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This paper presents a nonlinear dimensionality reduction technique for obtaining nonlinear

reduced-order models. The approach is data-driven and flexible in the types of data that may

be used. Specifically, the reduced-order model is identified using training data that may be

generated via simulation, experimental observations, or a combination of both. The first step in

the approach is to collect a training dataset that comprises state solutions and/or observations

that are representative of the dynamics to be approximated. The second step is to derive an

intermediate linear model using the dynamic mode decomposition (DMD). This linear model is

chosen to have a dimension that retains all available information from the dataset. The third

step is to perform nonlinear dimension reduction, by retaining a limited number of modes in

the DMD model and adding a quadratic closure term to represent the effects of the truncated

modes. This quadratic closure term is inferred from the original dataset by solving a linear

least-squares regression problem. Reduced-order modeling using the proposed approach is

demonstrated in both the low-data regime and sufficient-data regime. In a low-data regime, the

proposed approach yields improvement in predicting dynamics beyond the training dataset,

when compared to other linear dimensionality reduction techniques. We demonstrate this using

an illustrative Burgers’ equation numerical example. An application example considers an

experimental dataset of time-resolved particle image velocimetry of rotorcraft blades in hover

mode. Applying the proposed approach to this experimental dataset leads to effective nonlinear

reduced models of the rotor blade interaction with the surrounding air.
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x̃ ℓ-dimensional intermediate state vector

x̂ 𝑟-dimensional reduced-order state vector

X,X′ snapshot matrices

𝑁 full-order model state dimension

ℓ, 𝑟 reduced-order model state dimensions

A linear system matrix

Ã rank ℓ approximation of A

Â, Ĥ reduced-order system operators

U,𝚽 left singular vectors

V,𝚿 right singular vectors

𝚺,𝚯 singular value matrix

E linear projection error

𝚽 shape factor for closure term

𝛾 regularization factor

I. Introduction
Partial differential equations (PDEs) model the governing dynamics of many physical sciences (fluid flows, solid

mechanics, etc.) and engineered systems (airplanes, combustion engines, rotorcraft, etc.). Numerical models of these

PDEs typically result in high-dimensional nonlinear systems that are computationally expensive to solve. Reduced-order

models (ROMs) are often used as approximations, such that the physical system’s dynamics are approximated at reduced

computational costs. Deriving these ROMs requires training data; in most applications, these data are generated by

solving the original expensive PDE model for representative conditions. The generation of sufficient training data

can become computationally prohibitive at the scale needed for many practical applications. This paper considers the

derivation of ROMs in settings where only a small amount of data is available to train the ROM. These data may be

generated numerically and/or experimentally.

ROMs developed using projection-based methods have been used extensively in various applications, especially

in fluid flows [1]. An essential aspect of projection-based ROMs is finding an appropriate basis that defines a

low-dimensional subspace onto which the high-dimensional system is projected [2]. The widely used proper orthogonal

decomposition (POD) [3] provides a basis for modal decomposition via an optimal representation of the kinetic

energy included in a training dataset [4]. Another approach to data-driven model reduction is the dynamic mode

decomposition (DMD) [5]; here, nonlinear system observables are used to obtain an approximation of the Koopman

operator, an infinite dimensional linear operator. DMD-based methods have shown great success in developing
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ROMs and uncovering underlying physics [5–10]. Other successful recent methods for data-driven reduced-order

modeling include the sparse identification of nonlinear dynamics (SINDy) for ordinary and partial differential equations

[11, 12] and operator inference for non-intrusive projection-based model reduction [13–16]. Despite the success of

these techniques for challenging problems, their dependence on linear dimensionality reduction compromises their

effectiveness in problems characterized by strong nonlinearity, especially when training data are sparse.

Recent years have seen growth in nonlinear dimensionality reduction techniques for physics-based ROMs. For

instance, convolutional autoencoders have provided an approach for identifying a nonlinear manifold on which the

system’s dynamics can be represented more accurately than for the linear subspace defined by a similar POD compression

[17]. However, as the number of trainable parameters scales with the dimensionality of input data and the complexity

of the neural network architecture, these autoencoder models quickly become computationally intractable even for

two-dimensional PDE settings [18]. Recent approaches, see [19], exploit the benefits of both POD and autoencoder

approaches while mitigating potential limitations, including the computational cost associated with training and

testing. In parallel to these developments, quadratic solution manifolds have emerged as a promising tool for nonlinear

dimensionality reduction in projection-based model reduction [16, 20–22]. The construction of a quadratic manifold

scales to large-scale problems and remains interpretable when combined with a projection-based reduced-order model.

