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The computational economy of Reynolds-Averaged Navier Stokes solvers encourages their

widespread use in the optimization of aerospace designs. Unfortunately the real-world

performance of the resulting optimized designs may have shortcomings. A common con-

tributor to this shortfall is a lack of adequately accounting for the uncertainty introduced

by the structure of the turbulence model. We investigate whether including measures of

turbulence-based uncertainty, as predicted by the eigenspace perturbation method, in an

optimization under uncertainty framework can result in designs that are more robust with

respect to turbulence model-form uncertainty. In an asymmetric diffuser design problem

and a transonic airfoil design problem, our optimization formulation taking account of

turbulence-based uncertainty obtained designs that were more robust to turbulence model

uncertainty than optimal designs obtained via deterministic approaches.
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I. INTRODUCTION

With the increase in computational resources that has become accessible in recent decades,

aerospace design is becoming increasingly a simulation-driven process1. When simulations of

an aerospace system are available, optimization can be used as a design tool to search for de-

signs with good simulated performance measures, such as high efficiency, low weight, or low

drag. However, traditional deterministic optimization can lead to designs that are non-robust with

respect to uncertainties in the simulation and that see degraded performance when realized. There-

fore the importance of considering the influence of uncertainty within optimization is becoming

increasingly recognized1,2. Optimization under uncertainty (OUU) methods have been developed

to explicitly account for the influence of uncertainty on the simulated performance3.

Uncertainties in aerospace design arise from a variety of sources, including operating condi-

tions, material and heat transfer properties, and the numerical simulations themselves. To account

for the effects of turbulence, the majority of Computational Fluid Dynamics (CFD) studies used

in aerospace design simulations rely on eddy-viscosity based closures, such as the k−ε and k−ω

models. Due to assumptions and simplifications introduced in the formulation of such Reynolds

Averaged Navier Stokes (RANS) models, these models are limited in the characteristics of tur-

bulent flows that they can replicate and their overall fidelity. Such simplifications include coarse

graining where it is assumed that the Reynolds stress tensor can adequately describe the turbulent

flow field, the eddy viscosity hypothesis that assumes the instantaneous Reynolds stress anisotropy

to be proportional to the instantaneous mean rate of strain, the application of the gradient diffusion

hypothesis to model turbulent transport, the limitations in the modeled evolution equations for the

turbulent dissipation, besides others. These simplifications introduce structural uncertainty in the

predictions of simulations using RANS models.

For example, in turbulent flows with significant effects of mean rotation, such as swirl or strong

streamline curvature, the fidelity of linear eddy-viscosity-based closures is unsatisfactory4,5. In

turbulent flows with flow separation and reattachment, eddy-viscosity-based models have had lim-

ited success6,7. Furthermore, in relatively simpler flows such as turbulent flows in ducts, isotropic

eddy-viscosity-based models are not able to reproduce the secondary flows that develop near the

corners of the domain8.

The use of simulations based on such turbulence models leads to imprecise measures of the

performance. The designs resulting from optimizing these imprecise measures of performance
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can depend on the particular turbulence model used, and are likely to be sub-optimal in reality9–12.

However, design optimization under turbulence model-form uncertainty is an avenue that has not

been investigated deeply. The key hurdles are two-fold. Firstly, it is challenging to produce accu-

rate estimates of the uncertainty in turbulence predictions arising due to the model form. Secondly,

it is not clear how such measures of turbulence uncertainty should be integrated into design opti-

mization frameworks.

Previous work has begun to address the first hurdle, by developing methods for rigorously

propagating measures of turbulence model-form uncertainty in CFD simulations. In this article,

we consider the second hurdle, and investigate integrating a recently developed method for prop-

agating turbulence model-form uncertainty into a robust optimization framework. We propose an

optimization formulation and apply it to key aerospace design problems, and we examine whether

this optimization formulation results in designs with higher robustness to turbulence model form

uncertainty than traditional deterministic optimization methods.

II. METHODOLOGY

This section provides an overview of the methodology adopted for estimating turbulence model

uncertainties and the optimization formulation that takes account of this uncertainty.

A. Eigenspace perturbations: Estimating turbulence model uncertainty

In this investigation, to estimate the uncertainty due to turbulence models we utilize the SU2

EQUiPS library13, based on the Eigenspace perturbation framework14. While both are discussed

in detail in literature, we provide an overview for the reader.

The Reynolds stress tensor, Ri j = 〈uiu j〉, is one of the central quantities of interest for turbu-

lence modeling. The Reynolds stress tensor can be decomposed into the anisotropic and deviatoric

components as Ri j = 2k(bi j+
δi j
3 ). Here, k(= Rii

2 ) is the turbulent kinetic energy and bi j(=
Ri j
2k −

δi j
3 )

is the Reynolds stress anisotropy tensor. The Reynolds stress anisotropy tensor can be expressed

as binvnl = vinΛnl , where vnl is the matrix of orthonormal eigenvectors and Λnl is the traceless

diagonal matrix of eigenvalues λk. Multiplication by v jl yields bi j = vinΛnlv jl . On substitution,

this yields

Ri j = 2k(vinΛnlv jl +
δi j

3
). (1)
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The tensors v and Λ are ordered such that λ1 ≥ λ2 ≥ λ3. To account for the errors due to clo-

sure assumptions, this eigenspace representation of the Reynolds stress tensor is perturbed. These

perturbations are injected directly into the modeled Reynolds stress during the CFD solution iter-

ations. This perturbed form is expressed as:

R∗i j = 2k∗(
δi j

3
+ v∗inΛ

∗
nlv
∗
l j) (2)

where ∗ represents the perturbed quantities. The perturbations to the eigenvalues, Λ, correspond to

varying the componentiality of the flow (or the shape of the Reynolds stress ellipsoid). Similarly,

the perturbations to the eigenvectors and the turbulent kinetic energy vary the orientation and

amplitude of the Reynolds stress ellipsoid. These perturbations are sequentially applied to the

modeled Reynolds stress tensor.

