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Abstract

In manufacturing, there exist boundary identification problems for defining parameter spaces that meet desired thresh-
olds on outcomes. This paper presents an Entropy-Sigma acquisition function for active learning of the process
window/map in manufacturing using a Gaussian Process surrogate. The method is applied to identify the stability
boundary for the stability process map in machining using time-domain simulations with a periodic sampling stability
metric. Results show that the proposed Entropy-Sigma method significantly outperforms Latin hypercube sampling or
grid-based methods. The described method can be applied to identify the process window/map for any manufacturing
application using a quantitative process outcome metric.
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1. Introduction

Process boundaries in manufacturing identify the range of process parameters that produce an acceptable behavior
for a defined process outcome based on a lower threshold, an upper threshold, or both. The range of process parameters
describes a process window or a process map for the specific manufacturing process. The optimal process parameters
can be selected from the process window/map that minimizes the total part cost. In laser powder bed fusion (LPBF)
additive manufacturing, part porosity can be described as a function of laser power and scan speed [1, 2]. Certain
combinations of laser power and scan speed can produce porosity in the part due to lack of fusion [3], keyhole
defects [4], or balling up [5, 6]. The combination of lack of fusion, keyhole, and balling up porosity boundaries
describe a process window for dense parts, defined by a threshold porosity [1, 7] as illustrated in Fig. 1(a). Similar
process windows exist in other additive processes such as electron beam melting (EBM) [8, 9] and wire-feed additive
manufacturing [10, 11]. In machining, a stability process map separates stable and unstable (or chatter) combinations
of spindle speed and axial depth of cut for a given tool-material combination [12]. Unstable machining can lead to
poor surface finish, excessive tool wear, and damage to the tool holder and spindle. A typical stability map is shown
in Fig. 1(b) [13].

Estimation of the process window/map is either done using experimentation or process modeling through simula-
tions. The LPBF process has been modeled through finite element methods or high-fidelity mesoscale simulations to
identify the process window [14, 15, 16, 17]. Alternatively, experiments can be used to identify the process window
for LPBF using a threshold porosity value [18, 19]. For modeling stability process maps in machining, one approach
is to complete time domain simulations over the desired grid of spindle speed and axial depth values [20]. The stabil-
ity at each grid point is decided using a threshold value for a periodic sampling metric calculated from the predicted
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Fig. 27, the optimal parameter was {3.81 mm, 9800 rpm}. To compare
the performance of the experimental search, analytical stability lobes
were calculated. The tool-material specific cutting force coefficient, Ks,
was 650 N/mm2 [17]. Fig. 28 shows the analytical stability lobes. The
stability results from the grid-search are also displayed. As seen in

Fig. 28, the analytical lobes underpredict the stability limit at 7400 rpm
and 9800 rpm. This is due to uncertainty in the frequency response
function and the material force coefficients, and assumptions in the

Fig. 21. Test results for optimal parameter identification. The test points are
marked based on the order of tests.

Fig. 22. Maximum expected improvement in MRR for each test.

Fig. 23. Experimental search results for Model 2 (top left), Model 3 (top right),
and Model 4 (bottom left); results show convergence to the optimal parameters
within 3 to 14 tests.

Fig. 24. Experimental setup (left) and tool point frequency response function
for the tool (right).

Fig. 25. Spectrum for {4 mm, 6600 rpm} (left) and {4 mm, 9800 rpm} (right);
the chatter frequency at 2100 Hz is seen at 6600 rpm indicating chatter.

Fig. 26. Posterior probability of stability using 24 experimental results.

Fig. 27. Experimental results for optimal parameter identification.
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Figure 1: Illustrations showing (a) process window for laser additive manufacturing3 and (b) stability process map in machining [13]

