass (𝜌𝜌), momentum (𝜌𝜌�⃗�𝑣), energy (𝜌𝜌𝜌𝜌), chemical species (𝑌𝑌CH4, 𝑌𝑌O2, 𝑌𝑌CO2, 𝑌𝑌H2O)

Discretize:
Spatially discretized 
computational fluid 
dynamic (CFD) model

discretized state 𝐱𝐱 contains 
physical states at 𝑁𝑁𝑧𝑧 spatial grid 
points – 𝑁𝑁𝑧𝑧~𝑂𝑂(104 − 106)�̇�𝐱 = 𝐀𝐀𝐱𝐱 + 𝐁𝐁𝐁𝐁 + 𝐟𝐟(𝐱𝐱,𝐁𝐁) 𝐱𝐱 =

𝑢𝑢1
𝑢𝑢2
⋮
⋮
𝑢𝑢𝑁𝑁𝑧𝑧

Example:
equations 
of linear 
elasticity

a mathematical 
model of how solid 
objects deform, 
relating stress 𝜎𝜎, 
strain 𝜀𝜀, displacement 
𝑢𝑢, and loading 𝐹𝐹

A mathematical model solved with computational science

e.g., nodal displacements



Full-order model (FOM)
state 𝐱𝐱 ∈ ℝ𝑁𝑁

Reduced-order model 
(ROM)
state 𝐱𝐱𝑟𝑟 ∈ ℝ𝑟𝑟

�̇�𝐱 = 𝐀𝐀𝐱𝐱 + 𝐁𝐁𝐁𝐁

Approximate
𝐱𝐱 ≈ 𝐕𝐕𝐱𝐱𝑟𝑟
𝑉𝑉 ∈ ℝ𝑁𝑁×𝑟𝑟

𝐫𝐫 = 𝐕𝐕�̇�𝐱𝑟𝑟 − 𝐀𝐀𝐕𝐕𝐱𝐱𝑟𝑟 − 𝐁𝐁𝐁𝐁

Project
𝐖𝐖⊤𝐫𝐫 = 0
(Galerkin: 𝐖𝐖 = 𝐕𝐕)

Residual: 𝑵𝑵 eqs ≫ 𝒓𝒓 dof

�̇�𝐱𝑟𝑟 = 𝐀𝐀𝑟𝑟𝐱𝐱𝑟𝑟 + 𝐁𝐁𝑟𝑟𝐁𝐁
𝐀𝐀𝑟𝑟 = 𝐕𝐕⊤𝐀𝐀𝐕𝐕
𝐁𝐁𝑟𝑟 = 𝐕𝐕⊤𝐁𝐁

Projecting a
linear system

16



Linear Model
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FOM: 

ROM: ROM: 

FOM: 

Precompute the ROM matrices: Precompute the ROM matrices and tensor:

Quadratic Model

�̇�𝐱𝑟𝑟 = 𝐀𝐀𝑟𝑟𝐱𝐱𝑟𝑟 + 𝐁𝐁𝑟𝑟𝐁𝐁 �̇�𝐱𝑟𝑟 = 𝐀𝐀𝑟𝑟𝐱𝐱𝑟𝑟 + 𝐇𝐇𝑟𝑟 𝐱𝐱𝑟𝑟 ⊗ 𝐱𝐱𝑟𝑟 + 𝐁𝐁𝑟𝑟𝐁𝐁

�̇�𝐱 = 𝐀𝐀𝐱𝐱 + 𝐇𝐇 𝐱𝐱⊗ 𝐱𝐱 + 𝐁𝐁𝐁𝐁�̇�𝐱 = 𝐀𝐀𝐱𝐱 + 𝐁𝐁𝐁𝐁

projection preserves structure  ↔ structure embeds physical constraints

𝐀𝐀𝑟𝑟 = 𝐕𝐕⊤𝐀𝐀𝐕𝐕, 𝐁𝐁𝑟𝑟 = 𝐕𝐕⊤𝐁𝐁 𝐇𝐇𝑟𝑟 = 𝐕𝐕⊤𝐇𝐇(𝐕𝐕⊗ 𝐕𝐕)



1 Learning from data

The imperative of physics-based 
modeling & inverse theory

2 Reduced-order modeling

A critical enabler for accelerating predictive 
computations in support of engineering design

3 Operator Inference

Combining model reduction & machine learning 
to learn predictive reduced-order models

18

4 Outlook

COMPUTATIONAL 
SCIENCE
enables 
AEROSPACE 
DESIGN



Given (1) a physical/natural system with known governing equations, and 
(2) a set of data in the form of state snapshots (experimental or simulation)
Infer a reduced-order model that recovers the given data and provides a 
predictive capability to rapidly simulate unseen conditions

