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Fixed point iteration is a common strategy to handle interdisciplinary coupling within
a coupled multidisciplinary analysis. For each coupled analysis, this requires a large num-
ber of disciplinary high-fidelity simulations to resolve the interactions between different
disciplines. When embedded within an uncertainty analysis loop (e.g., with Monte Carlo
sampling over uncertain parameters) the number of high-fidelity disciplinary simulations
quickly becomes prohibitive, since each sample requires a fixed point iteration and the
uncertainty analysis typically involves thousands or even millions of samples. This paper
develops a method for uncertainty analysis in feedback-coupled black-box systems that
leverages adaptive surrogates to reduce the number of cases for which fixed point iteration
is needed. The multifidelity coupled uncertainty propagation method is an iterative pro-
cess that uses surrogates for approximating the coupling variables and adaptive sampling
strategies to refine the surrogates. The adaptive sampling strategies explored in this work
are residual error, information gain, and weighted information gain. The surrogate mod-
els are adapted in a way that does not compromise accuracy of the uncertainty analysis
relative to the original coupled high-fidelity problem.

I. Introduction

Multidisciplinary analysis and optimization is an extensive area of research, intended to take into
account the interactions between multiple disciplines working towards building an efficient engineering

system.1–10 Optimization of such complex systems often pushes the designs to the brink of failure, which
makes accounting for inherent system uncertainties paramount. Historically, uncertainties are accounted for
by using safety factors; however, the drive to enhance efficiency and robustness of a system requires more
rigorous uncertainty characterization methods. To be practically applicable, these methods must also be
computationally efficient. This has led to significant research in uncertainty analysis for multidisciplinary
optimization; a review of such methods can be found in Yao et al.10 The task of uncertainty analysis—forward
propagation of uncertainty through a system—is particularly challenging for a multidisciplinary system due
to coupling between different disciplines. This coupling could be feed-forward (one-directional) or feedback
(bidirectional). Feed-forward coupling is usually easier to deal with; it has been tackled using approximations
such as surrogates11 and decomposition combined with recomposition through importance sampling.12 Here,
we focus on the more complicated case of a feedback-coupled system. We treat all disciplinary analyses as
black-boxes (i.e., they can be viewed in terms of their inputs and outputs, and knowledge of their internal
mechanisms is not needed) and we develop a non-intrusive approach that does not modify the disciplinary
analysis.

A generic feedback-coupled multidisciplinary system is shown in Figure 1. The reader is referred to
Cramer et al.13 for a more detailed discussion on problem formulation for multidisciplinary systems. For
the example depicted, there are three disciplines, with discipline 1 and discipline 2 being feedback-coupled
through coupling variables C1 and C2 (here, the number of coupling variables is NC = 2). The coupling
variable C1 is an input for discipline 2 and an output for discipline 1. The coupling variable C2 is an input
for discipline 1 and an output for discipline 2. Let C∗1 and C∗2 be the multidisciplinary feasible solution
of the coupling variables for the feedback-coupled system, which is achieved when the interdisciplinary
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coupling constraints are satisfied.13 The multidisciplinary system is described by the set of high-fidelity
models H = {HC1(C2,x), HC2(C,x), Hy(1)(C1, C2,x), Hy(2)(C1, C2,x), HS(y, C1, C2,x)} with input vector

x ∈ Rdim, coupling variables C1 and C2, disciplinary output vector y = [y(1), y(2)]T , and system output
S. The inputs could be independent or shared inputs for different disciplines. Note that in this work we
are treating the coupling variables and outputs of each discipline as scalars but in general they could be
multidimensional vectors. All theories developed in this work can be extended to such cases. Also note that
while Figure 1 shows only two disciplines, our approach extends to the case of multiple disciplines.