In [16], it was noted that projection onto a quadratic manifold could be interpreted as a form of closure modeling

that accounts for the effects of truncated modes. It is well documented in the literature that errors due to truncation

compromise the robustness and effectiveness of the resulting ROMs, especially for applications that involve future-state

prediction and rely on the long-term stability of ROMs [23, 24]. In [25], the authors propose a data-driven closure

modeling approach using sparse regression and neural networks. Further, closure models have also been introduced to

correct for specific errors that may arise due to truncation, for example, to account for truncation of low-energy modes

(especially in POD-based ROMs) [26], to account for multi-scale features [27], and to account for parameter variations

using learning-based closure models [28]. A detailed list of closure models for ROMs can also be found in [26].

In this work, we draw on three concepts in data-driven modeling: (1) a best-fit linear evolution operator that advances

the states of nonlinear dynamical systems forward in time, (2) a dimensionality reduction step to exploit low-dimensional

structure in data, and (3) a nonlinear dimensionality reduction via a quadratic manifold that introduces a closure term to

account for the effects of truncated modes. The resulting algorithm is scalable to large-scale systems and produces a

low-dimensional ROM with a linear-quadratic structure.

This paper is organized as follows. Section II provides a mathematical overview of linear dimensionality reduction,

motivates the need for closure models, and introduces the data-driven approach to identify the closure term. We

demonstrate how a nonlinear reduction with quadratic manifolds produces a linear-quadratic model and how adding the

quadratic closure term helps minimize projection error encountered in linear dimensionality reduction. We illustrate

this using a low-dimensional example of cylinder vortex shedding. Section III demonstrates the proposed method’s
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improved future state prediction capabilities on the low-viscosity Burgers equation, and an experimental dataset obtained

for modeling the flow field of a hovering helicopter rotor. Finally, we provide concluding remarks in section IV.

II. Approach

Nonlinear system trajectory Identify large linear subspace Approx. in quadratic manifold
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Fig. 1 The figure highlights the three-step process to obtain a DMD model with quadratic closure. The upper
gray blocks shows the overview of the mathematical process involved, while the lower gray blocks provides a
geometrical interpretation of each step’s results.

Fig. 1 provides an overview of the approach that is presented in this section. Consider a discrete-time nonlinear

system of the form

x 𝑗+1 = F(x 𝑗 ), (1)

where x 𝑗 ∈ R𝑁 is the state of the system at time 𝑡 𝑗 and F : R𝑁 ↦→ R𝑁 is the nonlinear map that propagates the system

from time 𝑡 𝑗 to 𝑡 𝑗+1. We target problems for which the system in Eq. (1) is high-dimensional; that is, the number of

degrees of freedom 𝑁 ≫ 1. Given the initial condition x0, we collect the system’s trajectory data for the duration of the

time period of interest, such that time index 𝑗 = 0, 1, · · · , 𝑘 .

A. Linear dimensionality reduction using dynamic mode decomposition

The system in Eq. (1) is nonlinear; we will first obtain an intermediate linear approximation of the system using

DMD. To obtain this linear map from data, we collect the system trajectories into two time-shifted snapshot matrices
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X ∈ R𝑁×𝑘 and X′ ∈ R𝑁×𝑘 given as

X =

©­­­­­­­«
| | |

x0 x1 · · · x𝑘−1

| | |

ª®®®®®®®¬
; X′ =

©­­­­­­­«
| | |

x1 x2 · · · x𝑘

| | |

ª®®®®®®®¬
, (2)

where typically 𝑁 > 𝑘 for high-dimensional problems. In Eq. (2), each column in the matrices is a sampled state vector

x 𝑗 at time index 𝑗 . One approach to obtaining a best-fit linear operator for this dataset is to solve for a reduced-rank

approximation Ã ∈ Rℓ×ℓ using the DMD algorithm [5, 29, 30].