tool displacements [20]. The simulation or experimental parameters are typically selected using a grid-based or de-
sign of experiments (DOE) approach. The DOE and grid-based approaches are inefficient for simulations or physical
experiments that can be expensive and time-consuming [21, 22]. This paper presents an entropy-based active learn-
ing method for process window/map estimation in manufacturing using minimum number of tests (completed either
through simulations or experiments). The goal of this work is to sequentially select the next set of test parameters that
provide the most information on the process window/map based on an acquisition function using Gaussian process
(GP) surrogates [23]. Much of the efforts in the literature focus on sequential sampling to find the minimum (or maxi-
mum) [24, 25]. For the problem of estimating a process window/map, the goal is to identify the process boundary (or
contour) that satisfies the defined threshold. There have been a few acquisition functions described in the literature on
sequential sampling for boundary identification. Bichon et al. described an expected feasibility function (EFF) that
indicates the expectation of the response to be around the feasibility boundary [26] and has been extended to utilize
multifidelity models [27]. Other GP-based acquisition functions for failure boundary identification include weighted
integrated mean square criterion [28], adaptive Kriging method [29], and population-based adaptive sampling tech-
nique [30]. Bect et al. [31] proposed a one-step lookahead strategy for estimating the failure boundary. Marques et
al. [32, 33] used an expected change in contour entropy to select the test point in the presence of multiple information
sources.

There are two main contributions of the paper. First, this paper presents a novel acquisition function, denoted as
Entropy-Sigma, for process window/process map estimation based on the entropy and the prediction uncertainty at the
test parameter locations. The Entropy-Sigma acquisition function is computationally inexpensive with a closed-form
expression and can be used for identifying process boundaries defined by a lower and an upper threshold as well as for
multi-zone windows. Second, the application of the Entropy-Sigma acquisition function method for selecting time-
domain simulation parameters for identifying the stability process map in machining is demonstrated. The proposed
method is applicable for identifying process window/process map in both additive and subtractive manufacturing.

The remainder of the paper is organized as follows: Section 2 describes the boundary identification problem and
the proposed acquisition function for process window/map estimation in manufacturing along with results for two
numerical functions. Section 3 describes the application for the selection of time-domain simulation parameters for

3The illustrations of defects around the process window are from https://www.metal-am.com/articles/70927-2/.
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the identification of the stability process map in machining. Conclusions are presented in Section 4.

2. Efficient sampling for process window estimation

This section describes the efficient sampling method for process window/map estimation in manufacturing. The
process window estimation problem is described in Section 2.1. Section 2.2 describes the acquisition function and
Section 2.3 shows numerical results for two test functions.

2.1. Problem setup
The inputs to the system are m-dimensional parameter vector z ∈ Z ⊆ Rm, where Z denotes the sample space

for the input parameters. The process window/map is defined through the system output being lower than a certain
threshold, denoted by c. The system output is denoted by f (z), where f : Z 7→ R. The process window/map is defined
by f (z) ≤ c, and the boundary is given by the c-contour f (z) = c. Note that, without loss of generality, the process
window/map can also be reformulated as f (z)− c ≤ 0, to shift the boundary to the zero-contour. The goal of the work
is to efficiently and accurately predict the process window/map through identifying the target process boundary (here,
the c-contour) using minimum number of tests.

2.2. Methodology: active learning using Entropy-Sigma
The active learning method uses a computationally inexpensive GP surrogate for approximating f (z). Given a

set of n tests, the GP surrogate is fit to the available data {zi, f (zi)}ni=1. The GP surrogate is updated by sequentially
augmenting the data pool with samples based on the GP prediction mean µ(z) and prediction uncertainty given by
the standard deviation σ(z). The next test parameter sample, zn+1, to run the test on is selected by maximizing an
acquisition function J(z) as zn+1 = arg max

z∈Z
J(z). The process of sequentially adding test parameter samples can

be continued until some testing budget is exhausted or a stopping criterion is reached. In this case, the method
sequentially selects test parameters to adaptively refine the GP surrogate to learn the process window/process map
boundary. In this work, a novel entropy-based acquisition function is defined that considers the trade-off between
test parameter locations where the GP prediction mean is close to the threshold (exploitation), and where the GP
prediction uncertainty is large (exploration).