 
  

Input realizations, 𝐗 

High Fidelity Discipline 1 Analysis 

𝐶1 = 𝐻𝐶1
(𝐶2, 𝐗) 

𝑦(1) = 𝐻𝑦(1)(𝐶1, 𝐶2, 𝐗) 

High Fidelity Discipline 2 Analysis 

𝐶2 = 𝐻𝐶2
(𝐶1, 𝐗) 

𝑦(2) = 𝐻𝑦(2)(𝐶1, 𝐶2, 𝐗) 

High Fidelity Discipline 3 Analysis 

𝑆 = 𝐻𝑆(𝐲, 𝐶1, 𝐶2, 𝐗) 

 

𝐶1 

𝐶2 

𝑦(1), 𝐶1 𝑦(2), 𝐶2 

𝑆 

Figure 1. Feedback coupled multidisciplinary system

The aim of this work is to quantify uncertainty in disciplinary outputs y and system output S due
to uncertainty in inputs x. We consider uncertainty in the inputs defined by some probability distribution
function, πx. To estimate the corresponding uncertainty in y, we use Monte Carlo simulation. ConsiderNtotal

input realizations x1, . . . ,xNtotal
drawn randomly from πx. The Monte Carlo simulation propagates each of

these samples through the system analysis and generates the corresponding output sample y1, . . . ,yNtotal
.

Let X = {x1, . . . ,xNtotal
} be the set of Ntotal input realizations. For each input realization, we must solve the

coupled multidisciplinary system. A common method to do this is through fixed point iteration (FPI).13–15

In FPI, the outputs from one discipline are fed as inputs to the coupled discipline and this process iterates
until a multidisciplinary feasible solution is reached. For the depicted example, at a given realization xi,
the FPI is initialized with an arbitrary value of one of the coupling variables. For example, an initial guess
for C1 is used for discipline 2 to calculate the value of C2 and feed that value of C2 to discipline 1 to
calculate C1. The output C1 from discipline 1 is again fed into discipline 2 and the process continues until
the multidisciplinary feasible solution [C∗1 , C

∗
2 ]T is reached. Note that here we assume ∃ [C∗1 , C

∗
2 ]T ∀ xi. Each

iteration within the FPI requires disciplinary high-fidelity solves, thus the method becomes computationally
intensive as the number of iterations for FPI convergence increases. When FPI is embedded within Monte
Carlo simulation for uncertainty propagation, the number of high-fidelity simulations can quickly become
computationally prohibitive.

Past work has dealt with uncertainty analysis of feedback-coupled systems by using decoupling approaches
such as collaborative reliability analysis,16 the first order reliability method (FORM)17 and a likelihood-based
approach,18 and polynomial chaos expansion based method.19 FORM and the likelihood-based decoupling
approach cast the feedback-coupled system as a feed-forward system, thus avoiding coupled system analyses
and their associated FPI, but at the cost of neglecting the dependence between the inputs and the coupling
variables. This can be an effective approach when the sensitivity of the system output to coupling variables
is low, but can lead to poor results when sensitivity to coupling variables is high.

In this paper, we introduce an approach that uses surrogate models to reduce the number of cases for
which FPI is executed in the Monte Carlo simulation of a feedback-coupled black-box system, while not
compromising the accuracy of the uncertainty analysis relative to the original coupled high-fidelity problem.
In particular, we formulate an iterative multifidelity coupled uncertainty propagation method that leverages
surrogate models for approximating the coupled variables and adaptive sampling for refining the surrogates.
The adaptive sampling strategies explored in this work are maximizing residual error, information gain, and
weighted information gain. Entropy-based or information-gain-based approaches have been used previously
for global optimization20–22 and optimal experimental design.23,24 Here, we develop an information-gain-
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based metric in the context of uncertainty propagation in multidisciplinary systems.
The remainder of the paper is organized as follows. Section II provides the details of the multifidelity

coupled uncertainty propagation method. Section III presents numerical experiments that compare the
efficiency of the proposed method to the standard FPI approach. Section IV provides the conclusions.

II. Multifidelity Coupled Uncertainty Propagation

We propose a multifidelity coupled uncertainty propagation method that reduces the number of cases for
which we need to perform FPI and thus reduces the number of required high-fidelity disciplinary simulations.
This section gives an overview of the approach and describes the adaptive sampling strategies.

