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How do we harness the explosion 
of data to extract knowledge, 
insight and decisions? 

Big decisions need more 
than just big data…

they need big models too

Patient-specific prostate tumor modeling (T. Hughes)

Hurricane 
storm surge 
modeling
(C. Dawson)

Arctic ocean circulation modeling
(A. Nguyen & P. Heimbach)

Inspired by
Coveney, Dougherty, Highfield “Big data need big theory too”



Big decisions need more than just big data…

Big decisions must incorporate the predictive power, interpretability, 
and domain knowledge of physics-based models



Challenges

1 high-consequence applications are 
characterized by complex multiscale 
multiphysics dynamics

2 high (and even infinite) dimensional 
parameters

3 data are relatively sparse and expensive
to acquire

4 uncertainty quantification in model 
inference and certified predictions in 
regimes beyond training data

Predictive 
Data 
Science
a convergence of
Data Science and 
Computational Science 
& Engineering
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Lift & Learn: Ingredients
1. A physics-based model

Example: modeling combustion in a rocket engine
Conservation of mass (𝜌), momentum (𝜌𝑤),
energy (𝐸), species (𝑌%&' , 𝑌() , 𝑌%() , 𝑌&)()

2. Lens of projection to define a low-dimensional model

3. Variable transformations that expose polynomial structure in the model

4. Non-intrusive learning of the reduced model → work with transformed variables

P, kPa

T, K

Q, MW/m3

YCH4

𝐄�̇� = 𝐀𝐱 + 𝐁𝐮 + 𝐟(𝐱, 𝐮, 𝐩)



Projection-based model reduction
1 Label: Solve PDEs to generate training data (snapshots)
2 Identify structure: Compute a low-dimensional basis
3 Train: Project PDE model onto the low-dimensional subspace

= +

dimension 109 − 10;
solution time ~minutes / hours

dimension 10< − 10=
solution time ~seconds

+=



Reduced 
models

1 Label
2 Identify structure
3 Train

𝐄�̇� = 𝐀𝐱 + 𝐁𝐮

Approximate
𝐱 ≈ 𝐕𝐱J
𝑉 ∈ ℝN×J

𝐫 = 𝐄𝐕�̇�J − 𝐀𝐕𝐱J − 𝐁𝐮

Project
𝐖U𝐫 = 0
(Galerkin: 𝐖 = 𝐕)

Residual: 𝑵 eqs ≫ 𝒓 dof

Full-order model (FOM)
state 𝐱 ∈ ℝN

Reduced-order 
model (ROM)
state 𝐱J ∈ ℝJ

𝐄J�̇�J = 𝐀J𝐱J + 𝐁J𝐮

𝐀J = 𝐕U𝐀𝐕
𝐄J = 𝐕U𝐄𝐕

𝐁J = 𝐕U𝐁
𝐇J = 𝐕U𝐇(𝐕⊗ 𝐕)



Linear Model
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FOM: 

ROM: ROM: 

FOM: 

Precompute the ROM matrices: Precompute the ROM matrices and tensor:

Quadratic Model

𝐄J�̇�J = 𝐀J𝐱J + 𝐁J𝐮 𝐄J�̇�J = 𝐀J𝐱J + 𝐇J 𝐱J ⊗ 𝐱J + 𝐁J𝐮

𝐄�̇� = 𝐀𝐱 + 𝐇 𝐱⊗ 𝐱 + 𝐁𝐮𝐄�̇� = 𝐀𝐱 + 𝐁𝐮

projection preserves structure  ↔ structure embeds physical constraints

𝐀J = 𝐕U𝐀𝐕,  𝐁J = 𝐕U𝐁,  𝐄J = 𝐕U𝐄𝐕 𝐇J = 𝐕U𝐇(𝐕⊗ 𝐕)



What is the connection between reduced-order 
modeling and machine learning?

Machine learning
“Machine learning is a field of computer 
science that uses statistical techniques to give 
computer systems the ability to "learn" with 
data, without being explicitly programmed.” 
[Wikipedia]

Reduced-order modeling
“Model order reduction (MOR) is a
technique for reducing the computational 
complexity of mathematical models in 
numerical simulations.” [Wikipedia]

Model reduction methods have grown from CSE, with a focus on reducing high-dimensional models
that arise from physics-based modeling, whereas machine learning has grown from CS, with a focus 
on creating low-dimensional models from black-box data streams. Yet recent years have seen an 
increased blending of the two perspectives and a recognition of the associated opportunities.
[Swischuk et al., Computers & Fluids, 2018]



Variable Transformations & Lifting
The physical governing equations reveal variable transformations and 
manipulations that expose polynomial structure
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𝜕
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𝜕𝑞
𝜕𝑥
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There are 
multiple ways
to write the
Euler equations

Different choices of 
variables leads to 
different structure in the 
discretized system
→ lifting
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• Define specific volume:  𝑞 = ⁄< e