The eigenvalue perturbation can be represented on the barycentric map15. In this representation,

all realizable states of the Reynolds stress tensor lie on or inside the barycentric triangle. The

vertices of this triangle represent the one, two and three component limiting states of the turbulent

flow field. A linear map between the co-ordinates on this triangle x and the Reynolds stress

anisotropy eigenvalues λi is defined by

x = x1C(λ1−λ2)+x2C(2λ2−2λ3)+x3C(3λ3−1). (3)

This linear transform can be expressed as x = Bλ . In physical terms, this invertible, one-to-one

mapping expresses any realizable state of the Reynolds stress eigenvalues as a convex combination

of the three limiting states of turbulence. The projection of the eigenvalue perturbation in the

barycentric map has both a direction and a magnitude. In this application, the perturbations are

aligned towards the vertices of the barycentric triangle (or the limiting states of turbulence). The

magnitude of the eigenvalue perturbation in the barycentric triangle is represented by ∆B ∈ [0,1].

The perturbed barycentric coordinates x∗ are given by x∗ = x+∆B(xt− x), where xt denotes the

target vertex (representing one of the one-, two-, or three-component limiting states) and x is the

unperturbed model prediction. Thus, ∆B = 0 would leave the state unperturbed and ∆B = 1 would

perturb any arbitrary state till the vertices of the barycentric triangle.

The eigenvector perturbations vary the alignment of the Reynolds stress ellipsoid. These are

guided by the turbulence production mechanism, P = −Ri j
∂Ui
∂x j

. The eigenvector perturbations

seek to modulate turbulence production by varying the Frobenius inner product 〈A,R〉 = tr(AR),

where A is the mean velocity gradient and R is the Reynolds stress tensor. For the purposes of
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bounding all permissible dynamics, we seek the extremal values of this inner product. In the

coordinate system defined by the eigenvectors of the rate of strain tensor, the critical alignments

of the Reynolds stress eigenvectors are given by14 vmax =


1 0 0

0 1 0

0 0 1

 and vmin =


0 0 1

0 1 0

1 0 0

. The

range of this inner product is [λ1γ3 +λ2γ2 +λ3γ1,λ1γ1 +λ2γ2 +λ3γ3], where γ1 ≥ γ2 ≥ γ3 are the

eigenvalues of the symmetric component of A.

This eigenspace perturbation framework gives us 5 distinct extremal states of the Reynolds

stress tensor. These correspond to 3 extremal states of the componentiality (1C,2C,3C) and 2

extremal alignments of the Reynolds stress eigenvectors, (vmin,vmax). For the 3C limiting state,

due to rotational symmetry, eigenvector perturbations are superfluous.

Finally, we outline how the uncertainty estimates are given from this set of perturbed CFD

simulations. This process is schematically exhibited in Fig. 1. The illustrative flow used is the

canonical case of separated turbulent flow in a planar diffuser. The conditions and the experimental

data are from the experimental study of Buice & Eaton16.

The central panel of Fig. 1 outlines the unperturbed, baseline CFD solution. Using the k−

ω Shear Stress Transport (SST) model, this leads to a unique flow field realization in the flow

domain. To illustrate the composition of the uncertainty bounds, we choose a specific location

in the domain, specifically at x/H = 24 which is marked in the figures. This unique flow field

realization from the SST model leads to a singleton profile for the mean velocity, ui/u, shown in

panel C with the solid gray line.

The upper and lower panels of the figure outline perturbed solutions. While there are 5 per-

turbed states as discussed in the last subsection, we exhibit only 2 of these in the schematic il-

lustration. Each of these perturbed solutions leads to a different realization of the flow field,

as is illustrated in panel B. These flow realizations differ in essential aspects. For instance, the

perturbation to the state (1C,vmax) maximizes the turbulence production mechanism and thus,

suppresses flow separation. The perturbation to the state (3C,vmin) minimizes the turbulence pro-

duction mechanism and thus, strengthens flow separation. This is evidenced in the variation of the

separation zones in panel B. Each of these perturbations leads to a different flow field and conse-

quently, the velocity profiles from these flow fields are different as well. The velocity profiles at

x/H = 24 from the (1C,vmax) and (3C,vmin) are shown in panel C with the dashed and dot-dashed

lines respectively (panel C also shows the profiles from the (1C,vmin), (2C,vmax) and (2C,vmin)
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Unperturbed	CFD	Solution

Perturbed	CFD	Solution,	(1C,vmax)

Perturbed	CFD	Solution,	(3C,vmin)

Panel	A Panel	B Panel	C

FIG. 1: Schematic outlining the stages in the computation of uncertainty estimates. Panel A:

RANS Simulations with varied perturbations; Panel B: Varied perturbed realizations of turbulent

flow fields; Panel C: Compositions of uncertainty estimates from union of perturbed profiles of

QoIs.

perturbations using the dotted line, dotted line with circles and dotted lines with squares). The

uncertainty estimates on the profiles of a quantity of interest (QoI) at a location are given by the

union of all the states lying in the profiles from this set of perturbed RANS simulations. This is

illustrated by the gray shaded zone in Fig. 1 panel C.

The uncertainty estimates do not define a probability distribution on the possible realizations

from the turbulence model. The results presented should be interpreted as the range of possible

flow evolution corresponding to the turbulence model, but the likelihood of different sub-sections

of this range is not quantified.

Finally, we acknowledge some limitations of this uncertainty estimation methodology. The

errors and uncertainties in turbulence models are not uniform across the computational domain.

These are higher in regions where the assumptions and simplifications made during model for-

mulation are invalid. For instance, eddy-viscosity models will exhibit higher errors in regions

with flow separation, significant streamline curvature, rotational effects, etc. The perturbations

are intended to account for such limitations in the turbulence models. However, the perturbations

are uniformly applied to the entire domain. Thus, the uncertainty estimates from this procedure

may be conservative in regions of the flow domain where the turbulence model predictions are

satisfactory.
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B. Optimization Under Uncertainty

Optimization is the process of determining values of design variables that lead to the minimiza-

tion (or maximization) of an objective function, subject to constraints. Mathematically, this can be

expressed as:

Minimize f (x),

Subject to g(x)≤ 0.
(4)

Here, the vector x represents the design variables; f (x) is the objective function to be minimized;

g(x) represents a vector of constraint functions. When used for design, optimization is a proce-

dure for exploring the design space in order to improve performance measures of designs. When

simulations of the performance measures are subject to uncertainty, ignoring the effects of these

uncertainties in an optimization can give rise to designs that are optimal according to the simula-

tion but give degraded performance when realized1. Therefore the importance of taking account

of such uncertainties in an optimization under uncertainty framework when using optimization for

design problems is becoming increasingly recognized.

