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Aquantitativetool ispresented toperform program-levelvaluationofcommercialaircraft designs.Thealgorithm
used expands on traditional net present value methods through the explicit consideration of market uncertainty
and the ability of the � rm to react to such uncertainty through real-time decision making throughout the course of
the aircraft program. The algorithm links three separate models, performance, cost, and revenue, into a system-
level analysis by viewing the � rm as a decision-making agent facing continuous choices between several different
operating modes. An optimization problem is set up and solved using a dynamic programming approach to � nd a
set of operating mode decisions that maximizes the � rm’s expected value from the aircraft project. The result is a
quanti� cation of value that can be used to make program-level design trades and to gain insight into the effects of
uncertainty on a particular aircraft design. Examples are drawn from the blended-wing–body aircraft concept to
demonstrate the operation of the program valuation tool.

Introduction

T RADITIONAL methodsfor creatinga commercialaircraftpro-
gram typicallyconsistof at least two distinct designefforts, the

engineeringdevelopmentof the airframe itself and the strategic de-
velopment of the aircraft program. The latter addresses questions
such as which aircraft designs to invest in (productmix), how much
productionto plan for (sales volume), what pricesandcosts to expect
(pro� tability), and how to plan for unforeseenmarket developments
(� exibility).

In the past, the two elements of program design, engineering de-
velopment and strategic development,have often been executed en-
tirely separately from each other. Engineering and � nance are often
handledbydifferentgroupsandatdifferenttimes.Whenengineering
and � nance are uncoupled, a � rm runs the risk of overlooking im-
portant interactionsbetween the two. A designsystem that performs
engineering and � nancial analysis simultaneouslymay improve on
the ef� ciency and effectivenessof the traditional methods.

Numerous advances have been made in the application of mul-
tidisciplinary techniques to the engineering facet of aircraft devel-
opment. The � eld of multidisciplinarydesign optimization (MDO)
combines engineeringdisciplines, such as aerodynamics,structural
dynamics, and controls, to provide a design framework that “coher-
ently exploits the synergism of mutually interacting phenomena.”1

MDO has been implemented across a wide range of applications
for aircraft design.1;2 Whereas multidisciplinary analysis and opti-
mization has seen extensive use for technical design problems in
aerospace, there has been less emphasis on applying these tech-
niques to larger scope system design. Frameworks have been de-
veloped that include both engineeringand cost elements for aircraft
design3;4 and aircraft engine design.5;6 A common feature of those
frameworks is that they use Monte Carlo simulation (MCS) to ex-
plore the impact of uncertainty on system design. Whereas MCS
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providesa means to perform probabilisticanalysis of a series of de-
signs, it doesnot rigorouslyaddressthe issueof real-timemanagerial
decision making. Tools such as real options and game theory have
been suggested as a means to incorporate decision making (for ex-
ample, in Ref. 5)butdonot appearto havebeenimplementedas such.

The objective of this paper is to couple engineeringand � nancial
design, or, phrased differently, product and program design, to ex-
tract maximum value from the commercial aircraft design process.
A multidisciplinary analysis is synthesized by creating three free-
standing quantitative models, performance, cost, and revenue, and
linking them to compute a measure of program value. Although the
models are not high � delity, their purposes are to establish a useful
foundation for further study and to gain insight into the interactions
between technical and program design.

To link the threemodels into an integratedmultidisciplinaryanal-
ysis tool, considerationmust be given to the program structure, that
is, the decision structure affecting product mix, design and produc-
tion plans, and pricing strategy.With this element in place, the stage
is set for a quantitativevaluationof the program,which enablesboth
technical and program-based trade studies to search for an optimal
system design. This conceptual process is shown in Fig. 1. In this
work, the valuation will be performed using a dynamic program-
ming (DP) framework. The DP approach provides a quantitative
measure of the program’s net present value (NPV), while explicitly
accounting for the effects of uncertainty and program � exibility by
modeling the program as a series of decisions. This approach has
been explored in � nance literature as real options, for example, in
Refs. 7 and 8. The algorithm results in a series of decision rules,
which de� ne the optimal decision strategy as a function of evolv-
ing and uncertain market conditions.This information could not be
obtained using a MCS approach.

The next section summarizes the multidisciplinary approach
taken to accomplish the objective by describing the three distinct
models used to solve the problem: performance, cost, and revenue
estimation.The following section describes the DP approach to link
these models into one program value analysis tool, and two exam-
ples are given to demonstrate the operation of the valuation tool for
analysisof a blended-wing–body(BWB)familyof aircraft.9 Finally,
the results are discussed, and conclusions are drawn.

Performance Model
The performance estimator is based on the WingMOD aircraft

design tool. WingMOD is an MDO code that optimizes aircraft
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Table 1 WingMOD outputs used as an input to the value framework

Output Description

Maximum TOW Gross vehicle weight at start of maximum
range mission.

Design landing Gross vehicle weight at end of maximum
weight range mission.

Design range Maximum range, speci� ed as a constraint.
Seats Number of passenger seats, speci� ed

as a constraint.
Weight breakdown Estimates of weight for each primary component

of the aircraft, summing to operating
empty weight.

Structure: fuselage Structural elements (spars, ribs, skin, etc.).
bays, inner wing, Structural weight broken down into a set of large
outer wing, etc. parts, which together comprise the airframe.

Propulsion Engines, nacelles, and supporting equipment.
Systems Onboard systems, for example,

avionics, fuel, hydraulics.
Payloads Seats, bag racks, cargo equipment, etc.