The POD modes are obtained by decomposing the snapshot matrix using the singular value decomposition (SVD)

such that X = U𝚺V⊤. The singular value matrix 𝚺 is a diagonal matrix containing the singular values 𝜎1, 𝜎2, · · · . There

are at most ℓ ≤ min(𝑁, 𝑘) non-zero singular values, ordered as 𝜎1 ≥ 𝜎2 · · · ≥ 𝜎ℓ > 0. We note that in the low-data

regime, that is when the number of snapshots 𝑘 is small and 𝑘 ≪ 𝑁 , we expect ℓ = 𝑘 . In this first linear dimensionality

reduction step, we retain ℓ left singular vectors to form the POD basis. This retains the maximum information available

in the data by discarding only the modes associated with zero singular values. The DMD best-fit rank-ℓ linear operator

is then given by

Ã = U⊤
ℓ X′V⊤

ℓ 𝚺
−1
ℓ , (3)

where Uℓ are the dominant ℓ POD modes of the snapshot matrix X.

Obtaining a reduced-rank approximation Ã defines an intermediate linear system,

x̃ 𝑗+1 = Ãx̃ 𝑗 , x̃ 𝑗 ∈ Rℓ . (4)

The goal now is to reduce this system to a compact representation of dimension 𝑟 ≤ ℓ. In many cases, an 𝑟th-order

linear DMD representation will be adequate; however, in some cases, even choosing 𝑟 = ℓ leads to a linear ROM with

limited predictive capability. One is faced with a key tension: choosing 𝑟 to be small (i.e., retaining only the dominant

modes) leads to a ROM that is robust and stable, but that is inaccurate due to the effect of truncated modes. Increasing 𝑟

(i.e., 𝑟 → ℓ) reduces the projection error of representation in the linear subspace, but as higher order modes are included,

one often obtains a ROM that in unstable and/or lacks robustness.

This motivates our approach: we approximate the ℓth-order system (4) in a quadratic manifold, following the

approach of [16]. In doing so, our reduced-order state is represented in an 𝑟th-order space comprised of the dominant

modes, while the truncated modes are accounted for through the quadratic closure term. The closure term allows for the
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ROM’s dynamics to include components in all ℓ modes present in the snapshot data, but in contrast to a direct ℓth-order

DMD approximation, the modal coefficients for the higher-order modes are constrained (as quadratic functions of the

modal coefficients of the first 𝑟 modes). In our numerical results we observe that this approach permits us to achieve

accurate, stable ROMs in cases where DMD fails to provide accurate predictions outside of the training regime.

B. Data-driven closure modeling to minimize projection error

An 𝑟th-order linear DMD ROM would take the form

x̂ 𝑗+1 = Âx̂ 𝑗 , x̂ 𝑗 ∈ R𝑟 , (5)

where Â ∈ R𝑟×𝑟 is the 𝑟 × 𝑟 upper block of Ã. Following the ideas in [16], we employ a quadratic closure term that

accounts for the remaining ℓ − 𝑟 modes that have been truncated compared with the DMD system (4). Notionally, one

can consider the closure term to provide a mapping between the truncated state x̂ 𝑗 ∈ R𝑟 and the DMD state x̃ 𝑗 ∈ Rℓ ,
where the mapping takes the form

x̃ 𝑗 ≈ 𝚽x̂ 𝑗 +𝚽(x̂ 𝑗 ⊗ x̂ 𝑗 ), 𝑗 = 0, · · · , 𝑘 − 1. (6)

Here, 𝚽 =

[
I𝑟×𝑟 0⊤(ℓ−𝑟 )×𝑟

]⊤
∈ Rℓ×𝑟 , so that the term 𝚽x̂ 𝑗 yields the ℓth-order vector [̂x⊤𝑗 0⊤ℓ−𝑟 ]⊤. The term 𝚽(x̂ 𝑗 ⊗ x̂ 𝑗 ),

with 𝚽 ∈ Rℓ×𝑟2 , introduces components of the solution in the directions of the neglected ℓ − 𝑟 modes. Important to note

is that these ℓ − 𝑟 higher-order modes do not have their own free modal coordinates; rather, they are constrained through

the term (x̂ 𝑗 ⊗ x̂ 𝑗 ) to be quadratic products of the first 𝑟 modal coordinates. The matrix 𝚽 is determined by solving a

linear least-squares problem that minimizes the projection error due to the truncation from ℓ to 𝑟 modes:

𝚽 = arg min
𝚽∈Rℓ×𝑟2

1
2

𝑘−1∑︁
𝑗=0

∥x̃ 𝑗 −𝚽x̂ 𝑗 −𝚽(x̂ 𝑗 ⊗ x̂ 𝑗 )∥2
2. (7)

To simplify the notation, we define matrices P = X̃ −𝚽X̂ and Ŵ := X̂ ⊙ X̂, where ⊙ is the column-wise Kronecker

product∗. While Eq. (7) can be solved, in practical applications the reduced-order snapshot matrices can be ill-conditioned.