For the boundary estimation problem, any test parameter location z has a P(z) probability of being inside the target
region (defined by the process window or the process map), f (z) ≤ c, and a 1 − P(z) probability of being outside the
target region, f (z) > c. The GP prediction at z is the normal distribution Yz ∼ N

(
µ(z), σ2(z)

)
. P(z) can be estimated

using the GP prediction as
P(z) = P[yz ≤ c] = Φ(α(z)), (1)

where yz is a realization of Yz, α(z) = (c − µ(z))/σ(z) and Φ(.) is the standard normal cumulative distribution func-
tion. The amount of available information of a discrete random variable with k outcomes occurring with probability
Pi, . . . , Pk can be defined by the entropy H(Pi, . . . , Pk) = −

∑k
i=1 Pi log(Pi) [34]. In this case, any test parameter

location z has two discrete outcomes with probabilities {P(z), 1 − P(z)} and the entropy is given by

H(z) = −
(
P(z) log(P(z)) + (1 − P(z)) log(1 − P(z))

)
. (2)

Note that Ref. [32] described an entropy-based approach that uses a change in contour entropy criterion and accounts
for multiple information sources but requires numerical approximation. In this work, the proposed approach directly
uses the entropy of being above or below the target boundary and has a closed-form solution.

The entropy (or the available information) is maximum at the target boundary when µ(z) = c with P(z) = 0.5.
However, all candidate test parameter locations with µ(z) = c will have the same entropy even if they have different
σ(z). This is an issue with using the entropy directly as an acquisition function. Ref. [35] proposed an entropy-based
method for reliability analysis but the acquisition function does not account for the issue of candidates with µ(z) = c.
Intuitively, the parameter set with the higher σ(z) is the better candidate and this is built into the acquisition function.
The Entropy-Sigma acquisition function, which can distinguish between candidates with µ(z) = c, is defined as the
product of the entropy and the prediction uncertainty as

J(z) = H(z)σ(z). (3)
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The Entropy-Sigma method can be extended to cases with more than one threshold by creating additional events with
their associated probabilities for entropy estimation.

2.3. Numerical tests

The acquisition function was tested using the Branin-Hoo and the modified Matyas test functions [36] with target
boundaries defines using thresholds of 50 and 15, respectively. The test functions are given in Appendix A. The
Matyas function was modified to mimic the process window for the LPBF process shown in Fig. 1(a). An initial DOE
of 4 samples was followed by samples selected using the Entropy-Sigma acquisition function. Fig. 2 shows that the
Entropy-Sigma active learning method rapidly convergences to the target boundary within 15 iterations for the Branin
function and 10 iterations for the modified Matyas function.
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(c) Modified Matyas 5 iterations
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(d) Modified Matyas 10 iterations

Figure 2: Results for Branin-Hoo and modified Matyas test functions with four initial samples

3. Stability process map in machining

Stability process maps are specific process maps in machining that separate stable and unstable combinations of
spindle speed Ω and axial depth b, for a given tool-material combination [12]. One approach for predicting milling
stability is through time-domain simulations, which is a numerical solution of the time delay, second-order differential
equations of motion in milling [20]. A time-domain simulation can predict the tool displacements and cutting forces
in the x (feed) and y directions for a set of machining parameters [12]. The stability limit is determined here using
periodic sampling of the predicted tool displacements in the x-direction. The stability metric M is calculated as the
average of the sum of the absolute difference of successively once-per-tooth sampled points as [20]

M(Ω, b) =
N∑

i=2

|xi
d(Ω, b) − xi−1

d (Ω, b)|
N

, (4)

where xd is the vector of the once-per-tooth sampled x displacements and N is the length of the xd vector.
If the simulation parameters are stable, the deviation in the once-per-tooth samples should be zero because the

displacement repeats with each tooth passage during forced vibration. If the parameters are unstable, the deviation
in the once-per-tooth samples is large because chatter, a self-excited vibration, introduces the new chatter frequency
into the solution and the displacement does not repeat from tooth to the next. A threshold value of c = 1µm is defined
here to account for limited numerical precision in the time-domain simulation [20]. The stability process map can be
built by completing the time-domain simulations at multiple spindle speed Ω ∈ [6600, 10600] rpm and axial depth
b ∈ [0.1, 4] mm combinations and identifying the M = 1µm contour. To illustrate, Fig. 3(a) shows a map of M as
a function of spindle speed and axial depth. The spindle speed and axial depth of cut range were discretized into a
grid with intervals of 10 rpm and 0.1 mm, respectively. The time domain simulation was completed at each grid point
resulting in 16040 simulations. Fig. 3(a) also shows the predicted stability process map for the M = 1µm contour. The
material, tool geometry, cutting parameters, and the tool-point frequency response function used in the time domain
simulation to calculate the stability map shown in Fig. 3 are listed in Ref. [13].