19

The Operator Inference problem

min
𝐎𝐎

𝐃𝐃𝐎𝐎 − 𝐑𝐑

We will use:
• the physics to define the structured form of the 

model we seek
• projection-based model reduction to cast the 

inference in a reduced coordinate space and to 
provide error estimates in some settings

• inverse theory to analyze the structure of the 
resulting problem and treat it numerically

• numerical linear algebra to achieve efficient 
scalable algorithms

𝐎𝐎 : low-dimensional operators that define 
the reduced model
𝐃𝐃, 𝐑𝐑 : data matrix / forcing  from simulation 
and/or experimental data



1. A physics-based model
Typically described by PDEs or ODEs

2. Lens of projection to define the form of a 
structure-preserving low-dimensional model

20

Our Operator Inference approach 
blends model reduction & machine learning 

min
�𝐀𝐀,�𝐁𝐁,�𝐇𝐇

�𝐗𝐗⊤�𝐀𝐀⊤ + �𝐗𝐗⊗ �𝐗𝐗 ⊤�𝐇𝐇⊤ + 𝐔𝐔⊤�𝐁𝐁⊤ − �̇𝐗𝐗⊤

low-dimensional 
operators define the 

reduced model
as a dynamical 

system

snapshots generated from 
projected simulation data

minimum residual 
formulation leads to 
linear least squares

Non-intrusive learning by inferring reduced 
operators from simulation data [Peherstorfer & W., 2016]

Define the structure of the 
reduced model

• Regularization is key [McQuarrie, Huang & W., 2021]

• If data are Markovian, Operator Inference recovers the intrusive POD ROM [Peherstorfer, 2020]



Our Operator Inference approach 
blends model reduction & machine learning 

1. Generate snapshots from high-fidelity simulation

2. Compute POD basis (SVD) and snapshot low-dimensional representation

3. Solve linear least squares minimization problem to infer the low-dimensional model

Operator Inference is non-intrusive; requires only snapshot data 

21

1. A physics-based model
Typically described by PDEs or ODEs

2. Lens of projection to define the form of a 
structure-preserving low-dimensional model

Non-intrusive learning by inferring reduced 
operators from simulation data [Peherstorfer & W., 2016]

Define the structure of the 
reduced model



𝑁𝑁 = 308K

𝑟𝑟 = 70

𝑟𝑟 = 43

time (ms) time (ms)

pr
es

su
re

  (
M

Pa
)

pr
es

su
re

  (
M

Pa
)

Operator Inference ROMs are 
competitive in accuracy with 
state-of-the-art intrusive ROMs
but are much faster/simpler to 
implement and faster to solve

2D injector reacting flow model
(McQuarrie & Huang)

1

2

𝑟𝑟 = 100
𝑁𝑁 = 18.5M

Probe 1 Probe 2

3D injector model
18.5M dof – GEMS
(Qian & Farcas)
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https://www.bintoa.com/powder-bed-fusion

Solidification in additive 
manufacturing
(Khodabakhshi)

Phase-field modeling (Geelen)

FOM

ROM

Rotating 
Detonation 
Engine (Farcas)

FOM

ROM

ROM
𝒓𝒓 = 𝟖𝟖

CFD
23M dof

VAT Wing (Zastrow & Chaudhuri)

FUN3D ROM
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What more can machine learning 
concepts bring to model reduction?

Structure + predictivity 
from physics 

Non-intrusivity + flexibility 
from machine learning

Operator Inference



Why are many aerospace problems 
challenging for model reduction?
Snapshot collection 
across different 
time steps and 
initial conditions

Slow decay of the singular values
→ reduced model has high dimension

𝐒𝐒 =
| | |
𝐬𝐬𝟎𝟎 𝐬𝐬1 ⋯ 𝐬𝐬𝑘𝑘
| | |

25

Cahn-Hilliard
phase-field model



Constructing reduced-order models is challenging for 
advection-dominated and multiscale problems

• Addressed by: adaptive model reduction, 
interpolation, nonlinear manifolds, 
dictionaries of ROMs, problem-specific 
registration, domain decomposition, …
[Amsallem, Beran, Farhat, Haasdonk, Ohlberger, Patera, 
Peherstorfer, Rozza, Ryckelynck, Stamm, Vega, Zahr, …]

• These approaches are all intrusive, limiting 
their applicability

→ Localized Operator Inference:
non-intrusive physics-based (Operator Inference) + 
approximation power of dictionaries of localized ROMs

26



Localized Operator Inference – Divide & Conquer

Offline
1. Data collection & clustering

using unsupervised learning methods
2. Train a classifier

for selecting the local ROM
3. Learn a set of cluster-specific ROMs

OFFLINE

ONLINE

27

Online
1. Select ROM – using the state as an indicator,

select which local ROM to employ
2. Solve – evaluate the ROM using reduced model

operators corresponding to the selected local ROM

[Geelen & W., Phil. Trans. Royal Society A, 2021]



