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A quantitativetool is presented to perform program-level valuationof commercial aircraft designs. The algorithm
used expands on traditional net present value methods through the explicit consideration of market uncertainty
and the ability of the firm to react to such uncertainty through real-time decision making throughout the course of
the aircraft program. The algorithm links three separate models, performance, cost, and revenue, into a system-
level analysis by viewing the firm as a decision-making agent facing continuous choices between several different
operating modes. An optimization problem is set up and solved using a dynamic programming approach to find a
set of operating mode decisions that maximizes the firm’s expected value from the aircraft project. The result is a
quantification of value that can be used to make program-level design trades and to gain insight into the effects of
uncertainty on a particular aircraft design. Examples are drawn from the blended-wing-body aircraft concept to
demonstrate the operation of the program valuation tool.

Introduction

RADITIONAL methodsfor creatinga commercialaircraftpro-

gram typically consistof at least two distinctdesign efforts, the
engineering development of the airframe itself and the strategic de-
velopment of the aircraft program. The latter addresses questions
such as which aircraft designs to investin (product mix), how much
productionto plan for (sales volume), what prices and costs to expect
(profitability), and how to plan for unforeseen market developments
(flexibility).

In the past, the two elements of program design, engineering de-
velopmentand strategic development, have often been executed en-
tirely separately from each other. Engineering and finance are often
handledby differentgroupsand atdifferenttimes. When engineering
and finance are uncoupled, a firm runs the risk of overlooking im-
portantinteractionsbetween the two. A design system that performs
engineering and financial analysis simultaneously may improve on
the efficiency and effectiveness of the traditional methods.

Numerous advances have been made in the application of mul-
tidisciplinary techniques to the engineering facet of aircraft devel-
opment. The field of multidisciplinary design optimization (MDO)
combines engineering disciplines, such as aerodynamics, structural
dynamics, and controls, to provide a design framework that “coher-
ently exploits the synergism of mutually interacting phenomena.’!
MDO has been implemented across a wide range of applications
for aircraft design.!'> Whereas multidisciplinary analysis and opti-
mization has seen extensive use for technical design problems in
aerospace, there has been less emphasis on applying these tech-
niques to larger scope system design. Frameworks have been de-
veloped that include both engineeringand cost elements for aircraft
design®* and aircraft engine design.>® A common feature of those
frameworks is that they use Monte Carlo simulation (MCS) to ex-
plore the impact of uncertainty on system design. Whereas MCS
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provides a means to perform probabilisticanalysis of a series of de-
signs,itdoesnotrigorouslyaddresstheissue of real-time managerial
decision making. Tools such as real options and game theory have
been suggested as a means to incorporate decision making (for ex-
ample,in Ref. 5) butdo notappearto have beenimplementedas such.

The objective of this paper is to couple engineering and financial
design, or, phrased differently, product and program design, to ex-
tract maximum value from the commercial aircraft design process.
A multidisciplinary analysis is synthesized by creating three free-
standing quantitative models, performance, cost, and revenue, and
linking them to compute a measure of program value. Although the
models are not high fidelity, their purposes are to establish a useful
foundation for further study and to gain insightinto the interactions
between technical and program design.

To link the three models into an integrated multidisciplinaryanal-
ysis tool, considerationmust be given to the program structure, that
is, the decision structure affecting product mix, design and produc-
tion plans, and pricing strategy. With this element in place, the stage
is set for a quantitative valuationof the program, which enables both
technical and program-based trade studies to search for an optimal
system design. This conceptual process is shown in Fig. 1. In this
work, the valuation will be performed using a dynamic program-
ming (DP) framework. The DP approach provides a quantitative
measure of the program’s net present value (NPV), while explicitly
accounting for the effects of uncertainty and program flexibility by
modeling the program as a series of decisions. This approach has
been explored in finance literature as real options, for example, in
Refs. 7 and 8. The algorithm results in a series of decision rules,
which define the optimal decision strategy as a function of evolv-
ing and uncertain market conditions. This information could not be
obtained using a MCS approach.

The next section summarizes the multidisciplinary approach
taken to accomplish the objective by describing the three distinct
models used to solve the problem: performance, cost, and revenue
estimation. The following section describes the DP approach to link
these models into one program value analysis tool, and two exam-
ples are given to demonstrate the operation of the valuation tool for
analysisof a blended-wing-body (BWB) family of aircraft.” Finally,
the results are discussed, and conclusions are drawn.

Performance Model

The performance estimator is based on the WingMOD aircraft
design tool. WingMOD is an MDO code that optimizes aircraft
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Table1 WingMOD outputs used as an input to the value framework

Output Description

Maximum TOW Gross vehicle weight at start of maximum

range mission.

Design landing Gross vehicle weight at end of maximum
weight range mission.

Design range Maximum range, specified as a constraint.

Seats Number of passenger seats, specified

as a constraint.
Estimates of weight for each primary component
of the aircraft, summing to operating
empty weight.
Structural elements (spars, ribs, skin, etc.).
Structural weight broken down into a set of large
parts, which together comprise the airframe.

Weight breakdown

Structure: fuselage
bays, inner wing,
outer wing, etc.

Propulsion Engines, nacelles, and supporting equipment.
Systems Onboard systems, for example,

avionics, fuel, hydraulics.
Payloads Seats, bag racks, cargo equipment, etc.

technical trades
e configuration
e performance _|—P Valuation

Algorithm

T—»  program value

program trades
e product mix
e timing

e cost

e pricing

Performance Estimator/
Configuration Optimizer

v?