Hence, we solve a regularized least-squares problem using Tikhonov regularization. The regularized least-squares

problem to be solved is

𝚽 = arg min
𝚽∈Rℓ×𝑟2

1
2
∥X̃ −𝚽X̂ −𝚽Ŵ∥2

𝐹 + 𝛾

2
∥𝚽∥𝐹 , (8)

with 𝛾 > 0 is a scalar regularization parameter. Note that by construction, we have 𝚽⊤
𝚽 = 0 (see [16]).

∗During implementation, the Kronecker product of a vector can be reduced in size by accounting for repeated entries only once. This reduces the
size of the product to 𝑟 (𝑟 + 1)/2 terms, instead of 𝑟2 terms.
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C. Reduced-order models using quadratic closure

Substituting the approximation Eq. (6) into the linear system Eq. (4), employing a Galerkin projection, and using the

orthogonality property 𝚽
⊤
𝚽 = 0, results in the ROM

x̂ 𝑗+1 = Âx̂ 𝑗 + Ĥ(x̂ 𝑗 ⊗ x̂ 𝑗 ), x̂ 𝑗 ∈ R𝑟 , (9)

where Â = 𝚽⊤Ã𝚽 and Ĥ = 𝚽⊤Ã𝚽. It can been seen that the quadratic closure term leads to a ROM that has

linear-quadratic form.

The solution for the reduced-order states is obtained in the low-dimensional coordinates by solving Eq. (9) in time.

The full-order state approximations of the system can be then computed as

x 𝑗 ≈ Uℓ𝚽x̂ 𝑗 + Uℓ𝚽(x̂ 𝑗 ⊗ x̂ 𝑗 ) = U𝑟 x̂ 𝑗 + Uℓ𝚽(x̂ 𝑗 ⊗ x̂ 𝑗 ). (10)

The relation in Eq. (10) emphasizes the point that the nonlinear manifold approximation of the solution comprises two

parts: the term U𝑟 x̂ 𝑗 yields an approximation that lies in the subspace spanned by the first 𝑟 POD modes, while the

term Uℓ𝚽(x̂ 𝑗 ⊗ x̂ 𝑗 ) introduces components in the subspace spanned by POD modes U𝑟+1 . . .Uℓ . As noted in Sec. II,

this approach may be attractive for problems where directly including the higher order POD modes (i.e., choosing

x 𝑗 ≈ Uℓ x̂ 𝑗) leads to a ROM that is unstable and/or lacks robustness. The process of obtaining ROMs using DMD

combined with a quadratic closure is summarized in Algorithm 1.

Algorithm 1 DMD model reduction with quadratic closures.
Input: Snapshot data {x1, x2, . . . , x𝑘}
Output: Reduced model operators Â, Ĥ, basis matrices Uℓ ,𝚽

{Best-fit linear representation of nonlinear dynamics}
1: Arrange the snapshot data into matrices as per Eq. (2)
2: Compute the singular value decomposition X = U𝚺V⊤

3: Set ℓ equal to the number of nonzero singular values of X (note ℓ ≤ min(𝑁, 𝑘)); define Uℓ as the leading ℓ columns
of U

4: Compute the rank-ℓ linear matrix Ã = U⊤
ℓ X′Vℓ𝚺−1

ℓ

{Learning the quadratic manifold}
5: Compute reduced snapshots X̃ = U⊤

ℓ X and X̂ = U⊤
𝑟 X

6: Compute the nonlinear basis matrix 𝚽 by solving Eq. (8) for a given value of 𝛾

{Define the low-dimensional dynamical system}
7: Compute the ROM operators Â = 𝚽⊤Ã𝚽 and Ĥ = 𝚽⊤Ã𝚽
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D. Geometric depiction: A mechanistic low-dimensional model for cylinder flow