Fig. 1 Value-based design process.

wings and horizontal tails subject to a wide array of practical
constraints.10;11 WingMOD uses low-� delity analyses to analyze
an aircraft quickly in over 20 design conditions that are needed
to address issues from performance, aerodynamics, loads, weights,
balance, stability, and control. The low computational cost of the
simple analyses allows the examination of all of these issues in an
optimization with over 100 design variables while achieving rea-
sonable computation time.

As detailed in Ref. 10, the WingMOD optimization framework
takes a set of constraints representingmission requirements (range,
payload capacity, cruise speed, approach speed, balance, etc.) and
� nds an optimal aerodynamicand structuralcon� guration such that
the resultingaircraft satis� es the constraints.In the valuationframe-
work described here, the performance characteristicsof the aircraft
were assumed to be � xed, that is, WingMOD was run a priori to de-
termine the minimum takeoff weight aircraft. Certain properties of
the resulting design were then used as input to the value framework.
These WingMOD outputs are summarized in Table 1.

Cost Model
The cost model has two components: manufacturing cost and

developmentcost.Although detailedcost models are availablepub-
licly,suchas theAircraftLife CycleCostAnalysis(ALCCA)code,12

for this research, a simple cost model was developed.An important
attributeof the cost model is that it should capture the effect of com-
monality between several different airframes; in general, both the

development cost and manufacturingcost of a new aircraft will de-
pend on the aircraft’s technicalparameters and the technicalparam-
eters of other aircraft types that have alreadybeen designed or built.

The cost models used for this research are based on the decom-
position of the aircraft into a set of components. A simple cost per
pound estimation is applied at a component level and further mod-
i� ed with learning curve effects. The cost model parameters were
derived from publicly available data and are published in detail in
Refs. 13 and 14. A more detailed cost model could be linked to the
valuation framework, provided commonality effects are captured.

Revenue Model
Given an aircraft design, a production rate, and a time horizon,

the revenue model must provide the following three outputs: po-
tential revenue cash� ow for the current time period, the expected
value of future revenue cash� ows, and a measure of the uncertainty
of the future cash� ows. Furthermore, the model must demonstrate
realistic sensitivities to changes in aircraft performance, for exam-
ple, reduction in fuel burn, changes in the aircraft target market,
for example, 100 vs 250 passengers, and changes in aircraft price
charged, that is, demand price elasticity.To achieve this functional-
ity, the model development is broken up into a static analysis and a
dynamic analysis.

Static Demand Analysis
The static analysis estimates a baseline price and corresponding

quantitydemanded,alongwith an expecteddemandgrowth rateover
the speci� ed time horizon.Price is modeled as a function of several
variables representing an aircraft’s value to its operator, an airline.
Several sets of variables and several functional forms were tested
by applying the price model to 23 existingaircraft:11 narrowbodies
and 12 widebodies. The outputs generated by the price model were
compared to best estimates for the actual sale prices for each of the
aircraft, compiled from two sources.15;16 For each functional form
tested, the function parameters were adjusted to minimize the mean
squared error of estimated price.

The selected functions for narrowbody(NB) and widebody(WB)
aircraft are shown next. Note that speed (or Mach number) is not
one of the variables. No signi� cant statistical relationship between
price and speed was found in the range of available data. Thus,
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where Seats is the passenger capacity, Range is the design range,
and Seats ref, Range ref, and Price ref are reference values of 419
seats, 8810 n miles, and $148.7 million, respectively. 1(LC) is an
increment in life cycle (LC) cost due to off-nominal cash airplane
related operatingcosts (CAROC), which are equal to total operating
costs less ownership costs. This term refers to the additional cost
the operator incurs if the aircraft’s CAROC is greater than the in-
dustry average CAROC for an aircraft of its size. It is a function of
the difference between the aircraft’s CAROC and the least-squares
estimate for the CAROC of an aircraft with the same capacity. The
pricesgeneratedby the precedingfunctionsare compared to the best
estimates of the actual aircraft prices in Fig. 2.

Whereas the aircraft seat count and range are providedby the out-
puts of the performancemodel, its CAROC must be estimated sepa-
rately. For the example used, the assumption is made that fuel costs



2006 MARKISH AND WILLCOX

a)

b)

Fig. 2 Price model results: a) narrowbodies and b) widebodies.

Fig. 3 Forecasted deliveries through 2019, 20-year gross demand.

for a reference mission (3000 n mile) represent 20% of CAROC.
The � gure of 20% is based on empirical data for several existing
aircraft. Fuel burn is calculated using the Breguet range equation,
and a fuel price of $0.65 per gallon is used.

Quantity data are based on three distinct forecasts of quantities
of aircraft to be delivered from 2000 through 2019 as released by
The Boeing Company,17 Airbus,18 and the Airline Monitor.19 Each
forecast has a different set of aircraft categorieswhich comprise the
global airline � eet. All three forecastswere recast into a single, con-
sistent set of aircraft categories based on aircraft class (narrowbody
or widebody) and seat count. Forecasted deliveries are assumed
equivalent with quantities demanded at current market prices. The
results are shown in Fig. 3. Depending on seat category, there is
considerablevariance between the three forecasts. This re� ects dif-
ferencesin the forecasters’assumptions,methodology,and, to some
extent,corporatestrategy.Furthermore,thehighvariancere� ects the
high degree of uncertainty regarding future revenue cash � ows.