A. Approach Overview

Figure 2 shows the flowchart detailing the multifidelity coupled uncertainty propagation method. This
flowchart uses the same definitions from the example described in Figure 1, although again note that the
approach could be extended to multiple disciplines and multi-dimensional coupling variables. The method
is an iterative process that uses surrogate models for approximating the coupling variables, denoted by C̃.
Here we use an interpolating Kriging surrogate,25,26 but one could use any surrogate that is equipped with
an uncertainty estimate.

Given the set X of Ntotal input realizations, we first select a subset of Nsur initial samples, X0
sur ⊂ X.

The superscript 0 represents the 0th cycle of the method to denote initial samples for building the surrogates.
The subset selection can be conducted in any way, but here we maximize the minimum distance between
the samples. Second, FPI is conducted for the coupled system at each of the Nsur samples to obtain the
multidisciplinary feasible solutions of the coupling variables at those samples. We denote the resulting
vector of multidisciplinary feasible solutions of the ith coupling variable as C∗i (X0

sur). Third, the dataset
{X0

sur;C∗i (X0
sur)} is used to build the surrogates for the ith coupling variable. Then the set of remaining

input realizations, X\X0
sur, and the surrogate predictions for the coupling variables are propagated through

the respective high-fidelity disciplinary analysis to estimate the outputs. Note that FPI is not performed at
this point and the high-fidelity simulations of the coupled disciplines can be decoupled as seen in Figure 2.

A normalized residual error metric et at the current cycle t for the approximation of the coupling variables
is defined as

et(x) =

NC∑
i=1

∣∣∣C̃t
i (x)− Cout

i (x)
∣∣∣

κi
, (1)

where C̃t
i is the surrogate model prediction at the current cycle t, Cout

i is the output from the high-fidelity
analysis of the ith coupling variable, κi is the normalization constant for the residual errors of the ith coupling
variable, and NC is the number of coupling variables. The normalization constants are problem specific and
will be specified with the respective test problems. The outputs for the x realizations that satisfy the residual
error tolerance criterion et(x) ≤ ε, where ε is a user-defined residual error tolerance, are accepted.

Let Xt
rem = {x ∈ X \ Xt

sur : et(x) > ε} be the set of N t
rem realizations that did not satisfy the error

tolerance. An adaptive sampling strategy (described in detail in the next sub-section) is used to select one
of these realizations, x∗t ∈ Xt

rem. For the selected realization, FPI is used to solve for the multidisciplinary
feasible solution, C∗i (x∗t ), for i = 1, . . . , NC . The surrogate model for the ith coupling variable is then
refined using Xt+1

sur = Xt
sur ∪ x∗t and the updated dataset {Xt+1

sur ;C∗i (Xt+1
sur )}. No additional high-fidelity

simulations are required during the selection of x∗t with the adaptive sampling strategy. In the next cycle,
Xt

rem realizations are propagated through the layers of surrogates and high-fidelity models as described above
to find the realizations for which the error in Equation 1 is not acceptable, Xt+1

rem. This proceeds iteratively
till Xt+1

rem = ∅.
The major advantage of this method is that the accepted solutions correspond to those that would be

obtained from a high-fidelity simulation (to within the tolerance) without having performed FPI for all
X realizations. FPI is performed only for the initial X0

sur realizations and the selected x∗t realizations in
each cycle through the adaptive sampling process. As the results will show, this can lead to substantial
computational savings without compromising accuracy. Another advantage of the method is that, although
the high-fidelity coupled disciplinary analyses for FPI cannot be decoupled, the remainder of the high-fidelity
disciplinary analyses can be decoupled as shown in the flowchart (Figure 2). This would be favorable when
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communication between the disciplines is difficult due to their development by different working groups or
the analyses running on separate platforms.