Product Configuration Database

Aircraft Types: a, b, c, ...

Program Structure
+ Decision tree

/ o Pricing strategy \

4 Vv

Manufacturing Cost/ Demand

Development Cost
Model Model

Fig. 1 Value-based design process.

wings and horizontal tails subject to a wide array of practical
constraints.!%!" WingMOD uses low-fidelity analyses to analyze
an aircraft quickly in over 20 design conditions that are needed
to address issues from performance, aerodynamics, loads, weights,
balance, stability, and control. The low computational cost of the
simple analyses allows the examination of all of these issues in an
optimization with over 100 design variables while achieving rea-
sonable computation time.

As detailed in Ref. 10, the WingMOD optimization framework
takes a set of constraints representing mission requirements (range,
payload capacity, cruise speed, approach speed, balance, etc.) and
finds an optimal aerodynamic and structural configuration such that
the resulting aircraftsatisfies the constraints.In the valuation frame-
work described here, the performance characteristics of the aircraft
were assumed to be fixed, that is, WingMOD was run a priori to de-
termine the minimum takeoff weight aircraft. Certain properties of
the resulting design were then used as input to the value framework.
These WingMOD outputs are summarized in Table 1.

Cost Model

The cost model has two components: manufacturing cost and
developmentcost. Although detailed cost models are available pub-
licly, suchas the AircraftLife Cycle Cost Analysis (ALCCA) code,!?
for this research, a simple cost model was developed. An important
attribute of the cost model is that it should capture the effect of com-
monality between several different airframes; in general, both the

development cost and manufacturing cost of a new aircraft will de-
pend on the aircraft’s technical parameters and the technical param-
eters of other aircraft types that have already been designed or built.
The cost models used for this research are based on the decom-
position of the aircraftinto a set of components. A simple cost per
pound estimation is applied at a component level and further mod-
ified with learning curve effects. The cost model parameters were
derived from publicly available data and are published in detail in
Refs. 13 and 14. A more detailed cost model could be linked to the
valuation framework, provided commonality effects are captured.

Revenue Model

Given an aircraft design, a production rate, and a time horizon,
the revenue model must provide the following three outputs: po-
tential revenue cashflow for the current time period, the expected
value of future revenue cashflows, and a measure of the uncertainty
of the future cashflows. Furthermore, the model must demonstrate
realistic sensitivities to changes in aircraft performance, for exam-
ple, reduction in fuel burn, changes in the aircraft target market,
for example, 100 vs 250 passengers, and changes in aircraft price
charged, that is, demand price elasticity. To achieve this functional-
ity, the model developmentis broken up into a static analysis and a
dynamic analysis.

Static Demand Analysis

The static analysis estimates a baseline price and corresponding
quantitydemanded,along with an expecteddemand growth rate over
the specified time horizon. Price is modeled as a function of several
variables representing an aircraft’s value to its operator, an airline.
Several sets of variables and several functional forms were tested
by applying the price model to 23 existing aircraft: 11 narrowbodies
and 12 widebodies. The outputs generated by the price model were
compared to best estimates for the actual sale prices for each of the
aircraft, compiled from two sources.'>!¢ For each functional form
tested, the function parameters were adjusted to minimize the mean
squared error of estimated price.

The selected functions for narrowbody (NB) and widebody (WB)
aircraft are shown next. Note that speed (or Mach number) is not
one of the variables. No significant statistical relationship between
price and speed was found in the range of available data. Thus,

. Seats 1910
Price NB = | 0.735{ ———
Seats_ref

Range

+ 0.427( ) Price_ref — A(LC) (1)

Range_ref

2760
Seats
Seats_ref

Price WB = 0.508(

Range

+ 0.697( ) Price_ref — A(LC) 2)

Range_re

where Seats is the passenger capacity, Range is the design range,
and Seats_ref, Range_ref, and Price_ref are reference values of 419
seats, 8810 n miles, and $148.7 million, respectively. A(LC) is an
increment in life cycle (LC) cost due to off-nominal cash airplane
related operating costs (CAROC), which are equal to total operating
costs less ownership costs. This term refers to the additional cost
the operator incurs if the aircraft’s CAROC is greater than the in-
dustry average CAROC for an aircraft of its size. It is a function of
the difference between the aircraft’s CAROC and the least-squares
estimate for the CAROC of an aircraft with the same capacity. The
prices generated by the preceding functionsare compared to the best
estimates of the actual aircraft prices in Fig. 2.

Whereas the aircraftseat countand range are provided by the out-
puts of the performance model, its CAROC must be estimated sepa-
rately. For the example used, the assumption is made that fuel costs
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Fig. 3 Forecasted deliveries through 2019, 20-year gross demand.

for a reference mission (3000 n mile) represent 20% of CAROC.
The figure of 20% is based on empirical data for several existing
aircraft. Fuel burn is calculated using the Breguet range equation,
and a fuel price of $0.65 per gallon is used.

Quantity data are based on three distinct forecasts of quantities
of aircraft to be delivered from 2000 through 2019 as released by
The Boeing Company,!” Airbus,'® and the Airline Monitor.'® Each
forecasthas a different set of aircraft categories which comprise the
global airline fleet. All three forecasts were recastinto a single, con-
sistent set of aircraft categories based on aircraft class (narrowbody
or widebody) and seat count. Forecasted deliveries are assumed
equivalent with quantities demanded at current market prices. The
results are shown in Fig. 3. Depending on seat category, there is
considerablevariance between the three forecasts. This reflects dif-
ferencesin the forecasters’ assumptions, methodology,and, to some
extent,corporatestrategy. Furthermore, the high variancereflects the
high degree of uncertainty regarding future revenue cash flows.