For a given aircraft design, the quantity model proceeds as fol-
lows. Assign a given aircraft to a seat category; compute a 20-year
gross demand for that category as the mean of the three forecasts;

assume a market share in that category; compute the 20-year quan-
tity demanded as the market share multiplied by the 20-year gross
demand; and compute the current annual quantity demandedby ap-
plying the expected annual demand growth rate. If several designs
are considered for production simultaneously, fractions of seat cat-
egory demands are assigned to each design, such that total quantity
demanded will not exceed the product of market share and 20-year
gross demand.

Dynamic Demand Analysis
The dynamic analysis aims to quantify the stochastic behavior

of the market for commercial aircraft. It is observed that quantities
of aircraft purchased � uctuate signi� cantly from year to year and
exhibit some cyclicalproperties.Thus, given a forecast for year 0, it
is impossible to predict with certainty what the quantity of aircraft
demanded will be in year 10. However, based on historical data,
some representativecharacteristicswere foundto describehistorical
aircraft demand levels as geometric Brownian motions, not unlike
stockprices.Therefore,the dynamicanalysisuses an averageannual
growth rate of 4.43% and an average annual volatility of 45.57%
for typical demand evolution patterns for widebody aircraft.

Dynamic Programming Formulation
The basic problem to be solved may be broken up into three

parts: endogenous variables, those that are internal to the aircraft
development process and may be controlled; exogenous variables,
those that are external to the aircraft development process and may
not be controlled; and a statement of the problem objective.

The endogenousvariablesconstitutea set (or portfolio) of aircraft
designs, any of which the producing � rm may choose to develop
and bring to market. To bring a concept to market, the � rm must go
throughseveralphases:detaildesign,toolingandcapitalinvestment,
testing,certi� cation,and� nallyproduction.Eachphaseentailssome
required expenditure of time and money, and the � rm may decide
when to execute each phase. Each of the aircraft designs is de� ned
by a set of component parts, for example, inner wing, outer wing,
fuselage bay, etc., some of which may be common across several
aircraft.

Given that an aircraftdesignis in production,theevolutionsofsale
price and quantity demanded are unaffected by any decisions made
by the � rm and are, thus, exogenousvariables.Sale price evolvesac-
cordingto a steadygrowth rate, whereasquantitydemandedevolves
as a stochasticprocess,characterizedby parameterssuch as drift rate
and volatility.Each period that an aircraftdesign is in production,as
many units are built and sold as are demanded, up to the maximum
capacity of the plant.

Given the preceding endogenous and exogenous variables, the
objective is to � nd a set of optimal decision rules governing which
aircraft to design,which aircraft to produce, and when, as a function
of the demand level and the aircraft built to date at any given time.
Achieving this goal will necessarilyyield the overall programvalue
because program value is the objective function used to � nd the
optimal decision rules.

General Theory
A stochasticDP problem may, in general, be framed in � ve parts:
1) State variables continuouslyevolve and completely de� ne the

problem at any point in time.
2) Control variables are set at any point in time by the decision

maker and generally impact the evolution of the state variables.
3) Randomness is when one or more of the state variables is

subject to random movements, and as such, involves a stochastic
process.

4) The pro� t function is de� ned as follows. The goal of the DP
method is to maximize some objective function, in this case the
program value. The value is, in general, a function of certain prof-
its incurred every period. These pro� ts are functions of the state
variables.

5) Dynamics representthe set of rules that govern the evolutionof
the state variables, including the effects of randomness, the effects
of control variables, and any other relationships.
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The problem is further de� ned by a time horizon (which may
generally be � nite or in� nite) and a sequence of time periods of
length1t , which togethercomprise the time horizon.The objective,
then, is to � nd the optimal vector of control variables as a function
of time and state, such that the total value at the initial time is
maximized. Equivalently, the objective may be stated recursively,
as an expression for the value at any time t as

Ft .st / D max
u t

f¼t .st ; ut / C [1=.1 C r /]Et [Ft C 1.st C 1/]g (3)

where Ft .st / is the value (objective function) at time t and state
vector st , ¼t is the pro� t in time period t as a function of the state
vector st and the control vector ut , r is some appropriate discount
rate, and Et is the expectation operator, providing in this case the
expectedvalue of F at time t C 1, given the state st and control ut at
time t . Note that the expectationoperationfor next period is affected
by the control decision and the state in this period.

Equation (3) is known as the Bellman equation and is based on
Bellman’s principle of optimality: “An optimal policy has the prop-
erty that, whatever the initial action, the remaining choices consti-
tute an optimal policy with respect to the subproblem starting at
the state that results from the initial actions” (see Ref. 7). In other
words, given that the optimal value problem is solved for time t C 1
and onward, the action (choice of u) maximizing the sum of this
period’s pro� t � ows and the expected future value is also the opti-
mal action maximizing value for the entire problem for time t and
onward.

The Bellman equation can, therefore, be solved recursively or,
for a � nite time horizon, iteratively. For a time horizon of T , this
is done by � rst considering the end of the horizon, at time tT . At
this point, there are no future states and no future expected value of
F . Therefore, the optimal control decisions uT given the � nal state
sT are readily found. This process is repeated for all possible � nal
values of the state vector sT . Next, it is possible to take one step
backward in time, to t D tT ¡ 1 . Now, Eq. (3) may be applied to � nd
the optimal control decisions uT ¡ 1 because the expectation term
E[: : : ], is easily calculated as the probability-weightedaverage of
the possible future values of FT . Again, the optimal control values
uT ¡ 1, are found for each possible value of sT ¡ 1. At this point, the
procedure is repeatedby taking another backward timestep to T ¡ 2
and continuingto iterateuntil the initial time, t D 0, is reached.Now,
F0 is known for all possible initial values of the state s0, and it is the
optimal solution value.