In optimization under uncertainty (OUU), the objective function is a measure of performance

under uncertainty. Common OUU frameworks include robust design17, where designs insensi-

tive to small changes in the uncertain quantities are sought, and reliability-based design18 where

designs with a small probability of failure are sought.

In this paper, we consider specifically turbulence-based uncertainty, and the eigenspace per-

turbation method for measuring the effect of this uncertainty. As discussed in section II A, this

method results in a set of possible values for every quantity of interest, corresponding to the pre-

dictions from the perturbed RANS simulations. As illustrated on Fig. 1, the envelope of these

values provides an estimate for the bounds in which the true solution should lie. On Fig. 1, the

envelope of the five solutions gives an interval for velocity at a given location. This same envelop-

ing approach is used to obtain intervals (i.e. bounds on the value) for the performance metrics

that would be used as objectives or constraints in a deterministic optimization. This measure of

uncertainty is not probabilistic, meaning standard probabilistic robust optimization formulations

are not appropriate.

The key question is therefore how this measure of uncertainty should be used in an OUU for-

mulation, in order to obtain designs that are insensitive to turbulence model-form uncertainties and

so that should achieve good performance in reality (a robust optimization). One approach would
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be to explicitly optimize for designs with a small interval of performance under the eigenspace

perturbations (for example by penalizing large performance intervals in the objective function).

However, explicitly optimizing for robustness can often lead to designs that are robust but that

exhibit consistently poor performance19.

We anticipate that by optimizing the worst case performance over the perturbed solutions, we

will obtain a design that is also robust with respect to turbulence model-form uncertainty, without

explicitly including a robustness term in the optimization. Therefore in this paper, we use the

worst case of the perturbed solutions as our objective function. Mathematically, our approach can

be expressed as:

Minimize max{ fi(x) | i = 1, . . . ,5},

Subject to g(x)≤ 0,
(5)

where fi is the objective function according to the ith perturbed solution (out of the five used in the

eienspace perturbation framework), and max{ fi(x) | i = 1, . . . ,5} is the largest of these objective

function values.

With reference to prior studies into robust optimization, our approach is similar in prin-

ciple to the pessimistic robust optimization approach20,21. This is sometimes known as the

robust counterpart22 (particularly in the context of ensuring constraint satisfaction) or robust

regularization23.

We investigate whether this formulation can give rise to designs that are more robust with

respect to the structural uncertainties in turbulence models than deterministic approaches, whilst

still obtaining good performance.

III. APPLICATION & RESULTS

We perform studies in two key aerospace applications. The goal is to investigate whether

optimizing the worst case of the envelope due to eigenspace perturbations obtains a design that is

more robust as compared to the designs obtained via the deterministic design paradigm. If so, it

indicates a traditional CFD-based optimization in these applications is likely to give designs that

are sensitive to the structural uncertainties in turbulence models, and that improved results can be

obtained by accounting for turbulence model-form uncertainty within the optimization.

For each of the design problems investigated, we commence with an outline of the design

problem, discuss the specific limitations of RANS models encountered, and highlight the errors
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and uncertainties introduced due to RANS model form. Thence, we provide an in depth overview

of the computational details of the simulations, and carry out requisite mesh independence as

well as validation studies. This is followed by performing both a traditional deterministic design

optimization, and an optimization under uncertainty using the eigenspace perturbation method.

The designs resulting from the two optimization formulations are compared, and the physics and

modeling rationale underlying their differences are discussed.

In this investigation, we focus on the two-equation k−ω SST model24 and the Spalart-Allmaras

turbulence model25, as archetypal examples of turbulence models used in design. The k−ω SST

model is one of the more accurate eddy-viscosity based closures and represents the workhorse for

engineering design studies. The Spalart-Allmaras turbulence model provides accurate predictions

for aerospace flows and is widely used in aerospace design studies.

1. Notation

In the results, we outline the predictions from all the individual perturbed simulations of the

eigenspace perturbation method for comparison. These are reported, along with their nomen-

clature, in Figure 2. Figure 2 exhibits the state of the Reynolds stress ellipsoid for each of the

perturbed states, starting from an arbitrary initial state. The following labels are used: p0 means

eigenvectors permuted for minimum production, p1 means eigenvectors permuted for maximum

production,c1, c2, c3 correspond to eigenvalues perturbed to give 1-component, 2-component and

3-component anisotropy respectively. In the figure, the exact orientation and magnitude of all the

five perturbed states are outlined.

Note that a priori, it can’t be predicted that a specific perturbed simulation will lead to the min-

imum value of the objective function. Similarly, the type of perturbation leading to the minimum

value of the objective function may change during the optimization design iterations.

A. Asymmetric Diffuser

Diffusers are commonplace in aircraft and jet engines, for instance to compress the air flow

ahead of turbine engine combustors and to slow the air intake to the compressor. Features of the

flow such as separation over a smooth wall, reattachment and redevelopment of the downstream

boundary layer offer challenges to eddy-viscosity based models26,27. This is exacerbated by the
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(b) (a) 

(d) (e) 

(c) (a)	p1c2	 (b)	p0c2	 (c)	p0c3	

(d)	p1c1	 (e)	p1c0	

FIG. 2: Schematic outlining the different perturbations and their nomenclature.

inability of eddy-viscosity models to account for the Reynolds stress anisotropy governing the

secondary currents in the inflow duct6,7. Using such turbulence models for deterministic design

optimization, leads to designs that are dependent upon the choice of the model as is reported in

Lim and Choi 11 .