For a given aircraft design, the quantity model proceeds as fol-
lows. Assign a given aircraft to a seat category; compute a 20-year
gross demand for that category as the mean of the three forecasts;

assume a market share in that category; compute the 20-year quan-
tity demanded as the market share multiplied by the 20-year gross
demand; and compute the current annual quantity demanded by ap-
plying the expected annual demand growth rate. If several designs
are considered for production simultaneously, fractions of seat cat-
egory demands are assigned to each design, such that total quantity
demanded will not exceed the product of market share and 20-year
gross demand.

Dynamic Demand Analysis

The dynamic analysis aims to quantify the stochastic behavior
of the market for commercial aircraft. It is observed that quantities
of aircraft purchased fluctuate significantly from year to year and
exhibit some cyclical properties. Thus, given a forecast for year 0, it
is impossible to predict with certainty what the quantity of aircraft
demanded will be in year 10. However, based on historical data,
some representativecharacteristicswere found to describehistorical
aircraft demand levels as geometric Brownian motions, not unlike
stock prices. Therefore, the dynamicanalysisuses an average annual
growth rate of 4.43% and an average annual volatility of 45.57%
for typical demand evolution patterns for widebody aircraft.

Dynamic Programming Formulation

The basic problem to be solved may be broken up into three
parts: endogenous variables, those that are internal to the aircraft
development process and may be controlled; exogenous variables,
those that are external to the aircraft development process and may
not be controlled; and a statement of the problem objective.

The endogenousvariablesconstitute a set (or portfolio) of aircraft
designs, any of which the producing firm may choose to develop
and bring to market. To bring a concept to market, the firm must go
throughseveral phases:detaildesign, toolingand capitalinvestment,
testing,certification, and finally production.Each phaseentails some
required expenditure of time and money, and the firm may decide
when to execute each phase. Each of the aircraft designs is defined
by a set of component parts, for example, inner wing, outer wing,
fuselage bay, etc., some of which may be common across several
aircraft.

Giventhatanaircraftdesignis in production,the evolutionsofsale
price and quantity demanded are unaffected by any decisions made
by the firm and are, thus, exogenousvariables.Sale price evolves ac-
cordingto a steady growthrate, whereas quantity demanded evolves
as a stochasticprocess,characterizedby parameters such as driftrate
and volatility. Each period that an aircraftdesignis in production,as
many units are built and sold as are demanded, up to the maximum
capacity of the plant.

Given the preceding endogenous and exogenous variables, the
objectiveis to find a set of optimal decision rules governing which
aircraftto design, which aircraft to produce, and when, as a function
of the demand level and the aircraft built to date at any given time.
Achieving this goal will necessarily yield the overall program value
because program value is the objective function used to find the
optimal decision rules.

General Theory

A stochastic DP problem may, in general, be framed in five parts:

1) State variables continuously evolve and completely define the
problem at any point in time.

2) Control variables are set at any point in time by the decision
maker and generally impact the evolution of the state variables.

3) Randomness is when one or more of the state variables is
subject to random movements, and as such, involves a stochastic
process.

4) The profit function is defined as follows. The goal of the DP
method is to maximize some objective function, in this case the
program value. The value is, in general, a function of certain prof-
its incurred every period. These profits are functions of the state
variables.

5) Dynamics representthe set of rules that govern the evolutionof
the state variables, including the effects of randomness, the effects
of control variables, and any other relationships.
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The problem is further defined by a time horizon (which may
generally be finite or infinite) and a sequence of time periods of
length At, which together comprise the time horizon. The objective,
then, is to find the optimal vector of control variables as a function
of time and state, such that the total value at the initial time is
maximized. Equivalently, the objective may be stated recursively,
as an expression for the value at any time ¢ as

Fi(s;) = max{m,(s;,u,) + [1/ (A +NIE[F 1165401} (3)

where F,(s,) is the value (objective function) at time ¢ and state
vector s,, 7, is the profit in time period ¢ as a function of the state
vector s, and the control vector u,, r is some appropriate discount
rate, and E, is the expectation operator, providing in this case the
expected value of F attime ¢ + 1, given the state s, and controlu, at
time . Note that the expectationoperationfor next period is affected
by the control decision and the state in this period.

Equation (3) is known as the Bellman equation and is based on
Bellman’s principle of optimality: “An optimal policy has the prop-
erty that, whatever the initial action, the remaining choices consti-
tute an optimal policy with respect to the subproblem starting at
the state that results from the initial actions” (see Ref. 7). In other
words, given that the optimal value problem is solved for time # + 1
and onward, the action (choice of #) maximizing the sum of this
period’s profit flows and the expected future value is also the opti-
mal action maximizing value for the entire problem for time ¢ and
onward.