Speci� c Application: Operating Modes
It is possible to extend the general DP framework presented to

a speci� c application useful for the valuation of projects. The ap-
plication is centered on the concept of operating modes, and has
been demonstratedby several authors to be useful in modeling � ex-
ible manufacturing systems.8;20 Much of this description is based
on their work.

Consider a hypothetical factory, which at the beginning of any
time period may choose to produce output A or output B. Let the
prices for which it can sell each of the outputs be differentfunctions
of a single random variable x , so that it may be more pro� table in
some situationsto produceone output than the other. However, each
time the factory switches production from A to B, or vice versa,
a switching cost is incurred. Thus, it may not always be optimal
simply to produce whichever output yields the higher pro� t � ow in
the current period. If there is a high probability of a switch back
to the other output in the future, it may be preferable to choose the
output with the lower pro� t this period.

This example lends itself well to the DP formulation. In this case,
the controlvariableu t is the choice of output,or operatingmode, for
the period beginning at time t : A or B. The state vector st consists
of two elements, the random variable x and the operating mode
from last period m t . The operating mode m will have one of two
possible values, for example, 0 or 1, representing output A and B.
Depending on the value of m t , the control variable choice u t may
result in payment of a switching cost. Speci� cally, the Bellman

equation may be rewritten for this example as

Ft .xt ; m t / D max
u t

f¼t .xt ; u t / ¡ I .m t ; ut /

C [1=.1 C r/]Et [Ft C 1.xt C 1; u t /]g (4)

Note that the state vector s has been separated into its two compo-
nents, the random variable x and last period’s operating mode m.
Here, the pro� t function term from Eq. (3) has been replaced by the
difference between a pro� t � ow and I .m t ; u t /, the switching cost
from mode m to mode u. This will equal zero if m t D u t and there
is in fact no switch made and will be nonzero otherwise. Note also
that the future value Ft C 1 (for which the expectation is found) is a
function of the future random variable xt C 1 and of the current con-
trol decision ut because u t will become the operating mode from
last period m t C 1 at time t C 1. In other words, m t C 1 D u t because
as soon as the control decision u t is made, the mode in which next
period will be entered, m t C 1, is set. As before, this equation can be
solved iteratively by starting at the � nal time period and working
backward.

One additional point regarding Eq. (4) bears discussion: the se-
lection of an appropriatediscount rate r . This is a nontrivial task; in
fact, the selection of a discount rate is traditionally one of the most
dif� cult and sensitive steps in capital budgeting. For an in-depth
discussion of discounting as it applies to this valuation technique,
refer to Ref. 13.

Applying DP to the Aircraft Design Problem
The described DP approach is adapted here to solve the problem

of optimal decision making in managing an aircraft program. The
aircraft program valuation algorithm is brie� y overviewed here in
the context of the � ve parts that frame a DP problem:

1) For each new aircraft design being simultaneouslyconsidered,
two statevariablesexist:quantitydemanded,whichevolvesstochas-
tically, and the “operating mode from last period” (as introduced
earlier) for that aircraft.

2) For each aircraft design, one control variable exists: the choice
of operating mode for the current period.

3) For each aircraft design, one state variable exists with random
characteristics:thequantitydemanded.It evolvesfroma giveninitial
value as a stochastic process.

4)The pro� t functionduringeachperiodis the sum ofpro� ts asso-
ciated with the operatingmodes for each aircraft, less any switching
costs incurred during that period. For production operating modes,
the pro� ts are simply revenues less recurring costs; however, other
modes exist for which the pro� t functions represent nonrecurring
costs.

5) There are two typesof state variablesin this formulation:quan-
tity demanded,which evolves as a stochastic process, and operating
mode, which evolves as dictated by the control variables (operating
mode decisions). This de� nes the dynamics.

Given this framework,it is useful to considerthe impact of various
parameterson computationtime. To solve the problemiterativelyas
just described, the algorithm must evaluate each possible combina-
tion of control variables for each possible state vector, and it must
repeat this process for each time step in the problem’s time horizon,
starting at the � nal time t D tT and ending at t D 0. Therefore, at the
most general level, computation time scales linearly with the time
horizon and exponentially with the number of state variables. The
time horizon, as de� ned in this application, is 30 years, which is a
typicalvaluationtime frame for an aircraftprogram.For purposesof
simplicity and computation time constraints, the time period length
1t was selected to be one year. For the same purposes, the max-
imum number of aircraft designs to be simultaneously considered
by the algorithm was set to two.

Connection to Operating Modes
Whereas the operating modes introduced earlier were simply

modes of production, this formulation extends the operating mode
framework to represent each phase of the life cycle of an aircraft
program. The purpose of this extension is to model the signi� cant
time and investmentrequired to developan aircraft,beforeany sales
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Fig. 4 Operating mode framework for a single aircraft.

are made. Therefore, the nonrecurringdevelopmentprocess, which
may last as many as six years, is representedas a chain of operating
modes. Clearly, none of these modes entails a positive pro� t � ow.
Rather, each has some negative pro� t associatedwith the nonrecur-
ring investment for that particularphase of the aircraft development
cycle.The only incentivefor the � rm, and the optimizer, to enter one
of thesemodes is the opportunityit creates to switch to the following
developmentmode in the followingperiod,and, so on, until the pro-
ductionmode is reached.A graphicalrepresentationof theoperating
modes for a single aircraft design is shown in Fig. 4. The diagram
is similar in concept to a Markov chain, where the arrows represent
possible transitions between modes. In fact, the arrows connecting
the modes represent switching costs that are � nite; if two modes are
not connected by an arrow, the associated switching cost is in� nite.