We investigate the design of a two-dimensional, asymmetric diffuser, starting with a baseline

geometry reproduced from Buice and Eaton 16 , which gives experimental results for this geometry.

The diffuser operates with an inlet bulk velocity Ub ' 19.8, which is the density averaged velocity

in the channel, and which for incompressible flow is given by:

Ub =

∫
u(y)dy

h
, (6)

where u(y) is the x-velocity at height y, and h is the channel width. For the baseline diffuser, the

Reynolds number based on this bulk velocity and the inlet channel is ' 1.8×104.

The objective function we are designing for is pressure recovery, which is the difference be-
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tween the velocity-averaged pressure at the outlet and the inlet, normalized by the inlet dynamic

pressure:

PR =

1
Ub,inhin

∫
Γout

u(y)p(y)dy− 1
Ub,outhout

∫
Γout

u(y)p(y)dy

0.5ρU2
b,in

(7)

where Γin is the inlet plane, hin is the inlet plane height, Γout is the out plane, hout is the outlet

plane height, p(y) is static pressure, u(y) is x-velocity, and ρ is density. This measure is often

used in turbomachinery applications as an indicator for the performance of the diffuser designs28.

1. Computational Setup

For this investigation, we use an automated mesh generation that takes in the diffuser length,

output channel width, radius of both corners of the diffuser ramp, and 5 free form deformation

(FFD) parameters that modify the ramp surface, and generates a structured mesh at a given fidelity

level. Free form deformation treats the surface as a bezier curve, and deforms it by moving the

control points for the bezier curve29. The mesh extends to 100h upstream of the diffuser and

to 56h downstream of the diffuser, which corresponds to an adequate extent upstream to ensure

fully developed channel flow at the inlet plane. Following best practice guidelines30, regardless of

the turbulence model being used, the solver is initially run with the Spalart-Allmaras turbulence

model25 until a reasonable convergence level, as this provides a useful restart solution for the solver

that better predicts the boundary layer development. The boundary conditions are a uniform inlet

velocity equal to 19.8m/s, given by a mass flow inlet condition with a constant density, and the

outlet static pressure is set to 101240 bar.

In both applications, we use the SU2 open source solver, and using a 2nd order scheme, a

Roe convective numerical method with a slope limiter for the flow, a scalar upwind scheme for

the turbulence equations, and an implicit time discretization. The solver is run until a Cauchy

convergence criteria of 5×10−5 on the lift coefficient is met. The flow is treated as compressible.

2. Validation

Here we validate the mesh and the computational setup, for two different turbulence models:

the one-equation SA model25, and the two-equation k−ω SST model24. First we generate meshes

for the baseline diffuser geometry at different fidelity levels and look at the pressure recovery for

the two turbulence models, and plot the results in Figure 3. We determine that fidelity level 8 is
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FIG. 3: Validation for the two-dimensional (2D) diffuser computational setup, compared to

experimental results from Buice and Eaton 16: (a) Pressure recovery, (b) Final mesh fidelity.

a suitably fine mesh, which corresponds to 24395 elements, and y+ ' 0.6 on the lower surface at

the inlet to the diffuser. In figure 4 we compare the flow given by this mesh with experimental

results. These results are in agreement with prior numerical investigations30, and we can see that

the SST model predicts the skin friction with higher accuracy, especially on the upper surface

of the diffuser, and gives more accurate velocity profiles than the SA model on Figure 4b. On

Figure 4d we can see that both turbulence models over predict the amount of separation on the

lower surface. The length of the separation bubble is overpredicted by the models by over 15%.

This is in agreement with prior studies of this case6,7. At this juncture, this computational setup is

considered satisfactory to perform optimization studies.

Lim and Choi 11 perform a number of optimization studies on this diffuser case, with different

constraints on the length and width of the diffuser geometry. Many of the optimal designs in Lim

and Choi 11 get very close to having zero friction along the diffuser ramp surface, suggesting that

the optimum shape would be sensitive to the accuracy of this skin friction, and hence the choice

of the turbulence model. This makes it an attractive optimization case to test the effect of the

choice of turbulence model upon the final optimized design. Along with the results of the previous

study by11, the difference in predictions between the SA and SST models highlights the turbulence
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FIG. 4: Validation for the 2D diffuser computational setup, compared to experimental results

from Buice and Eaton 16: (a) Baseline velocity contours using the k−ω SST model, (b)

Comparing X-Velocity predictions to experimental data, (c) Upper surface of diffuser, (d) Lower

surface of diffuser.

model-form uncertainty present in this problem, motivating our investigation into a method that

accounts for this uncertainty in design optimization.
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3. Optimization Setup

With our computational setup, initially we perform deterministic optimization studies on the

diffuser shape using our automated grid generation and the design parameters given in Table I.

Design Parameter Lower Bound Upper Bound Baseline Value

Diffuser Length 10h 30h 22.7h

Outlet Channel Width 2h 15h 4.7h

Ramp Corner Radius 3h 13h 9.7h

FFD Control Point 1 −2h 2h 0h

FFD Control Point 2 −2h 2h 0h

FFD Control Point 3 −2h 2h 0h

FFD Control Point 4 −2h 2h 0h

FFD Control Point 5 −2h 2h 0h

TABLE I: Design Parameters

The free-form deformation (FFD) control points form a 8th order spline, with 9 evenly spaced

control points along the ramp length. The inner 5 FFD control points can move vertically to deform

the shape of the ramp. This keeps the inlet and outlet widths unaffected by the FFD deformation,

letting the FFD points only deform the ramp itself.

The objective function to be minimized is the pressure recovery (given by equation 7) between

the inlet plane and a plane 30 channel widths downstream of the diffuser. The derivative-free opti-

mizer COBYLA (Constrained Optimization By Linear Approximation)31 is used. The COBYLA

algorithm forms a linear approximation of the objective and constraints using interpolation of the

vertices of a simplex, and a trust region to bound the changes to variables at each iteration.

4. Deterministic optimization

To investigate how deterministic design optimization using turbulence models can lead to de-

signs that depend upon the choice of turbulence model, here we consider two separate diffuser

design cases.

