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How do we harness the explosion
of data to extract knowledge,

insight and decisions?

Big decisions need more
than just big data...

they need big models too

Inspired by
Coveney, Dougherty, Highfield “Big data need big theory too”

Arctic:ocean circulation modeling
(A. Nguyen &

Hurricane
storm surge
modeling
(C. Dawson)




Big decisions need more than just big data...

Big decisions must incorporate the predictive power, interpretability,
and domain knowledge of physics-based models

Data Science Computational
Science &
Engineering

Predictive Data Science



Predictive
Data

Science

a convergence of

Data Science and
Computational Science
& Engineering

Challenges

1 high-consequence applications are
characterized by complex multiscale
multiphysics dynamics

2 high (and even infinite) dimensional
parameters

3 data are relatively sparse and expensive
to acquire

4 uncertainty quantification in model
inference and certified predictions in
regimes beyond training data
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2 Lift & Learn

3 Application Example Lift & Learn

Projection-based model reduction as a lens
4 Conclusions & Outlook through which to learn predictive models



P, kPa
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Example: modeling combustion in a rocket engine
Conservation of mass (p), momentum (pw),
energy (E), species (Ycn,, Yo, Yco,, Yu,0)

Ex = Ax + Bu + f(x,u, p)

2. Lens of projection to define a low-dimensional model

3. Variable transformations that expose polynomial structure in the model

4. Non-intrusive learning of the reduced model — work with transformed variables



1-Hl-B

dimension 10 — 10° dimension 10! — 103
solution time ~minutes / hours solution time ~seconds

[
+

Projection-based model reduction

1 . Solve PDEs to generate training data (snapshots)
2 . Compute a low-dimensional basis

3 . Project PDE model onto the low-dimensional subspace




Full-order model (FOM)
state x € RV

Red U Ced Approximate
~V r
models 7 o T

Residual: N eqs > r dof
r = EVx,, — AVx, — Bu

Project
Wir=0
(Galerkin: W = V)

Reduced-order

ety € B
state x, € R” E X, = A.x, +Bru




Linear Model

FOM: Ex = Ax + Bu

ROM: E,x, =A,x,.+ B,u

Precompute the ROM matrices:

A, =VTAV, B, =V'B, E, = V'EV

Quadratic Model

FOM: Ex=Ax+HX & x) + Bu

ROM: E,x, = A, x, +H,.(x, ® x,,)) + B,u

Precompute the ROM matrices and tensor:

H, =V H(V®YV)




Machine learning Reduced-order modeling

“Machine learning is a field of computer “Model order reduction (MOR) is a
science that uses statistical techniques to give technique for reducing the computational
computer systems the ability to "learn” with complexity of mathematical models in
data, without being explicitly programmed.” numerical simulations.” [Wikipedia]
[Wikipedia]

What is the connection between reduced-order

modeling and machine learning?

Model reduction methods have grown from CSE, with a focus on reducing high-dimensional models
that arise from physics-based modeling, whereas machine learning has grown from CS, with a focus
on creating low-dimensional models from black-box data streams. Yet recent years have seen an

increased blending of the two perspectives and a recognition of the associated opportunities.
[Swischuk et al., Computers & Fluids, 2018]
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The physical governing equations reveal variable transformations and
manipulations that expose polynomial structure
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mUItlple WayS S g(‘%’) + Wa*‘;% =0
to write the p= Lot ow NI
Euler equations — ——
conservative variables primitive variables
mass, momentum, energy mass, velocity, pressure

« Define specific volume: g =1/,

Different choices of
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Simple
example

Lifting a nonlinear
(quartic) ODE to
quadratic-bilinear form

Can eitherliftto a
system of ODEs or
to a system of DAEs

Consider the quartic system t=x*4+u

Introduce auxiliary variables: wy; = 22 wy = w?