Mode 0 represents the initial conditions: the � rm is waiting to
invest.Modes1–3 representroughlythe � rst half of thedevelopment
effort, primarily detailed design. Note that several operating modes
are shaded. The shading indicates an in� nite cost not to switch
to a different mode. In other words, it is impossible to remain in a
shaded mode for more than one period.Thus, once the � rm commits
to a detail design effort, it is assumed impractical to stop halfway
through. However, it is possible to stop before the second half of
development, here, mostly tooling and capital investment, begins.
Once this development stage is initiated, a capacity choice must
be made: a low, medium or high capacity production line. This
determines the maximum demand level that may be satis� ed with
sales every period. Once the capacity choice is made, the � rm must
continue to switch modes annually until it reachesmode 6, 9, or 12,
at which point it is ready to enter production.Recall that each time
period has a duration of one year; therefore, if the � rm does not
wait midway through the development process, an aircraft design
takes six years to bring to market. (The six-year baseline duration
may be altered, as discussed later.) The production modes are 13,
14, and 15, corresponding to a low-, medium-, and high-capacity
line. Note that each mode will produce exactly as many units as
demandedeach period, up to a maximum that dependson the mode.
The actual values for maximum capacity are parameters and easily
changed. While in production (or waiting to enter production), it is
possible to invest in additional tooling and expand the capacity of
the production line. However, it is assumed impossible to reduce
capacity, that is, the scrappingof tools has little to no salvagevalue,
due to the high speci� city of the tools to their product. Finally, an
abandonment mode exists to model any salvage value associated
with permanently shutting down the program. If the salvage value
is positive,the switchingcosts to entermode 16 will be negative.The
determination of switching costs is based on the adaptation of the
development cost and manufacturing cost models to the operating
mode framework.

The development cost model generates a time pro� le of the non-
recurring expenses associated with the developmentof a given new
aircraft design. Because of the inclusion of two aircraft designs in
the valuation algorithm, the switching cost calculation proceeds as
follows for each of the two aircraft designs. The sequential switch-
ing costs from mode 0 through mode 9 (medium production rate)
are calculatedby discretizing the nonrecurringcost time pro� le into
one-year segments. This discretization is done as a step function
of the operating mode of the other aircraft design: If the other air-
craft has not yet been fully developed, the baseline nonrecurring
cost pro� le is used. However, if the other aircraft has already been
fully developed, the nonrecurringcost pro� le is calculatedwith any
commonality effects included. Speci� cally, if the aircraft share any
common components, the development cost and time are both re-
duced to re� ect the savings resulting from a preexisting design. If
the commonality effects are signi� cant enough to result in a cost
pro� le shorter than six years, one or more development modes
are skipped. Finally, once medium capacity development process
switching costs have been de� ned, the switching costs correspond-
ing to the tooling/capital investmentpart of the developmentprocess
are scaled by a low-capacity and a high-capacity scaling factor to
� nd the switchingcosts correspondingto the low- and high-capacity
decisions.

As with development cost, to account for two aircraft designs
present in the valuation, the switching costs associated with man-
ufacturing are found for each aircraft as functions of the operating
mode of the other aircraft. Switching costs associated with manu-
facturing have two components. The � rst component is switching
from a ready-to-producemode (6, 9, or 12) into the corresponding
production mode (13, 14, or 15, respectively). The second compo-
nent is switching from one productionline capacity to another.Both
of these components are sometimes involved in a single switch, for
example, 6 to 14 or 6 to 15; however, they are calculated separately
and simply added together as necessary.

The costs of switching production line capacity are calculated as
the product of a scaling factor (which is greater than one and repre-
sents the additionalcosts incurred due to disruptionof a preexisting
production line) and the cumulative difference in cash out� ows be-
tween the two developmentprocessesassociatedwith theproduction
capacities in question. For example, the cost to switch from low to
medium capacity (involved in either a 6 to 14 switch or a 13 to
14 switch) equals the difference in total development cost between
low-capacity development (3, 4, 5, and 6) and medium-capacity
development (3, 7, 8, and 9).

The other componentof manufacturing-relatedswitching costs is
the initial switch into one of the three productionmodes (13, 14, or
15). For any given aircraft, the unit cost will generally fall as pro-
duction starts and continues to fall due to the learning curve effect.
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Eventually, it is reasonable to assume that unit cost approaches an
asymptote and stabilizesat the long-runmarginal cost. To model the
effect of the learning curve exactly with DP would be impossible,
because knowledge of unit cost requires a knowledge of how many
units have been built to date. This information is not part of the
state vector. One possibility would be to include units built to date
as an additional state variable, but because computationtime grows
exponentially with the number of state variables, as noted earlier,
the exercise would be impractical for even two aircraft. Therefore,
once in a production mode, all aircraft are assumed to be produced
at their long-run marginal cost.

To account for this discrepancy, the switching cost to enter pro-
duction is set equal to the total extra cost expected to be incurred
during the production run of the aircraft over and above the long-
run marginal cost. Because this extra cost will be incurredgradually
and with certainty over time, the risk-free rate is used to � nd the
expected present value of these cash � ows, assuming a production
rate equal to baseline demand.