The first case considered is when the length of the diffuser is fixed at 22.7h, and the width is
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fixed at 4.7h, and we run two optimization studies, one using the SA model and one using the SST

model. In Figure 5, the convergence of the two optimizations are given. The figure reports the

history of the objective function (normalized pressure recovery, on the y-axis) at successive design

optimization iterations, reported on the x-axis. Every design optimization iteration represents an

intermediate design in the evolution of the diffuser design from the initial to the optimal design.

On Figure 6, the resulting diffuser shapes and skin friction distributions along the lower surface

are plotted. Additionally, results from Lim and Choi 11 are given for this case, where the more

advanced k-ε-v2- f turbulence model is used. As can be seen, the final optimized design is sensitive

to the choice of the turbulence model. Additionally, the performance of the optimal design varies

substantially, depending upon the turbulence model utilized.
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FIG. 5: Convergence of optimizations, for L = 22.7h and W = 4.7h.

We can see that the same qualitative shape has been obtained in all three cases: a bump in

the ramp surface with an initial rapid expansion over the diffuser throat, such that the flow stays

attached until the end of the bump. This is most extreme in the optimal deterministic design

of Lim and Choi 11 , but this can be explained by a comparison between the k-ε-v2- f and SST

turbulence models conducted in Lim and Choi 11: the SST predicts separation earlier than the k-ε-

v2- f model. Therefore the more rapid expansion after the diffuser throat for the optimal design of

Lim and Choi 11 would likely cause the SST model to separate earlier. From the validation results

in Figure 4d, we can see that the SA model predicts separation later than the SST model on the

baseline geometry, which explains why the optimal design using the SA model is between the SST

and k-ε-v2- f optimal designs.
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FIG. 6: (a) Diffuser shape and (b) skin friction coefficient for the optimal designs.

The second case considered is when the length of the diffuser is fixed at 22.7h, and the width is

free to vary. On Figure 7, the convergence of the two optimizations are given, and on Figure 8, the

resulting diffuser shapes and skin friction distributions along the lower surface are plotted. Once

again, we observe that the optimized design and the optimal performance of the diffuser for this

case are sensitive to the choice of the turbulence model used. This sensitivity indicates that the

optimization is sensitive to the uncertainties and error in individual turbulence models as well.
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FIG. 7: Convergence of optimizations, for L = 22.7h and W =free.
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FIG. 8: (a)Diffuser shape and (b)skin friction coefficient for the optimal designs.

Using optimization for design problems such as this means that if the number of design pa-

rameters were increased, the optimum designs may vary slightly. Here, based on the difference

in shapes of the different optimization cases, our parameterization scheme is sufficient to capture

key physical differences and so is sufficient for the purposes of this investigatory study. In a real

design optimization, more optimization parameters may be used to slightly improve the design at

the cost of increased computational effort.

5. Optimization under uncertainty

Next we carry out optimization studies using the eigenspace perturbation methodology to de-

sign the diffuser for similar cases as investigated in for deterministic design optimization. To

illustrate the enveloping approach, figure 9 gives the predicted skin friction coefficient at the

lower surface of the diffuser for the nominal SST model and the 5 perturbed RANS simulations,

for the baseline diffuser (length=22.7h) and a longer diffuser (length=40h).

Next, we optimize the long diffuser using both the deterministic SST model, as well as our

optimization under uncertainty approach where we optimize for the worst case of the objective

function over the eigenspace perturbation solutions. The convergence of the deterministic opti-

mization is reported in Figure 10, and the optimal diffuser shapes and predicted skin friction are
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FIG. 9: Predicted skin friction coefficient at the lower surface of the diffuser for the nominal

turbulence model and the perturbed RANS simulations: (a)Length = 22.7h, (b)Length = 40h

plotted on Figure 11, where they are compared with the baseline long diffuser.
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It is clear that the enveloping optimum is different to the deterministic optimum. Both designs

exhibit a bump on the ramped surface, but the enveloping optimum delays the end of this bump to

farther downstream.

The improvement in robustness of the optimized design with respect to turbulence uncertainty
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FIG. 11: Optimization Results: (a)Optimum shapes, (b)Skin friction predictions over optimum

shapes

can be understood physically by considering the physics based rationale of the objective function

used during optimization, along with the nature of the uncertainty exhibited by the SST model. The

objective function used in the optimization is pressure recovery, defined in equation 7. The primary

objective of any diffuser is to recover the static pressure via reduction of the flow velocity. Ideally,

a diffuser design should be able to convert the maximum possible kinetic energy to pressure.

Pressure recovery measures the rise in static pressure of the flow as it passes though the design.

However, the adverse pressure gradients along the expansion section of the diffuser lead thicker

boundary layers on the lower surface in the expansion section. Such thicker boundary layers are

more susceptible to flow separation. If such flow separation occurs and a reverse flow region is

formed, the effective flow area shrinks. This causes the mean streamwise velocity to increase. As

a result, the pressure recovery of the diffuser is degraded. This flow separation results in total

pressure loss, causing lower static pressure rise and thus degrading pressure recovery. Thus, the

key parameter to maximize pressure recovery across the diffuser is to ensure mitigation of flow

separation.

In spite of the superior accuracy of the SST model (as compared to the SA model, for instance),

the SST model predictions exhibit discrepancy in the C f prediction on the lower surface of the dif-

fuser, where the flow separation and re-attachment manifests. In this context, it has been exhibited
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that RANS based models underpredict the length of the diffuser separation bubble by over 10%32.

This is exhibited in Figure 12. Figure 12 (a) and (c) report the mean streamlines in the diffuser for

the extremal perturbations, compared to the case for the nominal, unperturbed turbulence model

in (b). As can be seen, the extent of the separation bubble can be larger than that predicted by

the nominal, unperturbed turbulence model. This degrades the robustness of designs optimized

using the baseline RANS model. Even at such an optimized deterministic design, where the flow

separation is (say) absent according to the nominal turbulence model, the real flow may still ex-

hibit separation thus degrading pressure recovery. As is reported in Figure 11, the OUU optimized

design ensures that not only is flow separation suppressed completely for the nominal turbulence

model, it is also absent in the perturbed RANS predictions. This ensures that the diffuser pressure

recovery is optimized, and the design is robust to the errors and uncertainties of the RANS model.