 
  

𝐻𝐹1  

𝑦(1), 𝐶1𝑜𝑢𝑡
 

Evaluate 𝐶 1
𝑡(𝐗), 𝐶 2

𝑡(𝐗) 

 

𝐻𝐹2  

𝑦(2), 𝐶2𝑜𝑢𝑡
 

Accept 𝑦(1), 𝐶1
𝑜𝑢𝑡 , 𝑦(2) and 𝐶2

𝑜𝑢𝑡 for 

all 𝐱 ∈ 𝐗 that satisfy  

 
 𝐶 𝑖

𝑡(𝐱) − 𝐶𝑖
𝑜𝑢𝑡(𝐱) 

𝜅𝑖

2

𝑖=1
≤ 𝜀 

 

Solve the system using FPI for 

the selected 𝐱𝑡
∗ realization for 

𝐶1
∗(𝐱𝑡

∗) and 𝐶2
∗(𝐱𝑡

∗)  

Update 𝐶 1
𝑡+1 and 𝐶 2

𝑡+1; 

𝐗 = 𝐗𝑟𝑒𝑚
𝑡   

Adaptive sampling for selecting 

the 𝐱𝑡
∗ ∈ 𝐗𝑟𝑒𝑚

𝑡  for updating low 

fidelity models 

𝑁𝑟𝑒𝑚
𝑡 = Number of remaining 

realizations, 𝐗𝑟𝑒𝑚
𝑡 , that do not satisfy 

residual error tolerance criterion 

If  

𝑁𝑟𝑒𝑚
𝑡 > 1 

No 

Yes 

If  

𝑁𝑟𝑒𝑚
𝑡 = 0 

STOP 

No 

Yes 

Solve the system using FPI for 

the remaining 𝐱 realization 
STOP 

D
ec

o
u

p
le

d
 

𝑡 = 𝑡 + 1 

Input realizations, 𝐗 

 

𝑡 = 0; 

Build surrogates 𝐶 1
0, 𝐶 2

0
 

 

Figure 2. Multifidelity coupled uncertainty propagation method (HF1 and HF2 denotes high-fidelity analysis
of disciplines 1 and 2, respectively, and t denotes the current cycle).

B. Adaptive Sampling Strategies

Three different adaptive sampling strategies for selecting the x∗t realization, which is used to update the
surrogate models, are explored for the multifidelity coupled uncertainty propagation method.

1. Maximum Residual Error

In this sampling strategy, the x∗t ∈ Xt
rem with maximum normalized residual relative error is selected as

the next sample. The optimization problem for the maximum residual error adaptive sampling strategy for
cycle t is given by

x∗t = argmax
x∈Xt

rem

NC∑
i=1

∣∣∣C̃t
i (x)− Cout

i (x)
∣∣∣

κi
. (2)
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2. Maximum Information Gain

Using information gain as the sampling strategy enables us to use the surrogate prediction as well as the
surrogate prediction standard deviation to make a decision on where to sample next. Note that both of
these quantities are available from the Kriging (or a Gaussian process) fit that is used in this work. The
Kriging surrogate prediction at any location is defined by a Gaussian distribution with mean prediction, µ,
and prediction standard deviation, σ. This adaptive sampling strategy chooses the next sampling location
such that there will be maximum information gain in the surrogate prediction at the locations corresponding
to the realizations in Xt

rem .
We denote the present surrogate predicted Gaussian distribution as GP ∼ N (µP , σ

2
P ) and a possible

future surrogate predicted Gaussian distribution as GF ∼ N (µF , σ
2
F ). The Kullback-Liebler divergence

between GP and GF at any realization x, given the data d = {Xt
sur;C∗i (Xt

sur)} and possible future data

{xF ; C̃F
i } for the ith coupling variable, is defined by

DKL(GP (x|d) ‖ GF (x|d,xF , C̃
F
i ))

= log

(
σF (x|d,xF , C̃

F
i )

σP (x|d)

)
+
σ2
P (x|d) + (µP (x|d)− µF (x|d,xF , C̃

F
i ))2

2σ2
F (x|d,xF , C̃F

i )
− 1

2
.