In this section, we depict the ideas geometrically using a low-dimensional mechanistic model of a cylinder wake. The

model is obtained from [31], where the authors propose a model to highlight the key physical process in the dynamics

of cylinder wakes. The three-dimensional model captures empirical behavior from Galerkin-based approaches while

providing physical insights into the amplitude selection mechanisms. The model described by ordinary differential

equations is

¤𝑢 = 𝜇𝑢 − 𝑣 − 𝑢𝑤 (11)

¤𝑣 = 𝜇𝑣 + 𝑢 − 𝑣𝑤 (12)

¤𝑤 = −𝑤 + 𝑢2 + 𝑣2. (13)

Here, the states of the system x = (𝑢, 𝑣, 𝑤) are components of the velocity in 𝑥, 𝑦, 𝑧 directions and the constant 𝜇 = 1/10.

Eq. (13) has an unstable equilibrium point at the origin x𝑒 = (𝑢𝑒, 𝑣𝑒, 𝑤𝑒) = 0. The system also has a periodic stable

solution, which defines a limit cycle of radius √𝜇 in the 𝑤 = 𝜇 plane. Therefore, as described in [31], the model mimics

the flow around a cylinder with an unstable steady solution and a periodic vortex shedding that is stable. Throughout

this section, the numerical simulation is initialized with an initial condition x0 = (0.001, 0, 0.0001), and the simulation

time is 𝑡 = [0, 30] with a step size Δ𝑡 = 0.01.

Once the system trajectories are collected in snapshot matrices of the form shown in Eq. (2), we use the DMD

algorithm [5], to obtain a linear ROM of the form (4). We then compute the quadratic closure and form the linear-quadratic

ROM using Algorithm 1; note we do not employ regularization for this problem. Fig. 2 shows approximated trajectories

for ROMs of size 𝑟 = 2 for both DMD and the proposed approach of DMD plus quadratic closure. Fig. 2a depicts the

linear subspace in which DMD approximates the trajectory, while Fig. 2b depicts how the closure brings in a component

of the approximation the third dimension (i.e., the dimension orthogonal to the linear subspace shown in Fig. 2a). For

this example, the quadratic closure term leads to approximately 50% reduction in the approximation error integrated

over the trajectory. Fig. 2b also illustrates that because the linear-quadratic ROM still only has two degrees of freedom,

the three-dimensional trajectory cannot be represented exactly. Clearly in this example, one would prefer to take the

extra dimension as a full degree of freedom—it is important to note that we would not advocate for the quadratic closure

approach in such a case. Rather, the example is presented to give an intuitive geometric picture of how the approach

works.

III. Results
In this section, we demonstrate the predictive capabilities of the proposed approach on two examples. The first is

a numerical simulation of Burgers’ equation.The second is an experimental dataset of time-resolved particle image
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Fig. 2 Geometric depiction on cylinder wake example from [31], showing ROMs of state dimension 𝑟 = 2
developed using (a) DMD and (b) the proposed approach of DMD plus a quadratic closure.

velocimetry (TR-PIV) data obtained from the flowfield of helicopter blades. The ROMs for the Burgers’ equation

example are developed for two cases (i) a low-data regime and (ii) a sufficient-data regime. However, since it is typical

to have access to limited measurements for the experimental datasets, we evaluate the ROM’s performance only in the

low-data regime in the experimental data example. We demonstrate that when sufficient data are available, all the ROMs

developed demonstrate similar performance, while in the low-data regime, the proposed approach displays improved

predictive performance.

A. Numerical dataset: Burgers’ Equation

The dynamics of a soliton (solitary wave) on a spatial domain Ω = [0, 1] for a given field 𝑢(𝑦, 𝑡), where 𝑦 ∈ Ω and 𝑡

are the spatial and temporal dimension is described by Burgers’ equation

𝜕

𝜕𝑡
𝑢(𝑦, 𝑡) + 𝑢(𝑦, 𝑡) 𝜕

𝜕𝑡
𝑢(𝑦, 𝑡) = 𝜈

𝜕2

𝜕𝑦2 𝑢(𝑦, 𝑡), (14)

where 𝜈 is the viscosity of the fluid, set here to 𝜈 = 0.001. In this section, the initial condition for the simulations is

𝑢(𝑦, 0) = 𝑠𝑖𝑛(4𝜋𝑦). Homogeneous boundary conditions are imposed such that 𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0. The spatial domain

𝑦 is discretized with an equidistant grid of 𝑁 = 1024 points and the temporal domain has an incremental time step of

Δ𝑡 = 10−3 resulting in a total of 500 snapshots of data. The resulting spatial-temporal evolution of the low-viscosity

regime soliton wave is shown under the FOM tile in Fig. 3. Here, the formation of shocks can be observed at 𝑡 = 0.1

time units.