Chain rule: wy = 2z[w? + u| = 2x[wy + u]

QDQ - 221)1’11)1 — 4£E’LU1 [wz + U]

Need additional variable to make auxiliary dynamics quadratic:

w3 = W1 w3 = TWwi1 + rw;
= wiWy + wiu + 2@1w2 + 2w u
QB-ODE
T = Wy + u QB-DAE
w1 = 2xW9 + 22U izw%—l—u

wo = dwows + 4dwsu 2

O=w; —x
Ws = 3wiws + 3wiu 0




Many different forms
of nonlinear equations
can be lifted to
polynomial form
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Non-intrusive learning of the reduced models from
simulation snapshot data



Given state Ex=ax+Bu+ Hx® %)
linear uadratic
data, learn quadr
the System Given state data (X) and velocity data (X):
- | ] |
In principle could learn a X =|x(t)) .. x(tg) X =|x(t)) .. x(tg)
large, sparse system B | N |

e.g., Schaeffer, Tran &
Ward, 2017

Find the operators A,B,E, H
by solving the least squares problem:

A{g)iErleHXTAT +(X®X)'H" + U'BT — XTE||




Given reduced Ex = AX+ Bu+ HX ® %)

state data,

learn the Given reduced state data (X) and velocity data ()?):

reduced model | - u |
X=|[®(t) -~ Rt| X=|%t) .. Rty

Operator Inference - | | |

Peherstorfer & W Find the operators A, B, E, H

Data-driven operator by solving the least squares problem:

inference for nonintrusive

projection-based model TRT T TST ST

reduction, Computer Methods Kr]%lﬁﬁ HX A+ (X ® X) H +U'B X EH

in Applied Mechanics and
Engineering, 2016

Under certain conditions, recovers the intrusive
POD reduced model




Variable transformations to expose structure
non-intrusive learning that frees us to choose our variables



Learning a
low-dimensional
model

Using only snapshot

data from the
high-fidelity model
(non-intrusive) but
learning the POD

reduced model

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

Generate full state trajectories (snapshots)
(from high-fidelity simulation)

1.

Xorig —

|
X(t1)

|
X(tk)

Xorig —

X(t1)

|
X(tk)




Lift & Learn [qian, kramer, Peherstorfer & W., 2019]

, 1. Generate full state trajectories (snapshots)
Leaming a (from high-fidelity simulation)
low-dimensional 2. Transform snapshot data to get lifted snapshots

model (analyze the PDEs to expose system
polynomial structure)

Using only snapshot Xorig — X Xorig — X

data from the
high-fidelity model
(non-intrusive) but
learning the POD

reduced model




Learning a
low-dimensional
model

Using only snapshot

data from the
high-fidelity model
(non-intrusive) but
learning the POD

reduced model

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

1. Generate full state trajectories (snapshots)
(from high-fidelity simulation)

2. Transform snapshot data to get lifted snapshots
3. Compute POD basis from lifted trajectories

X=VIW'



Learning a
low-dimensional
model

Using only snapshot

data from the
high-fidelity model
(non-intrusive) but
learning the POD

reduced model

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

1.

Generate full state trajectories (snapshots)
(from high-fidelity simulation)

Transform snapshot data to get lifted snapshots
Compute POD basis from lifted trajectories

Project lifted trajectories onto POD basis, to
obtain trajectories in low-dimensional POD
coordinate space

X=VTX



Learning a
low-dimensional
model

Using only snapshot

data from the
high-fidelity model
(non-intrusive) but
learning the POD

reduced model

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

1.

_min
ABEH

Generate full state trajectories (snapshots)
(from high-fidelity simulation)

Transform snapshot data to get lifted snapshots
Compute POD basis from lifted trajectories

Project lifted trajectories onto POD basis, to
obtain trajectories in low-dimensional POD
coordinate space

Solve least squares minimization problem to
infer the low-dimensional model

IXTAT + (X ®X) AT + UTBT - X"E|



Learning a
low-dimensional
model

Using only snapshot

data from the
high-fidelity model
(non-intrusive) but
learning the POD

reduced model

Lift & Learn [qian, kramer, Peherstorfer & W., 2019]
1. Generate full state trajectories (snapshots)
(from high-fidelity simulation)
2. Transform snapshot data to get lifted snapshots
3. Compute POD basis from lifted trajectories

