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An aircraft that can sense changes in its own internal state, and adapt accordingly

Prior work has shown that this provides [Kordonowy 2011, Singh 2017] 

– Increased survivability
– Increased utilization
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Motivation: Enabling a self-aware aircraft



predictive digital twin

We create a digital twin that adapts to the evolving structural health of the UAV,
providing near real-time capability predictions to enable dynamic decision-making.
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Customized 12ft Telemaster aircraft:

Complex structure with multiple materials

Custom wing sets: pristine & damaged

Custom sensor suite
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3 axis 
accelerometer 

3 axis gyro

Dual high-frequency 
dynamic strain and 
vibration sensors

Temperature, 
pressure and 
humidity sensors

*One of the authors has a family member who is co-founder of Divinio. Purchase of 
the sensors for use in the research was reviewed and approved in compliance with 
all applicable MIT policies and procedures.

Flight test vehicle
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High-consequence decisions require digital twins that are
predictive  •  reliable  •  explainable
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Our approach: data-driven adaptation of 
component-based reduced-order models

Offline:

Online:

Use model library to train a classifier that 
predicts asset state based on sensor data

Construct library of reduced-order models 
representing different asset states

sensor data

Analysis,
Prediction,
Optimization

updated digital twin
current digital twin

5



Component-based 
reduced-order model library



Example component: section of a wing

component interior

component port

𝑐

governing PDE
(in our case linear elasticity)

computational meshdamage
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reduced stiffness
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From components to systems

system parameters
𝜇 = [𝜇%, 𝜇', 𝜇(]

component parameters 𝜇%

Instantiate and Assemble Apply Loads

+   assembly parameters 𝜇' +   load parameters 𝜇( =
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Start with the usual finite element problem statement:

Find	𝑢, ∈ 𝑉, such that 𝑎 𝑢,, 𝑣	; 𝜇 = 𝑓 𝑣; 𝜇 			∀			𝑣 ∈ 𝑉,	
𝐴5,5 𝐴5,67 𝐴5,68
𝐴5,67
9 𝐴67,67 0
𝐴5,68
9 0 𝐴68,68

		𝕌
𝑢67
𝑢68

=
𝑓5
𝑓67
𝑓68

Express interior DOFs in terms of port DOFs

𝐴6<,6<𝑢67 = 𝑓67 	− 𝐴5,67
9 𝕌

Substitute to get a system involving only port DOFs:
𝕊 𝜇 𝕌 𝜇 = 𝔽(𝜇)

Issue: Schur complement 𝕊(𝜇) is large (𝐌×𝐌), and expensive to compute

Solving a component-based model

M	port DOFs
N interior DOFs

ΩG ΩH

𝑃

Solve on each component
independently

port DOFs

Interior DOFs
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Model reduction strategy

Static-condensation reduced-basis-element (SCRBE) method:
[Huynh 2013] 

i. Port Reduction:
Retain only the first 𝑚 dominant modes at component ports

▸ Reduces the size of 𝕊:
M	×	M	 𝑚	×	𝑚

ii. Component Interior Reduction: 
Replace the finite element space inside each component with
a reduced basis (RB) space of dimension 𝑛

▸ Reduces the size of matrices required to compute entries of 𝕊:
N	×	N	 𝑛	×	𝑛

M	port DOFs
N interior DOFs

ΩG ΩH

𝑃
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How does SCRBE meet the demands of a digital twin?

1. Model training can be performed using only small groups of components
▸ Never have to solve full-system FE model

2. Component-wise RB admits a modest number of parameters per component
▸ System may have many spatially distributed parameters

3. Component instantiation and replacement offers more flexible parametrization
▸ Allows for expressive adaptation: changes to topology, meshes etc.

• Cloud-based parallel solvers
• Equipped with a posteriori error indicators
• Extends to both modal and dynamic analysis [Vallaghé 2015]

• Hybrid solver incorporates local non-linearities
• Recourse to full non-linear FEA if required 10



Performance:
FEA: 387,906 dof 55 seconds 
SCRBE: 694 dof 0.03 seconds

▸ 1000x speedup, solve in near real-time

How does SCRBE meet the demands of a digital twin?
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From component-based model to digital twin: Constructing a model library

increasing effective damage
(reduction in stiffness)
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damage region

Offline: Construct a library of damage states for each component
1. Create multiple copies of each component 
2. Train components for parameter ranges

of interest (local + interactions)
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Interpretable machine learning



Data-driven digital twin: 
Onboard sensors are used to select a reduced-order model from the library

• Use predictive models to generate training data
• Use machine learning to train an interpretable, explainable reactive model 

asset state noisy sensor data

Forward (predictive) model

Inverse (reactive) model
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Onboard sensors inform which model is used in the digital twin



From component-based model to digital twin: Interpretable machine learning
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• Highly interpretable
• Natural framework for 

sensor selection
• Rapid online classification
• As expressive as 

standard neural networks



Goal: Find a partitioning of the space of possible sensor measurements, and 
assign to each partition the library model that best explains the measurements

Optimal Classification Trees [Bertsimas, 2019] uses mixed-integer optimization techniques 
to find a partition in the form of an optimal binary tree, T:

min
^
					R T + 𝛼|T|

• Globally optimal
• Scalable
• Naturally extends to hyperplane splits
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error on training data complexity of the tree

tradeoff parameter

From component-based model to digital twin: Interpretable machine learning



Recall our approach: data-driven adaptation of 
component-based reduced-order models

Offline:

Online:

Use model library to train a classifier that 
predicts asset state based on sensor data

Construct library of reduced-order models 
representing different asset states

sensor data

Analysis,
Prediction,
Optimization

updated digital twin
current digital twin
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Test with experimental data

Incorporate multimodal observations

Flight demonstration

Future Work

Open challenges
Improving damage models

Accounting for model uncertainty and inadequacy

Combining component-based reduced-order 
models and interpretable machine learning 
enables predictive digital twins 
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For a project overview, slides, and the full paper, visit https://kiwi.oden.utexas.edu/research/digital-twin 

High-consequence decisions require digital twins that are
predictive  •  reliable  •  explainable
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