This highlights how using the enveloping method within our optimization framework resulted

in a design that is less sensitive to the turbulence-modelling uncertainties inherent in the simula-

tion.

B. NACA0012 airfoil at high angle of attack

Airfoil shapes form an important component for the design and performance of various

aerospace applications, such as the wing tips of aircraft, inboard and outboard blades of heli-

copters, along with wind turbine blades. The performance of these applications can benefit from

careful airfoil shape optimization. Deterministic optimization of airfoil shapes often leads to de-

signs where the actual performance is substantially worse than in simulations due to uncertainties

in simulations33,34.

A significant measure of this uncertainty can be attributed to the turbulence models used in

simulations. This is exhibited in figure 13, where the variation in the coefficient of lift, CL, with

the angle of attack, α , is reported for the NACA 0012 and NACA 4412 shapes. The experimental

data are represented by filled circles and correspond to the experiment of Ladson 35 for the NACA

0012 airfoil and Coles and Wadcock 36 for the NACA 4412 airfoil case. The baseline k−ω SST

model predictions by the dark line. As can be observed in the figure, at low angles of attack, the

predictions of the RANS model agree with the experimental data. However, the fidelity of the

RANS model deteriorates at higher angles of attack. For instance, at higher angles of attack closer

to stall for the NACA 0012 airfoil case, the RANS model predicts stall at an angle of attack of
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(a
)	

(b
)	

(c
)	

(d
)	

FIG. 12: Modeling rationale for Design Under Uncertainty (DUU) design: (a) Diffuser mean

streamlines under maximal production perturbation, (b) Mean streamlines predicted by

unperturbed model, (c) Diffuser mean streamlines under minimal production perturbation, (d)

Coefficient of friction over the lower surface of the diffuser.
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12◦. The experimental data suggest that this phenomenon occurs at an angle of attack of 18◦.

On the contrary, for the NACA 4412 airfoil case, the RANS model under-predicts the incidence

and severity of stall. Thus, a major source of uncertainty in airfoil design and optimization are

the RANS models used in simulations. It has been observed in prior literature that the optimized

airfoil shape is highly sensitive to the choice of the RANS model used in design simulations10.

For both the airfoil shapes, the uncertainty estimates for CL given by the eigenspace pertur-

bation methodology are exhibited in figure 13 via the grey shaded zone. The figures reflect that

the eigenspace perturbation methodology is able to account for the discrepancy between RANS

predictions and high fidelity data.

(a)	 (b)	

FIG. 13: Variation in the coefficient of lift, CL, with the angle of attack, α , for the (a) NACA

0012 airfoil with the experimental data of Ladson 35 , (b) NACA 4412 airfoil with the

experimental data of Coles and Wadcock 36 .

1. Computational Setup

Here, we outline the conditions for the NACA 4412 experiment of Coles and Wadcock 36 .

Thence, the computational domain and setup and the numerical schemes for our simulations in

figure 13 (b) are outlined. The same discussions for the NACA 0012 airfoil simulations and the

experiment of Ladson 35 are discussed afterwards.

The NACA 4412 airfoil experiment corresponds to free-stream conditions of M = 0.09, Rec =
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1.52× 106 and T = 300K. The two-dimensional discretized domain consists of an unstructured,

O-mesh conforming to the airfoil surface with 36,145 total elements. The mesh is hybrid with

quadrilaterals in the regions adjacent to the airfoil surface and triangular elements in the remain-

ing domain. The far field boundary is over 20 chord lengths away from the airfoil. The mesh

spacing at the airfoil surface is small enough to ensure y+ < 1 and the mesh independence has

been reported37. With respect to the numerical scheme, we utilize Roe’s second order upwind

scheme38 to calculate the convective fluxes and use the Venkatakrishnan’s limiter39 on the primi-

tive variables. Turbulent variables are convected using a second order scalar upwind method and

the viscous fluxes are calculated using the corrected average gradient method. Implicit time step-

ping is utilized to converge to the steady state solution and the linear system is solved with the

Generalized Minimal Residual method40 with a maximum error tolerance of 0(10−6).

The NACA 0012 airfoil experiment corresponds to free-stream conditions of M = 0.15, Rec =

6×106 and T = 300K. The two-dimensional discretized domain consists of a C-mesh of quadrilat-

eral elements conforming to the airfoil surface with 897 nodes in the airfoil-normal and 257 nodes

in the airfoil-tangent directions. The far field boundary is placed over 500 chord lengths from

the airfoil surface. The mesh spacing at the airfoil surface is small enough to ensure y+ < 1 and

the mesh independence has been reported37. We utilize Roe’s second order upwind scheme38 to

calculate the convective fluxes and use the Venkatakrishnan’s limiter39 on the primitive variables.

The turbulent variables for the closure models are convected using a first-order scalar upwind

method. The viscous fluxes are calculated using the corrected average gradient method. Implicit

time stepping is utilized to converge to the steady state solution and the linear system is solved

with the Generalized Minimal Residual method40 with a maximum error tolerance of 0(10−6) for

the nonlinear iterations of the flow solver.

2. Optimization Setup

In light of the behaviour illustrated on Figure 13, the design of a NACA 0012 airfoil near

stall is chosen as a test problem for design under turbulence model form uncertainty. For this

investigation, we perform optimizations at a single angle of attack, 14◦.

The objective is to minimize −1× lift to drag ratio, at a Mach number of 0.15 and a Reynolds

number of 6× 106, starting from the baseline NACA0012 geometry. The design space is pa-

rameterized using 4 Hicks-Henne bump functions on the upper and lower surfaces of the airfoil,
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located at the following chord locations: 0.2, 0.4, 0.6, 0.8. The bounds on these design variables

are ±0.05 chord lengths. Hicks-Henne bump functions (in contrast to free form deformation) de-

form the surface by super-imposing a bump function (with zero derivative at either end to ensure

smooth deformation) of variable magnitude on the airfoil geometry at a given location; it is a

common method of parameterizing airfoil shapes for optimization41.