The Bellman equation can, therefore, be solved recursively or,
for a finite time horizon, iteratively. For a time horizon of T, this
is done by first considering the end of the horizon, at time 7. At
this point, there are no future states and no future expected value of
F. Therefore, the optimal control decisions #; given the final state
st are readily found. This process is repeated for all possible final
values of the state vector s7. Next, it is possible to take one step
backward in time, to t =t7 _ ;. Now, Eq. (3) may be applied to find
the optimal control decisions ur _; because the expectation term
E[...], is easily calculated as the probability-weightedaverage of
the possible future values of Fr. Again, the optimal control values
ur_ 1, are found for each possible value of s _ ;. At this point, the
procedureis repeated by taking another backward timestepto 7 — 2
and continuingto iterate until the initial time, =0, is reached. Now,
Fy is known for all possible initial values of the state s, and it is the
optimal solution value.

Specific Application: Operating Modes

It is possible to extend the general DP framework presented to
a specific application useful for the valuation of projects. The ap-
plication is centered on the concept of operating modes, and has
been demonstrated by several authors to be useful in modeling flex-
ible manufacturing systems 32 Much of this description is based
on their work.

Consider a hypothetical factory, which at the beginning of any
time period may choose to produce output A or output B. Let the
prices for which it can sell each of the outputs be differentfunctions
of a single random variable x, so that it may be more profitable in
some situationsto produce one output than the other. However, each
time the factory switches production from A to B, or vice versa,
a switching cost is incurred. Thus, it may not always be optimal
simply to produce whichever output yields the higher profit flow in
the current period. If there is a high probability of a switch back
to the other output in the future, it may be preferable to choose the
output with the lower profit this period.

This example lends itself well to the DP formulation. In this case,
the control variableu, is the choice of output, or operating mode, for
the period beginning at time #: A or B. The state vector s, consists
of two elements, the random variable x and the operating mode
from last period m,. The operating mode m will have one of two
possible values, for example, O or 1, representing output A and B.
Depending on the value of m,, the control variable choice u, may
result in payment of a switching cost. Specifically, the Bellman

equation may be rewritten for this example as

Fi(x;,my) = max{m, (x;, u,) — I (m,, u;)

+1/A+DIELF, 41 (11, u)]) )

Note that the state vector s has been separated into its two compo-
nents, the random variable x and last period’s operating mode m.
Here, the profit function term from Eq. (3) has been replaced by the
difference between a profit flow and I (m,, u,), the switching cost
from mode m to mode u. This will equal zero if m, =u, and there
is in fact no switch made and will be nonzero otherwise. Note also
that the future value F, | (for which the expectationis found) is a
function of the future random variable x, ; | and of the current con-
trol decision u, because u, will become the operating mode from
last period m, ;. , at time ¢ + 1. In other words, m, . =u, because
as soon as the control decision u, is made, the mode in which next
period will be entered, m, . 1, is set. As before, this equation can be
solved iteratively by starting at the final time period and working
backward.

One additional point regarding Eq. (4) bears discussion: the se-
lection of an appropriate discountrate r. This is a nontrivial task; in
fact, the selection of a discountrate is traditionally one of the most
difficult and sensitive steps in capital budgeting. For an in-depth
discussion of discounting as it applies to this valuation technique,
refer to Ref. 13.

Applying DP to the Aircraft Design Problem

The described DP approachis adapted here to solve the problem
of optimal decision making in managing an aircraft program. The
aircraft program valuation algorithm is briefly overviewed here in
the context of the five parts that frame a DP problem:

1) For each new aircraft design being simultaneously considered,
two state variablesexist: quantitydemanded, which evolvesstochas-
tically, and the “operating mode from last period” (as introduced
earlier) for that aircraft.

2) For each aircraft design, one control variable exists: the choice
of operating mode for the current period.

3) For each aircraft design, one state variable exists with random
characteristics:the quantity demanded. It evolvesfroma giveninitial
value as a stochastic process.

4) The profit functionduring each periodis the sum of profits asso-
ciated with the operating modes for each aircraft, less any switching
costs incurred during that period. For production operating modes,
the profits are simply revenues less recurring costs; however, other
modes exist for which the profit functions represent nonrecurring
costs.

5) There are two types of state variablesin this formulation: quan-
tity demanded, which evolves as a stochastic process, and operating
mode, which evolves as dictated by the control variables (operating
mode decisions). This defines the dynamics.

Given this framework, itis usefulto considerthe impact of various
parameterson computationtime. To solve the problem iteratively as
just described, the algorithm must evaluate each possible combina-
tion of control variables for each possible state vector, and it must
repeat this process for each time step in the problem’s time horizon,
starting at the final time r = #; and ending at = 0. Therefore, at the
most general level, computation time scales linearly with the time
horizon and exponentially with the number of state variables. The
time horizon, as defined in this application, is 30 years, which is a
typical valuationtime frame for an aircraft program. For purposes of
simplicity and computation time constraints, the time period length
At was selected to be one year. For the same purposes, the max-
imum number of aircraft designs to be simultaneously considered
by the algorithm was set to two.

Connection to Operating Modes

Whereas the operating modes introduced earlier were simply
modes of production, this formulation extends the operating mode
framework to represent each phase of the life cycle of an aircraft
program. The purpose of this extension is to model the significant
time and investmentrequired to develop an aircraft, before any sales
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are made. Therefore, the nonrecurring development process, which
may last as many as six years, is represented as a chain of operating
modes. Clearly, none of these modes entails a positive profit flow.
Rather, each has some negative profit associated with the nonrecur-
ring investment for that particular phase of the aircraft development
cycle. The only incentivefor the firm, and the optimizer, to enter one
of these modes is the opportunityit creates to switch to the following
developmentmode in the following period, and, so on, until the pro-
ductionmode is reached. A graphicalrepresentationof the operating
modes for a single aircraft design is shown in Fig. 4. The diagram
is similar in concept to a Markov chain, where the arrows represent
possible transitions between modes. In fact, the arrows connecting
the modes representswitching costs that are finite; if two modes are
not connected by an arrow, the associated switching cost is infinite.