The entiredescribedprocess,for both developmentcost and man-
ufacturing cost, is conducted for both aircraft designs, resulting in
a set of switching costs for each that is a function of the operat-
ing mode of the other. To use the symbology introducedearlier, the
process � nds the switching costs I .m i ; ui jm j / for each aircraft i ,
where the other aircraft is j , for each prior operating mode m i and
control variable decision ui . Then, the switching cost from any op-
erating mode vector [m1 , m2] to [u1, u2] is simply equal to the sum
of I .m1; u1jm2/ and I .m2; u2jm1/. This set of data is stored in the
switching cost matrix.

Stochastic Process Dynamics
A crucial componentof the algorithm is the model describingthe

nature of the unpredictablebehaviorof the stochasticprocess repre-
senting the developmentof the market for commercial aircraft.The
annual quantity demanded is represented as a stochastic variable
that evolves according to a random walk, modeled as a binomial
tree process. Each time period, the variable may either increase or
decreaseby a speci� ed amountwith a certainassociatedprobability.
Thus, if there are two such variables, representing the evolution of
the market for two distinct aircraft, there are four possibleoutcomes
each time period.A transitionprobabilitymatrix is constructedlink-
ing possible initial states to � nal states in this framework. These
transition probabilities are used to � nd the expected future value
of the project as a probability-weightedaverage, expressed as the
expectation term E[: : : ] in Eq. (4).

Examples
The examples presentedhere illustrate the mechanicsof the algo-

rithm and highlight its distinguishing features. The � rst considers
designof a singleaircraftand presentstwo illustrations:a simulation
run to demonstrate the decision rules arrived at by the optimizer and
a connection to the NPV technique. The second example considers
the design of a family of two aircraft sharing common components
and demonstrates how the tool can be used to determine the value
of commonality.

Three different aircraft designs are used, all based upon the BWB
concept. Table 2 summarizes the key characteristicsof the designs.
The example designs are purely hypotheticaland signi� cantly sim-
pli� ed. They do not represent actual current BWB con� gurations.
Three different airframes are possible: one large, 747-class vehicle
(BWB-450), and two smaller, 250-passengerclass designs. One of
the smaller designs, the BWB-250C, shares 39.7% of its parts, by
weight, with the BWB-450. The other has no commonality with

Table 2 BWB example key characteristics

Seat Range, Gross TOW Commonality
Design count n mile (normalized) (by weight), %

BWB-450 475 8550 1 N/A
BWB-250C 272 8550 0.756 39.7
BWB-250P 272 8550 0.624 0

Fig. 5 Decision rules for BWB-250C.

the BWB-450, being a point design, optimized without considera-
tion for commonality. Note that the point design results in a lighter
airframe because the commonality constraint placed on the BWB-
250C results in a weight penalty. Speci� cally, the BWB-250C uses
the same wing as the BWB-450 to save on developmentcost, but an
individually optimized design for the BWB-250 would not need as
much wing area.

Single Aircraft Valuation
The DP algorithm was applied for valuation of the BWB-250C

and resulted in a set of decision rules, which are shown in Fig. 5.
These decision rules represent the optimal decision strategy identi-
� ed by the algorithm. For each control variable (in this case, there
is only one, the next period operating mode decision), the deci-
sion rules specify the optimal value to which the variable should be
set, as a function of time and of all of the state variables. In other
words, given how long the programhas been ongoing,the operating
mode from last period, and the current market conditions (quan-
tity demanded), the decision rule speci� es what the operatingmode
should be for the next period. Figure 5 shows, as a function of time,
the minimum value of the demand index for which it is optimal to
make certain program-relateddecisions,namely,wait, design (enter
mode 1 from mode 0), build (enter mode 13, 14, or 15 from mode 6,
9, or 12), switch from low- to medium-capacityproduction(enter 14
from 13), and switch from low- to high-capacity production (enter
15 from 13).

Figure 6 shows a simulation run, which represents a sample path
of demand through time, a scenario constructed using a random
numbergeneratorto approximatethe stochasticbehaviorof demand.
Figure 6a shows the randomevolutionof annualquantitydemanded
over time: This is a sample path of the underlying stochastic pro-
cess. Also shown is the optimizer’s real-time strategy in response to
the evolution of demand using the decision rules shown in Fig. 5.
Thus, at the beginning of the simulation, demand is at its baseline
static forecast quantity, as calculated by the revenue model. This
demand level, which happens to be 28 units per year, is insuf� cient
for the � rm to commit to developing the BWB (according to the
optimal strategy). However, in year 3, demand increases as the re-
sult of a random � uctuation, and the choice is made to invest in
nonrecurringdevelopmentfor the aircraft.The investmentchoice is
made because the new level of demand is greater than the threshold
level corresponding to the design decision at time t D 3 in the opti-
mizer’s solution. Recall that once the initial design operating mode
is entered, the � rm is committed to the � rst phase of the devel-
opment process, until halfway through development, immediately
before tooling. In this simulation run, demand falls immediately
after design is started, but increases again when the halfway point
is reached. Development is, therefore, continued, until time t D 9,
when the operating mode is 6 (end of development). At this point
in time, demand is low, and the production decision is deferred.

However, one year later, at time t D 10, demand increases past
the thresholdvalue for the build decision, and productionis entered.
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a)

b)

Fig. 6 Simulationrun for BWB-250C: a) quantity demanded per year
and resulting choice of operating mode and b) associated cash � ows.

Figure 6b shows the cash � ows associated with the decisions made
each year. Years 2–8 demonstrate the familiar bell-curve shape of
a typical development effort. Year 10 shows why the optimizer
chooses to wait at all before going into production: The switching
cost to enter productionis on the order of $4 billion. This switching
cost is the algorithm’s way of handling the learning curve effect:
the $4 billion switching cost here is the present value of all of the
projected future costs in excess of long-run marginal cost for BWB
production.