A geometry constraint is imposed: a torsion box of size 0.5×0.08 chord lengths (that just fits

inside the NACA0012, as exhibited in figure 14) airfoil must fit inside the deformed geometry.

This is measured by “box protrusion” which must be ≤ 0.

FIG. 14: Mesh and box for the baseline NACA0012 airfoil

Since it is not trivial to obtain a gradient for the worst-case L/D, here we use the derivative

free optimizer COBYLA31 to avoid any issues with gradient analysis. We run a deterministic

optimization, where no eigenspace perturbations are performed, and an “enveloping” optimization,

where the worst case over the five enveloping simulations is optimized. This worst case L/D is

found using interval arithmetic on the values of lift and drag.

24



Optimization under turbulence model uncertainty for aerospace design

3. Optimization Results

The following labels are used: “Det” refers to the optimization minimizing -L/D, “Env” refers

to the optimization minimizing the worst case of -L/D over the five enveloping runs, “Nominal”

refers to a simulation without any eigenspace perturbations, and “n0012” refers to the NACA0012

airfoil. Figure 15 gives the convergence of the optimizations, as well as the airfoil shapes of the

designs resulting from each optimziation.
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FIG. 15: Optimization results: (a) Convergence history given as the lift/drag ratio at each

optimization iteration, (b) Optimum airfoil shapes.

The differences in the shapes of the two optimized airfoils can be analyzed considering the flow

physics, the underlying model predictions and the optimization objective function. Maximizing

the ratio of lift to drag is a common objective in the optimization of airfoils. Here, the drag over the

airfoil is composed of the friction drag (due to viscous shear), and form drag (due to displacements

of boundary layers and the ensuing wake). At high Reynolds numbers and with separation, the

form drag and the ensuing airfoil performance is heavily influenced by the separation bubble,

located at the onset of the pressure recovery region. While both the size and the location of this

separation bubble are functions of the airfoil shape, the angle of attack, etc, the size of the bubble

is the key parameter to maximize the objective function. If the separation bubble is small, the

mixing losses can be minimized. However, if the bubble is large, the ensuing mixing lead to large

increment in the drag.
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During optimization, the degrees of freedom on the shape of the airfoil are used to create the

characteristic bump on the airfoil, to fill the space of the potential separation bubble42,43. This

peculiarity of the shape reduces the drag occurring due to the mixing during the separation and

re-attachment.

For the optimization at 14◦, the baseline SST k−ω model predicts mild separation. Under

such conditions, adding a bump to the profile would not alleviate the form drag significantly,

while it would increase friction drag. However, for the optimization under uncertainty, we are

optimizing for a case under severe separation. Thus, for the latter case, the optimization leads to

the manifestation of the pronounced characteristic bump on the suction surface of the airfoil to

minimize the form drag.

To further investigate these two designs, the lift and drag values resulting from the five envelop-

ing simulations are plotted on Figure 16, where they are compared to the baseline NACA0012

design. On Figure 17, the upper surface pressure and friction distributions evaluated by each en-

veloping simulation are plotted for the optimum airfoils. On Figure 18, the lift and drag polars of

the optimum designs are plotted.
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FIG. 16: Forces for perturbed simulations on the two optimum airfoils. (a) Lift and drag of

enveloping simulations, (b) Nominal value and bounds on lift-to-drag
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FIG. 17: Friction and pressure distributions over the upper surface of the two optimum airfoils.

"Env" indicates the design resulting from optimization of the worst case from the perturbed

simulations, and "det" indicates that resulting from deterministic optimization. (a) Upper surface

friction distribution, (b) Upper surface pressure distribution.
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These results show a clear difference between the optimal designs resulting from a determin-

istic optimization and the enveloping approach. The deterministic optimum begins to stall in a

perturbed solution on Figure 18 as early as 10◦, whereas no solution begins to stall until 14◦ for

the enveloping optimum. This indicates a design that is more robust with respect to turbulence-

based modelling uncertainties.

We can also see from figure 16 that the drop off in performance under multiple of the perturbed

solutions is significant (the solutions in the upper left of figure 16a). Therefore this improved

robustness is desired from a design point of view.

We can observe that due to there being a reasonably linear correlation between increased lift and

reduced drag in the variation in the perturbed solutions on Figure 16a, the reduction in performance

is primarily due to earlier separation.

IV. CONCLUSIONS

Turbulence models have structural uncertainties associated with their predictions. When tur-

bulence models are used in design optimization, they can lead to sub-optimal designs whose per-

formance is degraded in reality compared to the predicted performance. Numerous investigators

have observed that designs optimized using a given turbulence model are sensitive to the choice of

the turbulence model. While the importance of accounting for turbulence model-form uncertainty

in design optimization has been established, not much research has been done to this end.

In this investigation, we outline a design under uncertainty methodology intended to obtain

an optimized design that is robust to the structural uncertainty in turbulence models. This is

done via the use of an optimization under uncertainty (OUU) formulation in conjunction with the

eigenspace perturbation uncertainty estimation framework.

In both an asymmetric diffuser and an airfoil design problem, we find that the designs result-

ing from our OUU formulation exhibit higher robustness to turbulence model form uncertainty.

Additionally, using numerical experiments over different turbulence models, we illustrate how de-

terministic design optimization using turbulence models leads to designs that are not universal but

are dependent upon the choice of the turbulence model.

This study is a first step towards answering the question of how turbulence modelling uncer-

tainty should most appropriately be considered in a simulation-based design framework. When

probabilistic operational uncertainties are also present, the problem becomes a mixed-uncertainty
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optimization problem, for which recently developed OUU methods may be well suited.
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turbulence model on the optimization of a class-shape transformation parameterized airfoil.”