Mode 0O represents the initial conditions: the firm is waiting to
invest. Modes 1-3 representroughly the first half of the development
effort, primarily detailed design. Note that several operating modes
are shaded. The shading indicates an infinite cost not to switch
to a different mode. In other words, it is impossible to remain in a
shaded mode for more than one period. Thus, once the firm commits
to a detail design effort, it is assumed impractical to stop halfway
through. However, it is possible to stop before the second half of
development, here, mostly tooling and capital investment, begins.
Once this development stage is initiated, a capacity choice must
be made: a low, medium or high capacity production line. This
determines the maximum demand level that may be satisfied with
sales every period. Once the capacity choice is made, the firm must
continue to switch modes annually until it reaches mode 6, 9, or 12,
at which pointit is ready to enter production. Recall that each time
period has a duration of one year; therefore, if the firm does not
wait midway through the development process, an aircraft design
takes six years to bring to market. (The six-year baseline duration
may be altered, as discussed later.) The production modes are 13,
14, and 15, corresponding to a low-, medium-, and high-capacity
line. Note that each mode will produce exactly as many units as
demanded each period, up to a maximum that dependson the mode.
The actual values for maximum capacity are parameters and easily
changed. While in production (or waiting to enter production), it is
possible to invest in additional tooling and expand the capacity of
the production line. However, it is assumed impossible to reduce
capacity, that is, the scrapping of tools has little to no salvage value,
due to the high specificity of the tools to their product. Finally, an
abandonment mode exists to model any salvage value associated
with permanently shutting down the program. If the salvage value
is positive, the switching costs to enter mode 16 will be negative. The
determination of switching costs is based on the adaptation of the
development cost and manufacturing cost models to the operating
mode framework.

The development cost model generates a time profile of the non-
recurring expenses associated with the developmentof a given new
aircraft design. Because of the inclusion of two aircraft designs in
the valuation algorithm, the switching cost calculation proceeds as
follows for each of the two aircraft designs. The sequential switch-
ing costs from mode 0O through mode 9 (medium production rate)
are calculated by discretizing the nonrecurringcost time profile into
one-year segments. This discretization is done as a step function
of the operating mode of the other aircraft design: If the other air-
craft has not yet been fully developed, the baseline nonrecurring
cost profile is used. However, if the other aircraft has already been
fully developed, the nonrecurring cost profile is calculated with any
commonality effects included. Specifically, if the aircraft share any
common components, the development cost and time are both re-
duced to reflect the savings resulting from a preexisting design. If
the commonality effects are significant enough to result in a cost
profile shorter than six years, one or more development modes
are skipped. Finally, once medium capacity development process
switching costs have been defined, the switching costs correspond-
ing to the tooling/capital investmentpart of the developmentprocess
are scaled by a low-capacity and a high-capacity scaling factor to
find the switching costs correspondingto the low- and high-capacity
decisions.

As with development cost, to account for two aircraft designs
present in the valuation, the switching costs associated with man-
ufacturing are found for each aircraft as functions of the operating
mode of the other aircraft. Switching costs associated with manu-
facturing have two components. The first component is switching
from a ready-to-produce mode (6, 9, or 12) into the corresponding
production mode (13, 14, or 15, respectively). The second compo-
nent is switching from one productionline capacity to another. Both
of these components are sometimes involvedin a single switch, for
example, 6 to 14 or 6 to 15; however, they are calculated separately
and simply added together as necessary.

The costs of switching production line capacity are calculated as
the product of a scaling factor (which is greater than one and repre-
sents the additional costs incurred due to disruptionof a preexisting
production line) and the cumulative difference in cash outflows be-
tween the two developmentprocessesassociated with the production
capacities in question. For example, the cost to switch from low to
medium capacity (involved in either a 6 to 14 switch or a 13 to
14 switch) equals the difference in total development cost between
low-capacity development (3, 4, 5, and 6) and medium-capacity
development (3, 7, 8, and 9).

The other component of manufacturing-relatedswitching costs is
the initial switch into one of the three productionmodes (13, 14, or
15). For any given aircraft, the unit cost will generally fall as pro-
duction starts and continues to fall due to the learning curve effect.
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Eventually, it is reasonable to assume that unit cost approaches an
asymptote and stabilizes at the long-run marginal cost. To model the
effect of the learning curve exactly with DP would be impossible,
because knowledge of unit cost requires a knowledge of how many
units have been built to date. This information is not part of the
state vector. One possibility would be to include units built to date
as an additional state variable, but because computation time grows
exponentially with the number of state variables, as noted earlier,
the exercise would be impractical for even two aircraft. Therefore,
once in a production mode, all aircraft are assumed to be produced
at their long-run marginal cost.

To account for this discrepancy, the switching cost to enter pro-
duction is set equal to the total extra cost expected to be incurred
during the production run of the aircraft over and above the long-
run marginal cost. Because this extra cost will be incurred gradually
and with certainty over time, the risk-free rate is used to find the
expected present value of these cash flows, assuming a production
rate equal to baseline demand.