The primary aim of this work is to improve the predictive capabilities of the developed ROMs. To demonstrate the

improved predictive capability of the ROMs, we train the ROMs in three separate cases: (i) insufficient-data regime,
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(ii) low-data regime and (iii) sufficient-data regime. In the insufficient-data regime, the ROMs are trained on 10% of

available data. In the low-data regime and sufficient-data regime, we train using 20% and 30% of the available snapshot

data, respectively. For all three cases, the end of the training regime is marked by a red dashed line in Fig. 3. The ROMs

are developed by retaining 𝑟 = 3 POD modes; this corresponds to retaining 99.99%, 99.98% and 99.97% of the total

energy contributed from the available snapshot data for cases (i), (ii) and (iii), respectively. As described in Sec. II, the

resulting DMD and proposed approach have linear and linear-quadratic structure ROMs, respectively.

 FOM

D
M

D
P

rop
osed

 A
p

p
roach

(i) Training on 10% data
(insufficient-data regime)

(ii) Training on 20% data
(low-data regime)

(iii) Training on 30% data
(sufficient-data regime)

Amount of data used for training increases

Fig. 3 The space-time state solution for the low-viscosity Burgers’ equation is shown for the full-order model in
the leftmost tile. The columns (from left to right) correspond to the (i) insufficient-data regime with training on
10% of data available, (ii) low-data regime with training on 20% of data available, and (iii) sufficient-data regime
with training on 30% of data available. The top row shows the DMD ROMs, while the bottom row shows the
ROMs with quadratic closure using the proposed approach.

Figure 3 demonstrates the training and predictive capability of ROMs of size 𝑟 = 3. The full-order model is shown

separately on the left-most tile titled FOM, the top row corresponds to the DMD ROMs, and the bottom row corresponds

to the DMD ROMs with quadratic closure. For each row, moving from left to right corresponds to ROMs that are built

on an increasing amount of training data. All the ROMs do well to reconstruct their respective training data; however,

they have varying performance in their predictive capability. In (i) the insufficient-data regime (left column), it can be
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seen that the training data does not include formation of the shock and hence both ROMs perform poorly. In (ii) the

low-data regime (middle column), the training regime ends as the formation of the shock begins. Here, we observe

that the DMD ROM (top row) does not generalize well beyond the training data regime. In contrast the DMD with

quadratic closure (bottom row) is more robust and predicts the evolution of the flowfield with reasonable accuracy. In

the sufficient-data regime (right column), both ROMs perform well in predicting the dynamics beyond the training

regime. For obtaining these results using Algorithm 1, we select the best regularization parameter, that is 𝛾, by solving

the optimization problem over a grid of 50 logarithmically spaced regularization values in the range [10−4, 102].

Fig. 4a shows the relative state errors as a function of ROM state dimension, 𝑟 , for the ROMs trained in the low-data

and sufficient-data regimes. The relative errors are evaluated separately for training (solid lines) and testing (dashed

lines) snapshot datasets. We observe that the proposed approach, in both the low-data and sufficient-data regime, has

lower training and testing errors compared to DMD. In addition, we also plot the lower-bound for the testing error,

which is defined as ∥Xtest−U𝑟U⊤
𝑟 Xtest ∥𝐹

∥Xtest ∥𝐹 , where Xtest is the testing regime snapshot matrix.

Two important points must be emphasized. First, the linear DMD ROMs are computationally faster to solve than the

linear-quadratic ROMs, because of the extra computational cost in computing the quadratic closure term. In both cases,

the ROMs are solved in a fraction of a second (≈ O(10−6) seconds wall clock time for the DMD ROMs and ≈ O(10−5)
seconds for the linear-quadratic ROMs), and so the differences are small, but this may be an important consideration for

some applications. Second, this Burgers’ example has been architected to show a failure of DMD. The vast literature

shows that DMD works robustly across a broad range of problems—in such cases it would be the preferred method.