(3)

DKL is used as the information gain metric. µP and σP are predictions from the present surrogate fit, and µF

and σF are predictions from a possible future surrogate fit. The total information gain at any x realization
can be calculated by integrating over all possible values of C̃F

i (defined by GP (xF |d)) for xF ∈ Xt
rem.

Gauss-Hermite quadrature is used for the integration and C̃F
i,k is the kth Gauss-Hermite quadrature points

(in this work, 5 Gauss-Hermite quadrature points are used) for the ith coupling variable. The dataset d

combined with the possible future data {xF ; C̃F
i,k}, d ∪ {xF ; C̃F

i,k}, is used to obtain the future surrogate

fit GF for the ith coupling variable. This leads to k possible future surrogate fits for any xF . Then the
total information gain at any x realization for ith coupling variable, Di(x|xF ), is calculated by integrating
through Gauss-Hermite quadrature using the weights, wk, for the kth Gauss-Hermite quadrature point, as
defined by

Di(x|xF ) =

5∑
k=1

wkDKL(GP (x|d) ‖ GF (x|d,xF , C̃
F
i,k)). (4)

The optimization problem for finding x∗t through the information gain based adaptive sampling criterion
combines the information gain at all xremj

∈ Xt
rem for all NC coupling variables, as defined by

x∗t = argmax
xF∈Xt

rem

NC∑
i=1

Nt
rem∑
j=1

Di(xremj
|xF ). (5)

The information gain based strategy does not scale well if we increase the number of samples. As seen in
Equation 5, a combinatorial problem needs to be solved to select the x∗t that maximizes the information gain.
In order to tackle this scaling issue, we used a continuous optimization algorithm (Differential Evolution27).
In order to ensure xF ∈ Xt

rem, the xF input from the optimizer was rounded-off to the nearest neighbor in
Xt

rem while evaluating the objective function.

3. Maximum Weighted Information Gain

The weighted information gain criterion uses the present normalized residual error at xF ∈ Xt
rem as the

weight for the information gain. The weight at xF for the current cycle t is defined by

W t
F (xF ) =

et(xF )∑Nt
rem

m=1 e
t(xremm)

, (6)

where xremm
∈ Xt

rem and et(x) is given by Equation 1. This attaches more importance to the information
gain from sampling the input realizations that have higher associated residual errors. The optimization
problem for the weighted information gain based adaptive sampling strategy is given by

x∗t = argmax
xF∈Xt

rem

W t
F (xF )

NC∑
i=1

Nt
rem∑
j=1

Di(xremj |xF ). (7)
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The maximization problem in Equation 7 is also solved using a continuous optimization problem definition
with nearest neighbor round-off in the objective function as discussed for the maximum information gain
criterion.

III. Numerical Experiments

In this section, we run numerical experiments on two test problems for the three adaptive sampling
strategies for the multifidelity coupled uncertainty propagation method. We compare the developed method
to Monte Carlo simulation with FPI for every realization.

A. Test Problems

Test problem 1 is the Sellar’s problem with three input random variables and two coupling variables as seen
in Figure 3. The input random variables, x1, x2 and x3, are assumed to be normally distributed with a
mean of 0, 5 and 5, and standard deviation of 3, 1.5 and 1.5, respectively. The normalization constants used
for this problem are κ1 = 8.4215 and κ2 = 7.8927, where these values correspond to the multidisciplinary
feasible solution for the coupling variables at the mean of the input random variables. The residual error
tolerance, ε, is set as 0.01. The number of iterations required for FPI convergence for test problem 1 is ∼ 3
on average. Thus, FPI convergence rate is fairly quick for test problem 1.