The entire described process, for both developmentcost and man-
ufacturing cost, is conducted for both aircraft designs, resulting in
a set of switching costs for each that is a function of the operat-
ing mode of the other. To use the symbology introduced earlier, the
process finds the switching costs I (m;, u;|m;) for each aircraft i,
where the other aircraftis j, for each prior operating mode m; and
control variable decision #;. Then, the switching cost from any op-
erating mode vector [m, m;] to [uy, u,] is simply equal to the sum
of I (my,u;|m,) and I (m,, u,|m;). This set of data is stored in the
switching cost matrix.

Stochastic Process Dynamics

A crucial component of the algorithmis the model describing the
nature of the unpredictablebehavior of the stochastic process repre-
senting the development of the market for commercial aircraft. The
annual quantity demanded is represented as a stochastic variable
that evolves according to a random walk, modeled as a binomial
tree process. Each time period, the variable may either increase or
decrease by a specified amount with a certainassociated probability.
Thus, if there are two such variables, representing the evolution of
the market for two distinctaircraft, there are four possible outcomes
each time period. A transitionprobability matrix is constructedlink-
ing possible initial states to final states in this framework. These
transition probabilities are used to find the expected future value
of the project as a probability-weighted average, expressed as the
expectationterm E[. ..] in Eq. (4).

Examples

The examples presented here illustrate the mechanics of the algo-
rithm and highlight its distinguishing features. The first considers
designofasingleaircraftand presentstwo illustrations:a simulation
run to demonstrate the decisionrules arrived at by the optimizer and
a connection to the NPV technique. The second example considers
the design of a family of two aircraft sharing common components
and demonstrates how the tool can be used to determine the value
of commonality.

Three differentaircraftdesigns are used, all based upon the BWB
concept. Table 2 summarizes the key characteristicsof the designs.
The example designs are purely hypothetical and significantly sim-
plified. They do not represent actual current BWB configurations.
Three different airframes are possible: one large, 747-class vehicle
(BWB-450), and two smaller, 250-passenger class designs. One of
the smaller designs, the BWB-250C, shares 39.7% of its parts, by
weight, with the BWB-450. The other has no commonality with

Table2 BWB example key characteristics

Seat Range, Gross TOW Commonality
Design count n mile (normalized) (by weight), %
BWB-450 475 8550 1 N/A
BWB-250C 272 8550 0.756 39.7
BWB-250P 272 8550 0.624 0
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Fig. 5 Decision rules for BWB-250C.

the BWB-450, being a point design, optimized without considera-
tion for commonality. Note that the point design results in a lighter
airframe because the commonality constraint placed on the BWB-
250C results in a weight penalty. Specifically, the BWB-250C uses
the same wing as the BWB-450 to save on developmentcost, but an
individually optimized design for the BWB-250 would not need as
much wing area.

Single Aircraft Valuation

The DP algorithm was applied for valuation of the BWB-250C
and resulted in a set of decision rules, which are shown in Fig. 5.
These decision rules represent the optimal decision strategy identi-
fied by the algorithm. For each control variable (in this case, there
is only one, the next period operating mode decision), the deci-
sion rules specify the optimal value to which the variable should be
set, as a function of time and of all of the state variables. In other
words, given how long the program has been ongoing, the operating
mode from last period, and the current market conditions (quan-
tity demanded), the decisionrule specifies what the operating mode
should be for the next period. Figure 5 shows, as a function of time,
the minimum value of the demand index for which it is optimal to
make certain program-relateddecisions,namely, wait, design (enter
mode 1 from mode 0), build (enter mode 13, 14, or 15 from mode 6,
9, or 12), switch from low- to medium-capacity production(enter 14
from 13), and switch from low- to high-capacity production (enter
15 from 13).

Figure 6 shows a simulation run, which represents a sample path
of demand through time, a scenario constructed using a random
number generatorto approximatethe stochasticbehaviorof demand.
Figure 6a shows the random evolution of annual quantity demanded
over time: This is a sample path of the underlying stochastic pro-
cess. Also shown is the optimizer’s real-time strategy in response to
the evolution of demand using the decision rules shown in Fig. 5.
Thus, at the beginning of the simulation, demand is at its baseline
static forecast quantity, as calculated by the revenue model. This
demand level, which happens to be 28 units per year, is insufficient
for the firm to commit to developing the BWB (according to the
optimal strategy). However, in year 3, demand increases as the re-
sult of a random fluctuation, and the choice is made to invest in
nonrecurringdevelopmentfor the aircraft. The investmentchoice is
made because the new level of demand is greater than the threshold
level corresponding to the design decision at time ¢ = 3 in the opti-
mizer’s solution. Recall that once the initial design operating mode
is entered, the firm is committed to the first phase of the devel-
opment process, until halfway through development, immediately
before tooling. In this simulation run, demand falls immediately
after design is started, but increases again when the halfway point
is reached. Development is, therefore, continued, until time t =9,
when the operating mode is 6 (end of development). At this point
in time, demand is low, and the productiondecision is deferred.

However, one year later, at time # = 10, demand increases past
the threshold value for the build decision, and productionis entered.
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Fig. 6 Simulationrun for BWB-250C: a) quantity demanded per year
and resulting choice of operating mode and b) associated cash flows.

Figure 6b shows the cash flows associated with the decisions made
each year. Years 2-8 demonstrate the familiar bell-curve shape of
a typical development effort. Year 10 shows why the optimizer
chooses to wait at all before going into production: The switching
cost to enter productionis on the order of $4 billion. This switching
cost is the algorithm’s way of handling the learning curve effect:
the $4 billion switching cost here is the present value of all of the
projected future costs in excess of long-run marginal cost for BWB
production.