However, these results do illustrate the potential pitfalls of deriving ROMs when limited training data are available. In

such situations, a DMD ROM may not necessarily improve by simply increasing the number of modes. In this Burgers’

example, we see instabilities introduced by Gibbs oscillations as higher-order modes are included. In such situations,

keeping the number of DMD modes low and adding a quadratic closure term may provide more robustness and thus a

better predictive performance.

B. Experimental dataset: Rotorcraft flowfield in hover

This section’s aim is to obtain ROMs that model dynamics of fluid-structure interaction between a rotor blade and

surrounding air, using experimental datasets. While many works have developed ROMs using experimental datasets in

the DMD literature, some useful references without claim to completeness are [5, 32, 33]. The following subsection

briefly describes the experimental setup used to obtain the experimental data. This is followed by results that demonstrate

the performance of the ROMs using the available experimental data.
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Fig. 4 Relative state errors for ROM predictions over training and testing datasets for Burgers’ equation. Left:
low-data regime (20% snapshot data). Right: sufficient-data regime (30% snapshot data).

1. Experimental setup

All experimental measurements were performed indoors at the University of Texas at Austin rotor test facility.

The test stand in Fig. 5a was located in a large test chamber (15.24 × 10.06 × 18.30) m. The rotor shaft was oriented

horizontally with thrust directed toward the test stand so that the rotor wake was unobstructed. The rotor consisted

of two constant-chord, untwisted blades on a rigid rotor hub (no flap or lag hinges). The rotor blades had a modified

VR-12 airfoil with 5% trailing edge tab. Rotor parameters are listed in Table 1.

Flowfield measurements were performed in hover at a nondimensional thrust coefficient of 𝐶𝑇 = 0.06, and a

rotational speed of 900 RPM corresponding to a blade tip Mach number of 𝑀 = 0.3 and a chord Reynolds number of

𝑅𝑒tip = 562, 000 at the rotor blade tip. The thrust condition is written as a nondimensional coefficient 𝐶𝑇 = 𝑇𝜌𝜋Ω2𝑅4,

where 𝜌 is the density, 𝑅 is the rotor radius, and Ω is the rotor speed. The thrust condition provides an accurate

reference for other experiments with different rotor geometries. The flowfield was measured by time-resolved two-

dimensional-two-component (2D-2C) particle image velocimetry (PIV), using two 4-megapixel high-speed Phantom

VEO-640 cameras in conjunction with a Photonics dual-pulsed ND:YLF laser (527nm, 30mJ/pulse). Each camera

viewed an independent field of view (FOV). One camera captured the inboard region of the rotor blade, while the second

camera captured the blade tip region. These two FOVs were merged together to give the flowfield in a single region of

12



interest (ROI), shown in Fig. 5c. The origin of the images (𝑧 = 0 and 𝑟 = 0) was located at the center of the rotor hub.

An optical encoder mounted on the main rotor shaft provided a consistent timing signal for triggering the time-resolved

measurements. The time-resolved measurements were made at 41/revolution corresponding to an azimuthal angle

increment of Δ𝜓 = 8.8◦. A total of 820 images are available for training and testing purposes.

(a) Experimental setup for time-resolved PIV data (b) Region of interest (ROI)

rotor blade

(c) PIV image of ROI

Fig. 5 The figure in (a) shows the experimental setup, in (b) the region of interest of the blade that is captured
by the camera is shown, and in (c) the time-resolved PIV data used for developing ROMs.

An important point is that centering the data with a reference matrix Xref ∈ R𝑁×𝑘 , such that the centered snapshot is

Xcent := X − Xref, can be beneficial. As noted in [16], choosing an appropriate reference is important when using a

quadratic manifold. The matrix Xref is typically used to account for changes in initial conditions, shifting equilibrium

points, or centering the data about a mean. In this work, the data is centered around the mean of the snapshot matrix and

is normalized by the maximum value.
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Table 1 Rotor parameters

Blade Airfoil VR-12
Radius 𝑅 1.108m
Chord 𝑐 0.080m

Root Cutout 𝑟𝑎 19%𝑅

Precone Angle 𝛽0 3◦

2. Results

In this section, we develop ROMs for the flowfield of the rotor in hover. The main goal of developing ROMs for this

problem is to have predictive ROMs that can identify important large-scale flow structures, such as the rotor blade tip

vortices that convect downwards in the flow, and that can model the development of the wake over time. To develop

these ROMs, we use 30% of the available 820 snapshots for training, so that we have 𝑘 train = 245. The remaining

snapshots are used for testing. Based on singular value decay, we choose a ROM size of 𝑟 = 14. The convection of the

vortices downwards makes this problem challenging to predict. We compare the results for training and predictions for

ROMs obtained from DMD and the proposed method of DMD with a quadratic closure.