• Take derivative:  fg
fh
= i<

e)
fe
fh
= i<

e)
−𝜌 fj

fk
− 𝑢 fe

fk
= 𝑞 fj

fk
− 𝑢 fg

fk

𝜕
𝜕𝑡

𝑤
𝑝
𝑞

+

𝑤
𝜕𝑤
𝜕𝑥 + 𝑞

𝜕𝑝
𝜕𝑥

𝛾𝑝
𝜕𝑤
𝜕𝑥 + 𝑤

𝜕𝑝
𝜕𝑥

𝑞
𝜕𝑤
𝜕𝑥 + 𝑤

𝜕𝑞
𝜕𝑥

= 0

specific volume variables

transformed system
has linear-quadratic structure

𝜕
𝜕𝑡

𝜌
𝜌𝑤
𝐸

+
𝜕
𝜕𝑧

𝜌𝑤
𝜌𝑤_ + 𝑝
𝐸 + 𝑝 𝑤

= 0

𝐸 =
𝑝

𝛾 − 1 +
1
2𝜌𝑤

_

𝜕
𝜕𝑡

𝜌
𝑤
𝑝

+

𝜌
𝜕𝑤
𝜕𝑥 + 𝑤

𝜕𝜌
𝜕𝑥

𝑤
𝜕𝑤
𝜕𝑥 +

1
𝜌
𝜕𝑝
𝜕𝑥

𝛾𝑝
𝜕𝑤
𝜕𝑥 + 𝑤

𝜕𝑝
𝜕𝑥

= 0

conservative variables
mass, momentum, energy

primitive variables
mass, velocity, pressure

cf. 𝐄�̇� = 𝐀𝐱 + 𝐁𝐮 + 𝐟(𝐱, 𝐮, 𝐩)



Simple 
example
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Lifting a nonlinear 
(quartic) ODE to 
quadratic-bilinear form

Can either lift to a
system of ODEs or
to a system of DAEs

Consider the quartic system

Introduce auxiliary variables:

Chain rule:

Need additional variable to make auxiliary dynamics quadratic:

QB-ODE
QB-DAE
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original equations

quadratic-bilinear
lifted equations

Many different forms 
of nonlinear equations 
can be lifted to 
polynomial form



Operator inference
Non-intrusive learning of the reduced models from 
simulation snapshot data
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Given state 
data, learn 
the system

In principle could learn a 
large, sparse system
e.g., Schaeffer, Tran & 
Ward, 2017

min
𝐀,𝐁,𝐄,𝐇

𝐗U𝐀U + 𝐗⊗ 𝐗 U𝐇U + 𝐔U𝐁U − �̇�U𝐄

𝐗 =
| |

𝐱(𝑡<) … 𝐱(𝑡r)
| |

�̇� =
| |

�̇�(𝑡<) … �̇�(𝑡r)
| |

Given state data (𝐗) and velocity data (�̇�):

Find the operators 𝐀,𝐁, 𝐄, 𝐇
by solving the least squares problem:



Given reduced
state data,
learn the
reduced model

Operator Inference

Peherstorfer & W.
Data-driven operator 
inference for nonintrusive 
projection-based model 
reduction, Computer Methods 
in Applied Mechanics and 
Engineering, 2016

s𝐗 =
| |

t𝐱(𝑡<) … t𝐱(𝑡r)
| |

ṡ𝐗 =
| |

ṫ𝐱(𝑡<) … ṫ𝐱(𝑡r)
| |

Given reduced state data (s𝐗) and velocity data (ṡ𝐗):

Find the operators s𝐀, s𝐁, u𝐄, s𝐇
by solving the least squares problem:

min
s𝐀,s𝐁, u𝐄,s𝐇

s𝐗Us𝐀U + s𝐗⊗ s𝐗
Us𝐇U + 𝐔Us𝐁U − ṡ𝐗U u𝐄

Under certain conditions, recovers the intrusive 
POD reduced model



Lift & Learn
Variable transformations to expose structure
+ non-intrusive learning that frees us to choose our variables
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Learning a
low-dimensional 
model

Using only snapshot 
data from the
high-fidelity model 
(non-intrusive) but 
learning the POD 
reduced model

𝐗𝐨𝐫𝐢𝐠 =
| |

𝐱(𝑡<) … 𝐱(𝑡r)
| |

�̇�𝐨𝐫𝐢𝐠 =
| |

�̇�(𝑡<) … �̇�(𝑡r)
| |

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

1. Generate full state trajectories (snapshots)
(from high-fidelity simulation)



Learning a
low-dimensional 
model

Using only snapshot 
data from the
high-fidelity model 
(non-intrusive) but 
learning the POD 
reduced model

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

1. Generate full state trajectories (snapshots)
(from high-fidelity simulation)

2. Transform snapshot data to get lifted snapshots
(analyze the PDEs to expose system 
polynomial structure)

𝐗𝐨𝐫𝐢𝐠 ⟶ 𝐗 �̇�𝐨𝐫𝐢𝐠 ⟶ �̇�



Learning a
low-dimensional 
model

Using only snapshot 
data from the
high-fidelity model 
(non-intrusive) but 
learning the POD 
reduced model