Once productionis entered, after year 10, all units are produced
at their long-run marginal cost. (In reality, the $4 billion would
be distributed over the entire production run, with more weight on
the early years.) The cash flows from production, in years 11-30,
continue to fluctuate as a function of demand and gradually creep
upward with inflation. Return to Fig. 6a: The optimizer can be ob-
served to respond to demand spikes in year 13 and then 17 by mak-
ing incremental investmentsin tooling to expand the capacity of the
productionline, firstto amedium and then to a high level. In this sim-
ulation run, the high production capacity was put to good use only
in year 17 because demand never reached that level again. However,
the decision to enter high capacity production was optimal at that
time because the demand spike indicated a higher expected future
demand. The CPU time for this simulation run was approximately
0.01 s on a 700-MHz AMD Athlon processor. In comparison, the
stochastic optimization to determine the decisionrules took approx-
imately 690 s of CPU time.

The preceding simulation run is just one of millions of possible
paths that can be taken by demand through time, but it effectivelyil-
lustrates the decision-makingelement of the solution to the program
valuation problem. The actual expected program value correspond-
ing to the DP solution is computed as $2.26 billion. However, the
magnitude of this value depends strongly on the assumptionsused in
the underlying models and is not as important as the dynamics and
approachillustrated by the valuation process. To further interrogate
the value behavior of the system, one could conceive of using MCS
to run a series of simulations using the optimal decision rules, such
as the simulation shown in Fig. 6. If an appropriate discountrate is
chosen, the mean NPV calculated by MCS should be equal to the
expected program value computed by the DP algorithm. The choice
of discount rate along with the possible estimation and interpreta-
tion of variance results are important issues that are the subject of
ongoing research.
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Fig. 7 BWB-250C program value as a function of baseline demand.

Connection to NPV

There is one primary conceptual difference between the DP ap-
proach used in this work and traditional project valuation approach
of NPV: DP takes into account managerial flexibility, that is, deci-
sion making in real time. NPV analysis assumes a fixed schedule
of actions and cash flows, and uncertainty regarding the magnitude
of those cash flows is accounted for by appropriate selection of
a discount rate. However, there is no uncertainty regarding which
operating mode the firm is using at any time; these decisions are
made ex ante. Therefore, if the ability to make decisionsis removed
from the DP tool, it should reduce to a traditional NPV analysis. In
other words, the switching costs between operating modes must be
adjusted such that the optimizer has only one choice with a finite
switching cost for any given operating mode. Refer to Fig. 4: The
only finite cost path through the modes is now set as 0-1-2-3-10-
11-12-15. This assumes an irreversible commitment, as of time O,
to design, tooling, and high capacity production. Now, as the opti-
mizer solves the problem, it is forced to make the same decisions
regardless of the demand level. As aresult, it is possible to generate
negative program values, just as is it routine to find that a project
has a negative NPV.

Figure 7 shows program value for the single aircraft case as a
function of the initial annual demand forecast. This demand level is
a strong function of the characteristics of the aircraft, specifically,
the range and seat count, but is also dependent on the current con-
dition of the market and the resulting expectations and needs of the
airlines. Thus, in Fig. 7, the sensitivity of the program’s success to
the current condition of the market is considered. Demand is ex-
pressed as the number of aircraft per year that are demanded in year
1 of the analysis. This initial quantity is the starting point for the
evolution of demand according to a stochastic process over the time
horizon of the problem.

Figure 7 shows two plots of value on the same set of axes: dy-
namic programming and NPV. The former shows the output of the
algorithm as it finds the value of the program using DP to account
for managerial flexibility. The latter is the NPV case described ear-
lier, where flexibility is removed from the program. As the initial
demand forecastincreases, expected program value increases. If the
forecast is very small, the value of the program with no flexibility
is negative, that is, the aircraft is developed, the nonrecurring cost
is incurred, but few if any units are sold. However, the value with
flexibility for low demand indices is zero; if no sales are expected,
no investment is made in developing the aircraft.

As the demand index increases, the no-flexibility program value
quickly approaches value with flexibility. However, for small or
marginal demand index numbers, there is a significant difference
between the two valuations—one that may mean the difference be-
tween keeping a program and scrapping it. At the baseline initial
demand of 28 aircraft per year, the value with flexibility, $2.26B, is
almost seven times the value without flexibility, $325M.

Aircraft Family Valuation
Using the DP method, the three aircraft designs listed in Table 2
are evaluated in several different combinations to find program
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Table3 Key input parameters for all test cases

Parameter Value
Number of periods 30

Timestep per period 1 year
Risk-free rate r ¢ 5.5%
Annual aircraft price inflation 1.2%
Annual aircraft demand volatility 19.6%

Table 4 Intermediate results: cost and demand characteristics

for BWB family
Baseline quantity ~ Long-run marginal  Baseline price,
Design demanded, units/yr cost, $ millions $ millions
BWB-450 16.7 139.0 195.0
BWB-250C 27.6 93.8 116.1
BWB-250P 27.6 84.9 142.2

Table5 Final results: program value for BWB family

Program Value
BWB-450, $ billion 5.95
BWB-250C, $ billion 2.26
BWB-250P, $ billion 14.62
BWB-450 plus BWB-250C, $ billion 8.21
BWB-450 and BWB-250C, $ billion 8.95
Commonality premium, % 9

value. First, each of the designs is evaluated on an individual basis,
as though it is the only design option available to the firm. Then,
the BWB-450 and BWB-250C are evaluated simultaneously, to in-
vestigate any synergies that may exist as a result of commonality.
Finally, the BWB-450 and BWB-250P are also evaluated simulta-
neously. The key input parameters used for all test cases are listed
in Table 3.