 
  

Input realizations, 𝐗 

𝐶1 = 𝑥1
2 + 𝑥2 + 𝑥3 − 0.2𝐶2 

𝐶1 

𝐶2 =  𝐶1 + 𝑥1 + 𝑥3 

𝐶2 

𝑓(𝐶1, 𝐶2, 𝐗) = 𝑥1
2 + 𝑥3 + 𝐶1 + 𝑒−𝐶2  

𝐶2 

𝐶1 

Figure 3. Test problem 1 (Sellar’s problem)

Test problem 2 has five input random variables and two coupling variables as seen in Figure 4. All the
input random variables are assumed to be normally distributed with a mean of 1 and standard deviation of
0.1. This problem uses κ1 = 6.6259 and κ2 = 7.5370, where these values correspond to the multidisciplinary
feasible solution for the coupling variables at the mean of the input random variables. ε is set as 1.5e-4. The
number of iterations required for FPI convergence for test problem 2 is ∼ 18 on average. Thus, it has slower
FPI convergence rate than test problem 1 and conducting Monte Carlo simulation with the embedded FPI
is expensive.

B. Results

We assess the efficiency of the multifidelity coupled uncertainty propagation method for Ntotal values of 103

and 104, and an Nsur value of 20, for both problems. Tables 1 and 2 present the results for the comparison
of different adaptive sampling strategies and Monte Carlo simulation with FPI for test problems 1 and 2,
respectively.

The results for test problem 1 (Table 1) indicate that for Ntotal = 103 and 104, the total number of high-
fidelity simulations required (considering both the disciplines) for each of the adaptive sampling strategies
is worse than just using Monte Carlo simulation with FPI. This is because the rapid convergence of FPI
for this problem (∼ 3 iterations) makes it difficult to beat Monte Carlo simulation with FPI in terms of
computational efficiency. The weighted information gain adaptive sampling strategy performs the best out
of the three adaptive sampling strategies. For a problem such as this, where the FPI convergence is rapid,
the standard Monte Carlo approach is most likely the best option.
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Input realizations, X 

𝐶1 = 0.01(𝑥1
2 + 2𝑥2 − 𝑥3) +

𝐴1𝑪

𝑛𝑜𝑟𝑚(𝑪)
 

𝐶1 

𝐶2 = 0.01(𝑥1𝑥4 + 𝑥4
2 + 𝑥5) +

𝐴2𝑪

𝑛𝑜𝑟𝑚(𝑪)
 

𝐶2 

𝐶2 

𝐶1 

𝑪 =  
𝐶1

𝐶2
  

𝐴1 =  9.7236 0.2486  

𝐴2 =  0.2486 9.7764  

𝑓(𝐶1, 𝐶2, 𝑿) 

Figure 4. Test problem 2

The results for test problem 2 (Table 2) indicate that for Ntotal = 103, the total number of high-fidelity
simulations required (considering both the disciplines) for all the adaptive sampling strategies outperforms
using standard Monte Carlo simulation with FPI by a factor of ∼ 1.8− 2.1. The weighted information gain
strategy performs the best, followed by the residual error and the information gain based adaptive sampling
strategy. The gains in computational efficiency for test problem 2 are larger than for test problem 1 because
in this case FPI convergence takes longer (∼ 18 iterations for a FPI in test problem 2 as compared to ∼ 3
for test problem 1). For Ntotal = 104, all adaptive sampling strategies show a reduction in the number
of high-fidelity simulations as compared to Monte Carlo simulation with FPI by a factor of ∼ 2.2 − 3.4.
The residual error sampling strategy performs the best, followed by the weighted information gain and the
information gain based sampling strategies.

Table 1. Comparison of efficiency of different methods for test problem 1

Ntotal Sampling strategy Initial N0
rem

Total number of
cases for FPI

Number of high-
fidelity simulations

103

Monte Carlo Simulation with FPI – 103 5,934

Max Residual Error 700 44 10,346

Max Information gain 700 55 10,818

Max Weighted Information gain 700 47 10,286

104

Monte Carlo Simulation with FPI – 104 58,938

Max Residual Error 8,654 64 142,550

Max Information gain 8,654 74 152,632

Max Weighted Information gain 8,654 68 116,736

The convergence of the algorithm in terms of the number of remaining realizations, N t
rem, that did not

satisfy the residual error tolerance after each cycle is shown in Figures 5 and 6 for test problems 1 and
2, respectively (where “IG” stands for information gain). The residual error adaptive sampling strategy is
generally the fastest converging, i.e., it requires the least number of FPI executions. Only for test problem
2 with Ntotal = 103, does the weighted information gain strategy perform better. We successfully decreased
the number of realizations where FPI was employed in the multifidelity coupled uncertainty propagation
method (� Ntotal) as seen in Tables 1 and 2 for all the cases.