𝐗 = 𝐕 𝚺𝐖U

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

1. Generate full state trajectories (snapshots)
(from high-fidelity simulation)

2. Transform snapshot data to get lifted snapshots
3. Compute POD basis from lifted trajectories



Learning a
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s𝐗 = 𝐕U𝐗

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

1. Generate full state trajectories (snapshots)
(from high-fidelity simulation)

2. Transform snapshot data to get lifted snapshots
3. Compute POD basis from lifted trajectories
4. Project lifted trajectories onto POD basis, to 

obtain trajectories in low-dimensional POD 
coordinate space



Learning a
low-dimensional 
model

Using only snapshot 
data from the
high-fidelity model 
(non-intrusive) but 
learning the POD 
reduced model

min
s𝐀,s𝐁, u𝐄,s𝐇

s𝐗Us𝐀U + s𝐗⊗ s𝐗 Us𝐇U + 𝐔Us𝐁U − ṡ𝐗U u𝐄

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

1. Generate full state trajectories (snapshots)
(from high-fidelity simulation)

2. Transform snapshot data to get lifted snapshots
3. Compute POD basis from lifted trajectories
4. Project lifted trajectories onto POD basis, to 

obtain trajectories in low-dimensional POD 
coordinate space

5. Solve least squares minimization problem to 
infer the low-dimensional model



Learning a
low-dimensional 
model

Using only snapshot 
data from the
high-fidelity model 
(non-intrusive) but 
learning the POD 
reduced model

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

1. Generate full state trajectories (snapshots)
(from high-fidelity simulation)

2. Transform snapshot data to get lifted snapshots
3. Compute POD basis from lifted trajectories
4. Project lifted trajectories onto POD basis, to 

obtain trajectories in low-dimensional POD 
coordinate space

5. Solve least squares minimization problem to infer 
the low-dimensional model

Under certain conditions, recovers the intrusive POD 
reduced model

→ convenience of black-box learning +
rigor of projection-based reduction +

structure imposed by physics



Rocket Engine 
Combustion 
Lift & Learn reduced models for a 
complex Air Force combustion problem

1 Predictive Data Science

2 Lift & Learn

3 Application Example

4 Conclusions & Outlook



Modeling a single injector 
of a rocket engine 
combustor

• Spatial domain discretized into 38,523 cells
• Pressure monitored at 4 locations

• Oxidizer input: 0.37 ~�
�

of 42% O_ / 58% H_O

• Fuel input: 5.0 ~�
�

of CH�
• Governing equations: conservation of mass, 

momentum, energy, species
• Forced by a back pressure boundary condition 

at exit throat

Injector 
Element

Injector Post

Oxidizer 
Manifold

Combustion 
Chamber

Exit Throat



Modeling a single injector of a rocket 
engine combustor

Training data
• 1ms of full state solutions generated using

Air Force GEMS code (~200 hours CPU time)
• Timestep Δ𝑡 = 10i�s; 10,000 total snapshots
• Variables used for learning ROMs

𝐱 = 𝐩 𝐮 𝐯 𝟏/𝝆 𝐘𝐂𝐇𝟒 𝐘𝐎𝟐 𝐘𝐂𝐎𝟐 𝐘𝐇𝟐𝐎
makes many (but not all) terms in governing equations 
quadratic

• Snapshot matrix 𝐗 ∈ ℝ=��,<�� × <�,���

Test data
Additional 1 ms of data at 
monitor locations (10,000 
timesteps)



Performance
of learned 
quadratic 
ROM

Pressure time traces at 
monitor location 1

Basis size 𝒓 = 𝟏𝟕
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Performance
of learned 
quadratic 
ROM

Pressure time traces at 
monitor location 1

Basis size 𝒓 = 𝟐𝟗
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True

Predicted
𝑟 = 29 POD modes

Relative error

Pressure Temperature
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True

Normalized absolute error

CH4 O2

Predicted
𝑟 = 29 POD modes



Conclusions & 
Outlook
The future of Predictive Data Science
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Predictive 
Data Science
Revolutionizing decision-making for 
high-consequence applications in
science, engineering & medicine

Data Science

Computational 
Science & 

Engineering



Predictive Data Science
Learning from data through the lens of models is a way 
to exploit structure in an otherwise intractable problem.

…

Respect physical 
constraints

Embed domain 
knowledge

Bring interpretability 
to results

Integrate 
heterogeneous, noisy 

& incomplete data

Get predictions with 
quantified 

uncertainties



Predictive 
Data Science

Needs interdisciplinary
research & education
at the interfaces

Embedding 
domain knowledge

Learning from 
data through the 
lens of models

Principled 
approximations 

that exploit
low-dimensional 

structure

Explicit modeling 
& treatment of 

uncertainty

1

3

2

4



Data-driven decisions
building the mathematical foundations and computational methods to 
enable design of the next generation of engineered systems

K I W I . O D E N . U T E X A S . E D U
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