Reducing a Cahn-Hilliard phase-field model

Different initial conditions 
give rise to different 
kinematics across 
different temporal
and spatial scales

time

s0 = 0.1

s0 = 0.3

28



Step 1 – Data collection & clustering
• Snapshot training data (e.g., from high-fidelity codes)

• Compute a global POD basis  �𝐕𝐕 ∈ ℝ𝑁𝑁×𝑞𝑞

(compression for clustering and classification)

• Low-dimensional data representation  �𝐒𝐒 = �𝐕𝐕⊤𝐒𝐒:
• Partition training data into 𝑛𝑛𝑝𝑝 snapshot clusters using unsupervised learning

Localized Operator Inference: Offline Phase

𝐒𝐒 =
| | |
𝐬𝐬𝟎𝟎 𝐬𝐬1 ⋯ 𝐬𝐬𝑘𝑘
| | |

, �̇�𝐒 =
| | |
�̇�𝐬𝟎𝟎 �̇�𝐬1 ⋯ �̇�𝐬𝑘𝑘
| | |

,𝐔𝐔 =
| | |
𝒖𝒖𝟎𝟎 𝒖𝒖1 ⋯ 𝒖𝒖𝑘𝑘
| | |

29

Snapshot collection 
across different 
timesteps and 
initial conditions

⋯

cluster 1 cluster 2 cluster 𝑛𝑛𝑝𝑝



Localized Operator Inference: Offline Phase

Step 3 – Learn 𝒏𝒏𝒑𝒑 cluster-specific Operator Inference ROMs
• Localized ROMs have cubic form (inherits structure of Cahn Hilliard):

• Solve linear least squares to infer localized operators �𝐀𝐀𝑝𝑝 and �𝐆𝐆𝑝𝑝

Step 2 – Train the classifier
• Nearest neighbor classifier maps from

low-dimensional state �𝐒𝐒 to cluster index

classifier:  �𝐬𝐬 →   1,2, … ,𝑛𝑛𝑝𝑝

30

⋯

cluster 1
ROM 1

cluster 2
ROM 2

cluster 𝑛𝑛𝑝𝑝
ROM  𝑛𝑛𝑝𝑝



Step 1 – Compute indicator and evaluate classifier

Localized Operator Inference: Online Phase

Step 2 – ROM evaluation
• 𝑝𝑝th ROM:

• When switching from cluster/ROM 𝑏𝑏 to 𝑎𝑎, project the reduced state

�𝐬𝐬 = �𝐕𝐕⊤𝐕𝐕𝑝𝑝 �𝐬𝐬𝑝𝑝 ∈ ℝ𝑞𝑞 →   1,2, … ,𝑛𝑛𝑝𝑝

�𝐬𝐬𝑎𝑎 = 𝐕𝐕𝑎𝑎⊤𝐕𝐕𝑏𝑏 �𝐬𝐬𝑏𝑏 ∈ ℝ𝑟𝑟𝑎𝑎

31
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Localization via clustering (unsupervised learning) 
is one way to mitigate slow singular value decay

time

snapshots seeded with different initial conditions

A global basis would 
require 102‒103 modes



Reduced-order model performance

Localized OpInf ROM with 32 snapshot clusters, 𝑟𝑟 = 15

Error in the autocorrelations

33

FOM 𝑁𝑁 = 16,384



1 Learning from data

The imperative of physics-based 
modeling & inverse theory

2 Reduced-order modeling

A critical enabler for accelerating predictive 
computations in support of engineering design

3 Operator Inference

Combining model reduction & machine learning 
to learn predictive reduced-order models

34
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A range of tools for a range of use cases

Machine 
Learning

Scientific 
Machine 
Learning

Reduced Order 
Modeling

Training data that cover the 
search space; need a fast 
efficient look-up table

Some training data but 
need to issue predictions 
beyond the training data

Trusted expensive code base;
time and expertise to implement 

intrusive predictive reduced model

Trusted expensive code base; 
black box approximations
(response surfaces) are sufficient



Challenges for 
ENGINEERING 
DESIGN 
in the age of 
BIG DATA & 
BIG COMPUTE

36

1

Legacy codes and processes
Equipping our processes and our people with state-of-the-art 
computational science & computer science

2

Data, models and decisions across multiple scales
Scalable algorithms for calibration, data assimilation,
optimization, uncertainty quantification, planning & control

3

Validation, verification & uncertainty quantification
Achieving the levels of reliability and robustness needed for 
certified high-consequence decision-making

Optimal sensing strategies
Digital twins, integrated sensor design, optimal experimental 
design (active learning), intelligent adaptive data acquisition

Predictive modeling for complex systems at scale
Decisions demand a predictive window on the future

4

5



Data-driven decisions
building the mathematical foundations and computational methods to 
enable design of the next generation of engineered systems

K I W I . O D E N . U T E X A S . E D U
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