Thermal Science 21 (2017).
11S. Lim and H. Choi, “Optimal shape design of a two-dimensional asymmetric diffuser in turbu-

lent flow,” AIAA journal 42, 1154–1169 (2004).
12A. Vuruskan and S. Hosder, “Investigation of the impact of turbulence models on robust aerody-

namic shape optimization,” in 2018 AIAA Aerospace Sciences Meeting (2018) p. 0553.

29



Optimization under turbulence model uncertainty for aerospace design

13A. A. Mishra, J. Mukhopadhaya, G. Iaccarino, and J. Alonso, “Uncertainty estimation module

for turbulence model predictions in SU2,” AIAA Journal 57, 1066–1077 (2018).
14G. Iaccarino, A. Mishra, and S. Ghili, “Eigenspace perturbations for uncertainty estima-

tion of single-point turbulence closures,” Physical Review Fluids 2 (2017), doi: 10.1103/

PhysRevFluids.2.024605.
15S. Banerjee, R. Krahl, F. Durst, and C. Zenger, “Presentation of anisotropy properties of tur-

bulence, invariants versus eigenvalue approaches,” Journal of Turbulence 8, N32 (2007), doi:

10.1080/14685240701506896.
16C. Buice and J. Eaton, “Experimental investigation of flow through an asymmetric plane diffuser,

dept. of mech. eng,” (1997).
17M. M. Putko, A. C. Taylor, P. A. Newman, and L. L. Green, “Approach for input uncertainty

propagation and robust design in CFD using sensitivity derivatives,” Journal of Fluids Engineer-

ing 124, 60–69 (2002).
18M. E. Harr, Reliability based design (Dover, New York, 1996).
19L. Cook and J. Jarret, “Optimization using multiple dominance criteria for aerospace design

under uncertainty,” AIAA Journal 56 (2018).
20D. Bertsimas and M. Sim, “The price of robustness,” Operations research 52, 35–53 (2004).
21A. H. Shokouhi, A. Hatami-Marbini, M. Tavana, and S. Saati, “A robust optimization approach

for imprecise data envelopment analysis,” Computers & Industrial Engineering 59, 387–397

(2010).
22A. Ben-tal and A. Nemirovski, “Robust convex optimization,” Mathematics of Operations Re-

search 23 (1998).
23“Comparison of robust optimization methods applied to hypersonice vehicle design,” Journal of

Aircraft 52 (2015).
24F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,”

AIAA journal 32, 1598–1605 (1994).
25P. Spalart and S. Allmaras, “A one-equation turbulence model for aerodynamic flows,” in 30th

aerospace sciences meeting and exhibit (1992) p. 439.
26E. M. Cherry, C. J. Elkins, and J. K. Eaton, “Geometric sensitivity of three-dimensional sepa-

rated flows,” International Journal of Heat and Fluid Flow 29, 803–811 (2008).
27E. Cherry, G. Iaccarino, C. Elkins, and J. Eaton, “Separated flow in a three-dimensional diffuser:

preliminary validation,” Annual Research Briefs 2006, 57–83 (2006).

30



Optimization under turbulence model uncertainty for aerospace design

28D. G. Wilson and T. Korakianitis, The design of high-efficiency turbomachinery and gas turbines

(MIT press, 2014).
29T. W. Sederberg and S. R. Parry, “Free-form deformation of solid geometric models,” SIG-

GRAPH Computer Graphics 20 (1986).
30S. Obi, K. Aoki, and S. Masuda, “Experimental and computational study of turbulent separating

flow in an asymmetric plane diffuser,” in Ninth Symposium on Turbulent Shear Flows, Hyoto,

Japan (1993).
31M. J. Powell, “A direct search optimization method that models the objective and constraint

functions by linear interpolation,” in Advances in optimization and numerical analysis (Springer,

1994) pp. 51–67.
32C. Heschl, K. Inthavong, W. Sanz, and J. Tu, “Evaluation and improvements of rans turbulence

models for linear diffuser flows,” Computers & fluids 71, 272–282 (2013).
33M. Drela, “Pros and cons of airfoil optimization,” Frontiers of computational fluid dynamics

1998, 363–381 (1998).
34L. Huyse, S. L. Padula, R. M. Lewis, and W. Li, “Probabilistic approach to free-form airfoil

shape optimization under uncertainty,” AIAA journal 40, 1764–1772 (2002).
35C. Ladson, “Effects of independent variation of mach and reynolds numbers on the low-speed

aerodynamic characteristics of the naca 0012 airfoil section nasa-tm-4074,(l-16472, nas 1.15:

4074),” Hampton, VA: National Aeronautics and Space Administration, Langley Research Cen-

ter (1988).
36D. Coles and A. J. Wadcock, “Flying-hot-wire study of flow past an naca 4412 airfoil at maxi-

mum lift,” AIAA Journal 17, 321–329 (1979).
37F. Palacios, T. D. Economon, A. C. Aranake, S. R. Copeland, A. K. Lonkar, T. W. Lukaczyk,

D. E. Manosalvas, K. R. Naik, A. S. Padrón, B. Tracey, et al., “Stanford university unstructured

(su2): Open-source analysis and design technology for turbulent flows,” AIAA paper 243, 13–17

(2014).
38P. L. Roe, “Approximate riemann solvers, parameter vectors, and difference schemes,” Journal

of computational physics 43, 357–372 (1981).
39V. Venkatakrishnan, “Convergence to steady state solutions of the euler equations on unstruc-

tured grids with limiters,” Journal of computational physics 118, 120–130 (1995).
40Y. Saad and M. H. Schultz, “Gmres: A generalized minimal residual algorithm for solving

nonsymmetric linear systems,” SIAM Journal on scientific and statistical computing 7, 856–869

31



Optimization under turbulence model uncertainty for aerospace design

(1986).
41.
42M. Drela, “Low-reynolds-number airfoil design for the mit daedalus prototype-a case study,”

Journal of Aircraft 25, 724–732 (1988).
43L. Huyse, “Free-form airfoil shape optimization under uncertainty using maximum expected

value and second-order second-moment strategies,” Tech. Rep. NASA/CR-2001-21102 (Hamp-

ton,Virginia, 2001).

32