Figures 7 to 12 show the progress of the algorithm through a slice of the design space (input random
variables 1 and 2 for both the test problems). The figures show the accepted realizations and sampling
locations according to the choice of adaptive sampling strategy for selective cycles for both the test problems
for Ntotal = 103. “Initial samples” refers to X, “Accepted samples” refer to the set of all the realizations for
which residual error tolerance criterion was satisfied after that cycle, “Adaptive sampling location” refers to

7 of 15

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 M

as
sa

ch
us

et
ts

 I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

- 
C

am
br

id
ge

 o
n 

Ju
ly

 5
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
14

42
 



Table 2. Comparison of efficiency of different methods for test problem 2

Ntotal Sampling strategy Initial N0
rem

Total number of
cases for FPI

Number of high-
fidelity simulations

103

Monte Carlo Simulation with FPI – 103 35,984

Max Residual Error 952 61 18,648

Max Information gain 952 73 20,320

Max Weighted Information gain 952 47 16,814

104

Monte Carlo Simulation with FPI – 104 353,608

Max Residual Error 7,808 67 103,562

Max Information gain 7,808 93 158,534

Max Weighted Information gain 7,808 76 121,098

Number of cycles
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 = 1000
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(a) Ntotal = 103
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m
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7000

8000

9000

10000

N
total

 = 10000

Max Residual
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(b) Ntotal = 104

Figure 5. Number of realizations of X that do not satisfy the error tolerance after each cycle for test problem
1.

x∗t , and “FPI locations” refers to all the realizations where FPI was used in order to get the true values of
coupling variables to build or refine the surrogates.

IV. Concluding Remarks

This paper has developed a new multifidelity coupled uncertainty propagation method for feedback-
coupled multidisciplinary black-box systems. Instead of using fixed point iteration with Monte Carlo sim-
ulation for uncertainty propagation, the proposed method works to reduce the number of realizations for
which FPI is employed. An essential feature of this method is that it maintains the same level of accuracy
in the results as the original coupled high-fidelity system. Another advantage of the proposed method is the
ability to partially decouple the process, which is helpful when communication between different disciplines
is cumbersome.

The multifidelity coupled uncertainty propagation method uses surrogates to approximate the coupling
variables and iteratively refines these surrogates using adaptive sampling strategies. We introduced the use of
information gain as an adaptive sampling strategy for uncertainty propagation in coupled multidisciplinary
systems. A residual error based adaptive sampling strategy is also explored in this work. The information
gain weighted with the residual errors exhibits the best computational efficiency in most of the cases tested
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Figure 6. Number of realizations of X that do not satisfy the error tolerance after each cycle for test problem
2.

in this work.
Ongoing work is modifying the approach to screen the realizations based on relative changes in surrogate

predictions from one cycle to the next, and only execute a high-fidelity disciplinary analysis for those real-
izations where the change is beyond a certain threshold. This will potentially help reduce the total number
of high-fidelity evaluations for the multifidelity coupled uncertainty propagation method and improve the
efficiency gains.
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Figure 9. A slice of the design space showing the spread of accepted and remaining X realizations with the
maximum weighted information gain adaptive sampling location for selective cycles for test problem 1
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Figure 10. A slice of the design space showing the spread of accepted and remaining X realizations with the
maximum residual error adaptive sampling location for selective cycles for test problem 2
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Figure 11. A slice of the design space showing the spread of accepted and remaining X realizations with the
maximum information gain adaptive sampling location for selective cycles for test problem 2
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Figure 12. A slice of the design space showing the spread of accepted and remaining X realizations with the
maximum weighted information gain adaptive sampling location for selective cycles for test problem 2
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