4. Project lifted trajectories onto POD basis, to
obtain trajectories in low-dimensional POD
coordinate space

5. Solve least squares minimization problem to infer
the low-dimensional model

Under certain conditions, recovers the intrusive POD
reduced model

— convenience of black-box learning +

rigor of projection-based reduction +
structure imposed by physics



1 Predictive Data Science

2 Lift & Learn Rocket Engine
Combustion

Lift & Learn reduced models for a
4 Conclusions & Outlook complex Air Force combustion problem

3 Application Example



Modeling a single injector
of a rocket engine
combustor

» Spatial domain discretized into 38,523 cells
* Pressure monitored at 4 locations

+ Oxidizer input: 0.37 =% of 42% 0, / 58% H,0
+ Fuel input: 5.0 = of CH,

« Governing equations: conservation of mass,
momentum, energy, species

» Forced by a back pressure boundary condition
at exit throat
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Manifold

Injector Post

Injector

Element
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Exit Throat




Modeling a single injector of a rocket
engine combustor

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
x (meters)

Training data Test data

* 1ms of full state solutions generated using Additional 1 ms of data at
Air Force GEMS code (~200 hours CPU time) monitor locations (10,000

« Timestep At = 107 7s; 10,000 total snapshots timesteps)

« Variables used for learning ROMs
x=[p u v 1/p Yeu, Yo, Yco, Yn,0]
makes many (but not all) terms in governing equations
quadratic

» Snapshot matrix X € R398184 x 10,000



Performance
of learned
quadratic
ROM

Pressure time traces at
monitor location 1

Basis sizer =17

Pressure

0.025
0.02
")
5 0.015
)
)
g 0.01
> 0.005
-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
x (meters)
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1.3+ " ROM, r=17 ) A N
—— TRUE N AL S
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124+ B 3 f ] A\ . \\‘ 'II ‘\‘ ',' | ','
. 7 ’, \‘ 'I ) H “ ! "
. ‘\ ,' ‘\ :’ ' l' 1
\ 1 \ 1 | i ]
\ h \ 1 ! t
I 1 ] \ I ] 1
1.1+ n Ny ‘\\ / \\‘ I ] ]
] /" \ II' \ ::
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Performance
of learned
quadratic
ROM

Pressure time traces at
monitor location 1

Basis size r = 29

0.025
0.02
0.015
0.01

y (meters)

0.005

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
x (meters)

Training Test

————— ROM, r=29
—— TRUE

1.2

Pressure

1.1 4

1.0

0.015



e Pressure Temperature

Pa

1.26E+06
1.22E+06

1.18E+06
1.14E+06
11E+06

1.08E+06

Predicted

r = 29 POD modes

Pa

1.26E+06
1.22E+06
1.18E+06
1.14E+06
11E+06

1.06E+06

Relative error




True

Concentration

. 0.1

0.08

0.06
F 0.04

0

Predicted

r = 29 POD modes

Concentration
Concentration

|



1 Predictive Data Science

2 Concrete Example Conclusions &
3 Application Example OUtIOOk

The future of Predictive Data Science
4 Conclusions & Outlook



Data Science

Computational
Science &
Engineering

Predictive
Data Science

Revolutionizing decision-making for
high-consequence applications in
science, engineering & medicine



Predictive Data Science

Learning from data through the lens of models is a way
to exploit structure in an otherwise intractable problem.

Integrate
heterogeneous, noisy
& incomplete data

Embed domain
knowledge

Get predictions with
quantified
uncertainties

Respect physical Bring interpretability
constraints to results




Predictive
. : earning from
Data SCIane domi?\blfr?gvl\ngdge d:ta thro?Jgh the

lens of models

Needs interdisciplinary

research & education Principled
: approximations Explicit modeling
at the interfaces that exploit & treatment of

low-dimensional uncertainty

structure



decisions

building the mathematical foundations and computational methods to
enable design of the next generation of engineered systems
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