4



To reduce the number of time domain simulations needed to identify the stability process map, the Entropy-Sigma
acquisition function was used to iteratively select the time domain simulation parameters. The stability metric was
smoothed to reduce the noise when M is large (> 10) for unstable process parameters (as seen in Fig. 3(a)). The
smoothed stability metric Ms is given by

Ms(Ω, b) = s tanh
(

M(Ω, b)
s

)
. (5)

In this work, the value of s is taken as 1. A similar approach was used in Ref. [33]. This ensures that the stability metric
is smoothed, reducing the noise in M for unstable parameters. Note that the threshold for the smoothed stability metric
to maintain the same boundary is 0.761 since the stability boundary is calculated as Ms(Ω, b) = s tanh(c/s) = 0.761,
where s = 1 and c = 1. Fig. 3(b) shows the smoothed stability metric. Note that the stability boundary does not
change after smoothing as the threshold is modified to 0.761.
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Figure 3: Stability process map using the time-domain simulation: (a) M contours (b) smoothed Ms contours (black line denotes the stability
boundary identified from the grid-based simulations.)

Four initial samples around the center of the (Ω, b) domain were used as the initial design followed by 200 samples
selected with the Entropy-Sigma acquisition function. A rational quadratic kernel was used for the GP fit to enable
modeling of the sharp corners of the stability process map. Fig. 4(a) and (b) show the results for the Entropy-Sigma
acquisition function after 100 samples and 200 samples, respectively. To compare, Fig. 4(c) and (d) show the results
for the EFF function [26]. The GP prediction is shown in red and the true stability boundary (using the grid-based
simulations in Fig. 3) is shown in black for comparison. Table 1 compares the accuracy for the Entropy-Sigma,
EFF, and the Latin hypercube sampling (LHS) method. The accuracy was calculated as the percentage of correctly
classified points compared to the true stability process map shown in Fig. 3. The sampling procedure was repeated
100 times for the LHS method and the average accuracy is reported in Table 1. The Entropy-Sigma approach performs
similar to the EFF and significantly better than LHS. Note that an advantage of the Entropy-Sigma method over EFF is
that the closed-form expression can be applied for for process windows defined by upper and lower threshold as well
as multiple zones with different thresholds. The EFF closed-form expression will need to be re-derived (even though
the underlying concept remains the same). The Entropy-Sigma active learning results in more than 50% reduction in
the number of samples needed to achieve the same accuracy compared to LHS.

4. Conclusions

A GP-based active learning method to identify process boundaries for estimating the process window/map in man-
ufacturing was presented. A new acquisition function, Entropy-Sigma, that considers the entropy of a test parameter
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(a) Entropy-Sigma: 100 iterations
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(b) Entropy-Sigma: 200 iterations
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(c) EFF: 100 iterations
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Figure 4: Results from iterative sampling for stability process map identification starting using with the Entropy-Sigma acquisition function and
EFF after 100 simulations and 200 simulations.

Table 1: Accuracy for Entropy-Sigma, EFF, and LHS method for different iterations.

Iterations Entropy-Sigma EFF LHS
50 92.23 93.65 87.32

100 95.60 94.66 91.1
150 97.24 96.68 93.54
200 97.57 97.52 94.00

along with the prediction uncertainty to balance the trade-off between exploration and exploitation was described. Re-
sults on numerical functions showed a rapid convergence to the true boundary. The method was applied for stability
process map identification in machining using time domain simulations. Results showed more than 50% decrease in
the number of time-domain simulations needed to identify the stability process map compared to the LHS method.
The Entropy-Sigma acquisition function has the following advantages. First, it is computationally inexpensive and
has a closed-form expression. Second, the method can be applied for process windows defined by a lower threshold,
an upper threshold, or a combination of both. Third, the method can be easily extended to identify multiple zones in
a process window with different thresholds.
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Appendix A. Numerical functions for algorithm testing

The Branin-Hoo function is given by

f (x) = a(x2 − bx2
1 + cx1 − r)2 + s(1 − t)cos(x1) + s, (A.1)

where a = 1, b = 5.1/(4π2), c = 5/π, r = 6, s = 10, and t = 1/(8π).
The modified Matyas function is given by

f (x) = 0.26(x2
1 + x2

2) − 0.48x1x2 − 1.8x1 + 7.3845. (A.2)

References

[1] H. Gong, K. Rafi, H. Gu, T. Starr, B. Stucker, Analysis of defect generation in ti–6al–4v parts made using powder bed fusion additive
manufacturing processes, Additive Manufacturing 1 (2014) 87–98.