The intermediateresults of the testruns described are summarized
in Table 4. These represent the primary outputs of the models de-
scribed in this paper: cost characteristicsand demand characteristics
based on a particular airframe and its performance. It can be seen
that there is greater annual demand for the smaller capacity aircraft
than for the larger BWB-450. Note that quantity demanded is mod-
eled as independentof operating characteristics;rather, the quantity
estimator considers only the size class of the aircraft. However, the
price estimator distinguishes between all three vehicles. The base-
line price is expectedly high for the BWB-450, as it is a much larger
aircraft. However, although the two smaller aircraft have identical
seatcounts,the BWB-250P is significantly higher priced. This effect
is due to its lighter weight, which results in significantly reduced
fuel burn and, therefore, a lower operating cost.

Predictably,long-run marginal cost (LRMC) scales with the vehi-
cles’ weight. For this example, the LRMC is defined as the marginal
cost of unit 100, produced without any commonality effects. Thus,
because the point-designed BWB-250P is lighter than the deriva-
tive BWB-250C, its long-runcostof productionis smaller. However,
commonality should result in a reduced development cost and a re-
duced learning effort for the BWB-250C. That is, the marginal cost
should reach LRMC faster.

Table 5 shows the final results of this example: the program values
resulting from the several different combinations of designs eval-
uated. The first result to consider is the extremely high program
value found for the BWB-250P. Although it is probably too high
to be realistic, it highlights the key design issues in this example:
A considerable sacrifice was made in the 250-passenger class air-
craft design to accommodate commonality. A modest increase in
empty weight translated to a medium increase in takeoff weight
(TOW), which translated to a significant difference in fuel burn and
operating cost and an even greater difference in market price. The
sensitivity of price to operating cost is difficult to observe in prac-
tice, and these results suggest that it is overestimated by this pricing

model. However, this snowballing phenomenonunderscoresthe im-
portance of considering the downstream effects of a design change
on program value.

The other side of the coin is the value benefit gained by common-
ality: a savings in development and manufacturing costs. This is
reflected in the existence of a commonality premium, albeit a mod-
est one in this example. The value of the program with both designs
(BWB-450 and BWB-250C) considered simultaneously is greater
than the sum of the valuesof theirindividualprograms. The program
value of the BWB-450 and BWB-250P considered simultaneously
is not shown, inasmuch as it would be identical to the sum of their
individual values, because there is no interactionbetween those two
aircraft. It would, however, be interesting to consider interactions
in program value arising not from physical commonality but from
market effects, for example, complements or substitutes.

Within the framework of flexibility and decision making used by
the DP algorithm, the choice to use commonality may be framed
using real options. When the firm developsthe BWB-450, it acquires
an option to developthe BWB-250C for areduced costand ata time
of its choosing. The penalty paid, that is, the price of the option, is
the present value of additional profits the firm would receive had
it instead developed the BWB-250P as a point design to maximize
its performance. From a program flexibility standpoint, the firm
still has an option to develop a second aircraft even if there is no
commonality. In such a case, the exercise price of the option is
simply higher by the amount of cost savings from commonality.

The conclusionof thisexample, therefore,is not that commonality
is not justifiable. Rather, for commonality to be justifiable, the ben-
efits must outweigh the costs. The benefits include the development
and manufacturingcost savings gained if the derivative aircraftis in
fact built. The costs include any additional design or manufacturing
costs as a result of commonality, but most important, any result-
ing performance penalty on the aircraft. This performance penalty
must be translated into an opportunity cost: the revenues foregone
by not selling a higher-performanceaircraft. The set of aircraft de-
signs used in this example, with the baseline parameters specified,
did not indicate a higher program value for commonality because
the opportunity cost of lost revenues was very high.

Conclusions

An aircraft program valuation tool is presented, which combines
performance, cost, and revenue models and a DP algorithm to mea-
sure the value of a set of aircraft designs to a firm. The value mea-
surementis not based on any technical characteristicsper se, or any
static forecastof costand revenue, but on an analysisof an uncertain
future, assuming that value-maximizingdecisionsare made by man-
agement as time goes on and uncertainty is resolved. The approach,
which parallels real options analysis, provides additional insight
over traditional valuation techniques by its attempt to quantify the
value created by flexibility. Flexibility is modeled and addressed by
the DP operating modes formulation, which is an explicit method
of formalizing and discretizing the decision-making process that
is continuously ongoing for any project at any firm. Two of the
method’s distinguishing features are the combination of economic
analysis with engineering analysis and the explicit considerationof
management’s ability to make and defer decisions in real time in
response to unfolding market conditions.

One important question that has not been addressed here is the
impact on the results of uncertainty in the cost and performance es-
timates. Althoughitis possibleto think of adding cost or one perfor-
mance metric as an additionalstochastic variable, the computational
demands of the DP algorithm make this approach very challenging,
if not impossible. One could conceive of a two-step process, where
the DP approachis used to first determine a set of decision rules and
then a more traditional MCS is subsequently applied to determine
the effect of additional uncertainty on the valuation results. These
extensions are the subject of ongoing research.
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