Once production is entered, after year 10, all units are produced
at their long-run marginal cost. (In reality, the $4 billion would
be distributed over the entire production run, with more weight on
the early years.) The cash � ows from production, in years 11–30,
continue to � uctuate as a function of demand and gradually creep
upward with in� ation. Return to Fig. 6a: The optimizer can be ob-
served to respond to demand spikes in year 13 and then 17 by mak-
ing incremental investments in tooling to expand the capacityof the
productionline, � rst to a mediumand then to a high level. In this sim-
ulation run, the high production capacity was put to good use only
in year 17 becausedemandnever reachedthat level again.However,
the decision to enter high capacity production was optimal at that
time because the demand spike indicated a higher expected future
demand. The CPU time for this simulation run was approximately
0.01 s on a 700-MHz AMD Athlon processor. In comparison, the
stochasticoptimizationto determine the decisionrules took approx-
imately 690 s of CPU time.

The preceding simulation run is just one of millions of possible
paths that can be taken by demand through time, but it effectivelyil-
lustrates the decision-makingelement of the solution to the program
valuation problem. The actual expected program value correspond-
ing to the DP solution is computed as $2.26 billion. However, the
magnitudeof this valuedependsstronglyon the assumptionsused in
the underlying models and is not as important as the dynamics and
approach illustratedby the valuation process.To further interrogate
the value behavior of the system, one could conceive of using MCS
to run a series of simulations using the optimal decision rules, such
as the simulation shown in Fig. 6. If an appropriate discount rate is
chosen, the mean NPV calculated by MCS should be equal to the
expectedprogramvalue computedby the DP algorithm.The choice
of discount rate along with the possible estimation and interpreta-
tion of variance results are important issues that are the subject of
ongoing research.

Fig. 7 BWB-250C program value as a function of baseline demand.

Connection to NPV
There is one primary conceptual difference between the DP ap-

proach used in this work and traditional project valuation approach
of NPV: DP takes into account managerial � exibility, that is, deci-
sion making in real time. NPV analysis assumes a � xed schedule
of actions and cash � ows, and uncertainty regarding the magnitude
of those cash � ows is accounted for by appropriate selection of
a discount rate. However, there is no uncertainty regarding which
operating mode the � rm is using at any time; these decisions are
made ex ante. Therefore, if the ability to make decisions is removed
from the DP tool, it should reduce to a traditional NPV analysis. In
other words, the switching costs between operating modes must be
adjusted such that the optimizer has only one choice with a � nite
switching cost for any given operating mode. Refer to Fig. 4: The
only � nite cost path through the modes is now set as 0–1–2–3–10–

11–12–15. This assumes an irreversible commitment, as of time 0,
to design, tooling, and high capacity production. Now, as the opti-
mizer solves the problem, it is forced to make the same decisions
regardless of the demand level. As a result, it is possible to generate
negative program values, just as is it routine to � nd that a project
has a negative NPV.

Figure 7 shows program value for the single aircraft case as a
function of the initial annual demand forecast.This demand level is
a strong function of the characteristics of the aircraft, speci� cally,
the range and seat count, but is also dependent on the current con-
dition of the market and the resulting expectationsand needs of the
airlines. Thus, in Fig. 7, the sensitivity of the program’s success to
the current condition of the market is considered. Demand is ex-
pressed as the number of aircraft per year that are demanded in year
1 of the analysis. This initial quantity is the starting point for the
evolutionof demand accordingto a stochastic process over the time
horizon of the problem.

Figure 7 shows two plots of value on the same set of axes: dy-
namic programming and NPV. The former shows the output of the
algorithm as it � nds the value of the program using DP to account
for managerial � exibility. The latter is the NPV case described ear-
lier, where � exibility is removed from the program. As the initial
demand forecast increases,expectedprogramvalue increases. If the
forecast is very small, the value of the program with no � exibility
is negative, that is, the aircraft is developed, the nonrecurring cost
is incurred, but few if any units are sold. However, the value with
� exibility for low demand indices is zero; if no sales are expected,
no investment is made in developing the aircraft.

As the demand index increases, the no-� exibility program value
quickly approaches value with � exibility. However, for small or
marginal demand index numbers, there is a signi� cant difference
between the two valuations—one that may mean the difference be-
tween keeping a program and scrapping it. At the baseline initial
demand of 28 aircraft per year, the value with � exibility, $2.26B, is
almost seven times the value without � exibility, $325M.

Aircraft Family Valuation
Using the DP method, the three aircraft designs listed in Table 2

are evaluated in several different combinations to � nd program
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Table 3 Key input parameters for all test cases

Parameter Value

Number of periods 30
Timestep per period 1 year
Risk-free rate r f 5.5%
Annual aircraft price in� ation 1.2%
Annual aircraft demand volatility 19.6%

Table 4 Intermediate results: cost and demand characteristics
for BWB family

Baseline quantity Long-run marginal Baseline price,
Design demanded, units/yr cost, $ millions $ millions

BWB-450 16.7 139.0 195.0
BWB-250C 27.6 93.8 116.1
BWB-250P 27.6 84.9 142.2

Table 5 Final results: program value for BWB family

Program Value

BWB-450, $ billion 5.95
BWB-250C, $ billion 2.26
BWB-250P, $ billion 14.62
BWB-450 plus BWB-250C, $ billion 8.21
BWB-450 and BWB-250C, $ billion 8.95
Commonality premium, % 9

value. First, each of the designs is evaluated on an individual basis,
as though it is the only design option available to the � rm. Then,
the BWB-450 and BWB-250C are evaluated simultaneously, to in-
vestigate any synergies that may exist as a result of commonality.
Finally, the BWB-450 and BWB-250P are also evaluated simulta-
neously. The key input parameters used for all test cases are listed
in Table 3.