[2] H. Choo, K.-L. Sham, J. Bohling, A. Ngo, X. Xiao, Y. Ren, P. J. Depond, M. J. Matthews, E. Garlea, Effect of laser power on defect, texture,
and microstructure of a laser powder bed fusion processed 316l stainless steel, Materials & Design 164 (2019) 107534.

[3] M. Tang, P. C. Pistorius, J. L. Beuth, Prediction of lack-of-fusion porosity for powder bed fusion, Additive Manufacturing 14 (2017) 39–48.
[4] R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, A. D. Rollett, Keyhole threshold and morphology in laser

melting revealed by ultrahigh-speed x-ray imaging, Science 363 (6429) (2019) 849–852.
[5] R. Li, J. Liu, Y. Shi, L. Wang, W. Jiang, Balling behavior of stainless steel and nickel powder during selective laser melting process, The

International Journal of Advanced Manufacturing Technology 59 (9) (2012) 1025–1035.
[6] D. Gu, Y. Shen, Balling phenomena during direct laser sintering of multi-component cu-based metal powder, Journal of Alloys and Com-

pounds 432 (1-2) (2007) 163–166.
[7] J. V. Gordon, S. P. Narra, R. W. Cunningham, H. Liu, H. Chen, R. M. Suter, J. L. Beuth, A. D. Rollett, Defect structure process maps for laser

powder bed fusion additive manufacturing, Additive Manufacturing 36 (2020) 101552.
[8] V. Juechter, T. Scharowsky, R. Singer, C. Körner, Processing window and evaporation phenomena for ti–6al–4v produced by selective electron

beam melting, Acta Materialia 76 (2014) 252–258.
[9] M. F. Zäh, S. Lutzmann, Modelling and simulation of electron beam melting, Production Engineering 4 (1) (2010) 15–23.

[10] Z. Nie, G. Wang, J. D. McGuffin-Cawley, B. Narayanan, S. Zhang, D. Schwam, M. Kottman, Y. K. Rong, Experimental study and modeling
of h13 steel deposition using laser hot-wire additive manufacturing, Journal of Materials Processing Technology 235 (2016) 171–186.

[11] L. Sun, F. Jiang, R. Huang, D. Yuan, Y. Su, C. Guo, J. Wang, Investigation on the process window with liner energy density for single-layer
parts fabricated by wire and arc additive manufacturing, Journal of Manufacturing Processes 56 (2020) 898–907.

[12] T. L. Schmitz, K. S. Smith, Machining dynamics, Springer, 2014.
[13] J. Karandikar, A. Honeycutt, T. Schmitz, S. Smith, Stability boundary and optimal operating parameter identification in milling using bayesian

learning, Journal of Manufacturing Processes 56 (2020) 1252–1262.
[14] M. Masoomi, S. M. Thompson, N. Shamsaei, Laser powder bed fusion of ti-6al-4v parts: Thermal modeling and mechanical implications,

International Journal of Machine Tools and Manufacture 118 (2017) 73–90.
[15] D. S. Nakapkin, A. V. Zakirov, S. A. Belousov, M. V. Bogdanova, B. A. Korneev, A. E. Stepanov, A. Y. Perepelkina, V. D. Levchenko, B. V.

Potapkin, A. Meshkov, Finding optimal parameter ranges for laser powder bed fusion with predictive modeling at mesoscale, in: Sim-AM
2019: II International Conference on Simulation for Additive Manufacturing, CIMNE, 2019, pp. 297–308.

[16] A. J. Dunbar, E. R. Denlinger, M. F. Gouge, P. Michaleris, Experimental validation of finite element modeling for laser powder bed fusion
deformation, Additive Manufacturing 12 (2016) 108–120.

[17] A. Zakirov, S. Belousov, M. Bogdanova, B. Korneev, A. Stepanov, A. Perepelkina, V. Levchenko, A. Meshkov, B. Potapkin, Predictive
modeling of laser and electron beam powder bed fusion additive manufacturing of metals at the mesoscale, Additive Manufacturing 35
(2020) 101236.