To assess the effectiveness of the ROMs developed, we analyze the instantaneous 𝑦-component of velocity. In Fig. 6,

it can be observed that both the linear and linear-quadratic ROMs yield a good reconstruction of the training dataset,

where both the rotor blade passage and the positions of blade tip vortices are reconstructed. Fig. 7 shows the prediction

regime for the same ROMs. Here again, the quantities of interest (i.e., the tip vortices) are identified by both ROMs

accurately. While the older tip vortex is identified using the ROMs, its intensity is not represented as expected. To

quantify the performance of the reconstruction, we study the phase-averaged velocity obtained from the two ROMs

shown in Fig. 8. We select four positions at 𝑧/𝑅 = −0.078,−0.15, 0.05, 0.078, and plot the averaged velocity over 𝑟/𝑅.

For all the above listed 𝑧/𝑅 positions, we plot the average velocity, vax, from the proposed approach (in red) and the

DMD-ROM (in green), while the experimental data are shown in black. In Fig. 8a, at 𝑧/𝑅 = −0.078, it can be seen that

the DMD ROM with quadratic closure follows the experimental data well in the region 𝑟/𝑅 = 0.5 to 𝑟/𝑅 = 0.7 and

𝑟/𝑅 = 0.85 to 𝑟/𝑅 = 1.0; this is the same region where large-scale structures exist and have been effectively identified.

In all the plots in Fig. 8, we see that the averaged velocities of the proposed approach in the region 𝑟/𝑅 = 0.75 to

𝑟/𝑅 = 0.85 closely track that of the experimental dataset’s velocity.

IV. Conclusions
This work proposes a method for augmenting DMD ROMs with a quadratic closure term. The approach can be

interpreted as projection of a large linear DMD model onto a quadratic manifold of smaller dimension. The quadratic

manifold is learned from snapshot data by solving a scalable linear least-squares problem. The quadratic closure

term represents contributions of modes that are neglected in the reduced-order representation. The approach may be
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(a) Experimental 

data

(b) Proposed

approach

(d) DMD

k = 51 k = 151 k = 201

rotor blade

rotor blade

rotor blade

Fig. 6 Flowfield for (a) experimental data and ROMs of size 𝑟 = 14 using (b) the proposed approach of DMD
plus quadratic closure and (c) linear DMD. The training snapshots are shown for 𝑘 = 51, 151, 201.

beneficial in situations where including higher-order POD modes in the linear subspace leads to instability in the ROM.

This was illustrated through a convectively dominated Burgers’ equation example, where instabilities introduced by

Gibbs oscillations corrupt the DMD ROM as higher-order modes are included in the linear subspace. In contrast,

the closure term allows for the ROM’s dynamics to include components associated with higher-order modes, but the

modal coefficients for the higher-order modes are constrained to be quadratic functions of the modal coefficients of the

low-order modes. For the Burgers’ example studied in this paper, this permitted accurate, stable ROMs in cases where

DMD fails to provide accurate predictions outside of the training regime. Further, the proposed approach outperformed

DMD in creating a ROM from an experimental dataset of the flowfield of a rotor in hover.
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(a) Experimental

data

(b) Proposed

approach

(c) DMD

k = 251 k = 301 k = 351

rotor blade

rotor blade

rotor blade

Fig. 7 Flowfield for (a) experimental data and ROMs of size 𝑟 = 14 using (b) the proposed approach of DMD
plus quadratic closure and (c) linear DMD. The testing snapshots are shown for 𝑘 = 251, 301, 351. The vortices
are quantities of interest to be identified in the prediction regime.
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Fig. 8 The variation of phased average velocity over 𝑟/𝑅 at four different 𝑧/𝑅 locations for ROM size 𝑟 = 14. It
can be seen that the proposed approach at different 𝑧/𝑅 locations follows the experimental data closely.
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