The intermediateresultsof the test runs describedare summarized
in Table 4. These represent the primary outputs of the models de-
scribed in this paper: cost characteristicsand demandcharacteristics
based on a particular airframe and its performance. It can be seen
that there is greater annual demand for the smaller capacity aircraft
than for the larger BWB-450. Note that quantity demanded is mod-
eled as independentof operating characteristics;rather, the quantity
estimator considers only the size class of the aircraft. However, the
price estimator distinguishes between all three vehicles. The base-
line price is expectedlyhigh for the BWB-450, as it is a much larger
aircraft. However, although the two smaller aircraft have identical
seat counts,the BWB-250P is signi� cantlyhigherpriced.This effect
is due to its lighter weight, which results in signi� cantly reduced
fuel burn and, therefore, a lower operating cost.

Predictably,long-runmarginal cost (LRMC) scaleswith the vehi-
cles’ weight. For this example, the LRMC is de� ned as the marginal
cost of unit 100, produced without any commonality effects. Thus,
because the point-designed BWB-250P is lighter than the deriva-
tive BWB-250C, its long-runcostof productionis smaller.However,
commonality should result in a reduced development cost and a re-
duced learning effort for the BWB-250C. That is, the marginal cost
should reach LRMC faster.

Table 5 shows the � nal resultsof this example:theprogramvalues
resulting from the several different combinations of designs eval-
uated. The � rst result to consider is the extremely high program
value found for the BWB-250P. Although it is probably too high
to be realistic, it highlights the key design issues in this example:
A considerable sacri� ce was made in the 250-passenger class air-
craft design to accommodate commonality. A modest increase in
empty weight translated to a medium increase in takeoff weight
(TOW), which translated to a signi� cant difference in fuel burn and
operating cost and an even greater difference in market price. The
sensitivity of price to operating cost is dif� cult to observe in prac-
tice, and these results suggest that it is overestimatedby this pricing

model.However, this snowballingphenomenonunderscoresthe im-
portance of considering the downstream effects of a design change
on program value.

The other side of the coin is the value bene� t gained by common-
ality: a savings in development and manufacturing costs. This is
re� ected in the existence of a commonality premium, albeit a mod-
est one in this example. The value of the program with both designs
(BWB-450 and BWB-250C) considered simultaneously is greater
than the sum of the valuesof their individualprograms.The program
value of the BWB-450 and BWB-250P considered simultaneously
is not shown, inasmuch as it would be identical to the sum of their
individualvalues, because there is no interactionbetween those two
aircraft. It would, however, be interesting to consider interactions
in program value arising not from physical commonality but from
market effects, for example, complements or substitutes.

Within the framework of � exibility and decision making used by
the DP algorithm, the choice to use commonality may be framed
using realoptions.When the � rm developsthe BWB-450, it acquires
an option to developthe BWB-250C for a reducedcost and at a time
of its choosing. The penalty paid, that is, the price of the option, is
the present value of additional pro� ts the � rm would receive had
it instead developed the BWB-250P as a point design to maximize
its performance. From a program � exibility standpoint, the � rm
still has an option to develop a second aircraft even if there is no
commonality. In such a case, the exercise price of the option is
simply higher by the amount of cost savings from commonality.

The conclusionof this example,therefore,is not that commonality
is not justi� able. Rather, for commonality to be justi� able, the ben-
e� ts must outweigh the costs. The bene� ts include the development
and manufacturingcost savingsgained if the derivativeaircraft is in
fact built. The costs include any additionaldesign or manufacturing
costs as a result of commonality, but most important, any result-
ing performance penalty on the aircraft. This performance penalty
must be translated into an opportunity cost: the revenues foregone
by not selling a higher-performanceaircraft. The set of aircraft de-
signs used in this example, with the baseline parameters speci� ed,
did not indicate a higher program value for commonality because
the opportunity cost of lost revenues was very high.

Conclusions
An aircraft program valuation tool is presented,which combines

performance, cost, and revenue models and a DP algorithm to mea-
sure the value of a set of aircraft designs to a � rm. The value mea-
surement is not based on any technical characteristicsper se, or any
static forecastof cost and revenue,but on an analysisof an uncertain
future, assumingthat value-maximizingdecisionsare made by man-
agement as time goes on and uncertainty is resolved.The approach,
which parallels real options analysis, provides additional insight
over traditional valuation techniques by its attempt to quantify the
value created by � exibility.Flexibility is modeled and addressedby
the DP operating modes formulation, which is an explicit method
of formalizing and discretizing the decision-making process that
is continuously ongoing for any project at any � rm. Two of the
method’s distinguishing features are the combination of economic
analysis with engineeringanalysis and the explicit considerationof
management’s ability to make and defer decisions in real time in
response to unfolding market conditions.

One important question that has not been addressed here is the
impact on the results of uncertainty in the cost and performance es-
timates.Althoughit is possibleto think of adding cost or one perfor-
mance metric as an additionalstochasticvariable, the computational
demands of the DP algorithmmake this approach very challenging,
if not impossible. One could conceive of a two-step process, where
the DP approach is used to � rst determine a set of decision rules and
then a more traditional MCS is subsequently applied to determine
the effect of additional uncertainty on the valuation results. These
extensions are the subject of ongoing research.
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