[18] K. Aoyagi, H. Wang, H. Sudo, A. Chiba, Simple method to construct process maps for additive manufacturing using a support vector machine,
Additive Manufacturing 27 (2019) 353–362.

[19] G. Tapia, S. Khairallah, M. Matthews, W. E. King, A. Elwany, Gaussian process-based surrogate modeling framework for process planning
in laser powder-bed fusion additive manufacturing of 316l stainless steel, The International Journal of Advanced Manufacturing Technology
94 (9) (2018) 3591–3603.

[20] A. Honeycutt, T. L. Schmitz, A new metric for automated stability identification in time domain milling simulation, Journal of Manufacturing
Science and Engineering 138 (7) (2016).

7



[21] C. Wang, X. Tan, S. Tor, C. Lim, Machine learning in additive manufacturing: State-of-the-art and perspectives, Additive Manufacturing
(2020) 101538.

[22] L. Meng, B. McWilliams, W. Jarosinski, H.-Y. Park, Y.-G. Jung, J. Lee, J. Zhang, Machine learning in additive manufacturing: A review, Jom
72 (6) (2020) 2363–2377.

[23] C. E. Rasmussen, Gaussian processes in machine learning, in: Summer school on machine learning, Springer, 2003, pp. 63–71.
[24] D. R. Jones, A taxonomy of global optimization methods based on response surfaces, Journal of global optimization 21 (4) (2001) 345–383.
[25] A. I. Forrester, A. J. Keane, Recent advances in surrogate-based optimization, Progress in aerospace sciences 45 (1-3) (2009) 50–79.
[26] B. J. Bichon, M. S. Eldred, S. Mahadevan, J. M. McFarland, Efficient global surrogate modeling for reliability-based design optimization,

Journal of Mechanical Design 135 (1) (2013).
[27] A. Chaudhuri, A. N. Marques, K. Willcox, mfegra: Multifidelity efficient global reliability analysis through active learning for failure bound-

ary location, Structural and Multidisciplinary Optimization 64 (2) (2021) 797–811.
[28] V. Picheny, D. Ginsbourger, O. Roustant, R. T. Haftka, N.-H. Kim, Adaptive designs of experiments for accurate approximation of a target

region, Journal of Mechanical Design 132 (7) (2010) 071008.
[29] B. Echard, N. Gayton, M. Lemaire, AK-MCS: an active learning reliability method combining kriging and monte carlo simulation, Structural

Safety 33 (2) (2011) 145–154.
[30] V. Dubourg, B. Sudret, J.-M. Bourinet, Reliability-based design optimization using kriging surrogates and subset simulation, Structural and

Multidisciplinary Optimization 44 (5) (2011) 673–690.
[31] J. Bect, D. Ginsbourger, L. Li, V. Picheny, E. Vazquez, Sequential design of computer experiments for the estimation of a probability of

failure, Statistics and Computing 22 (3) (2012) 773–793.
[32] A. Marques, R. Lam, K. Willcox, Contour location via entropy reduction leveraging multiple information sources, Advances in neural

information processing systems 31 (2018).
[33] A. N. Marques, M. M. Opgenoord, R. R. Lam, A. Chaudhuri, K. E. Willcox, Multifidelity method for locating aeroelastic flutter boundaries,

AIAA Journal 58 (4) (2020) 1772–1784.
[34] R. M. Gray, Entropy and information theory, Springer Science & Business Media, 2011.
[35] D. A. Cole, R. B. Gramacy, J. E. Warner, G. F. Bomarito, P. E. Leser, W. P. Leser, Entropy-based adaptive design for contour finding and

estimating reliability, arXiv preprint arXiv:2105.11357 (2021).
[36] Optimization test functions and datasets, https://www.sfu.ca/~ssurjano/optimization.html, accessed: 06-01-2021.

8

https://www.sfu.ca/~ssurjano/optimization.html

	Introduction
	Efficient sampling for process window estimation
	Problem setup
	Methodology: active learning using Entropy-Sigma
	Numerical tests

	Stability process map in machining
	Conclusions
	Numerical functions for algorithm testing

