
ARTICLE IN PRESS

JID: CAF [m5G; August 10, 2018;6:37]

Computers and Fluids 0 0 0 (2018) 1–14

Contents lists available at ScienceDirect

Computers and Fluids

journal homepage: www.elsevier.com/locate/compfluid

Projection-based model reduction: Formulations for physics-based

machine learning

�

Renee Swischuk

a , Laura Mainini a , Benjamin Peherstorfer b , Karen Willcox

a , ∗

a Massachusetts Institute of Technology, Cambridge, MA 02139, USA
b University of Wisconsin-Madison, Madison, WI 53706, USA

a r t i c l e i n f o

Article history:

Received 1 February 2018

Revised 6 June 2018

Accepted 31 July 2018

Available online xxx

Keywords:

Model reduction

Data-driven reduced models

Physics-based machine learning

Proper orthogonal decomposition

Surrogate models

a b s t r a c t

This paper considers the creation of parametric surrogate models for applications in science and engineer-

ing where the goal is to predict high-dimensional output quantities of interest, such as pressure, temper-

ature and strain fields. The proposed methodology develops a low-dimensional parametrization of these

quantities of interest using the proper orthogonal decomposition (POD), and combines this parametriza-

tion with machine learning methods to learn the map between the input parameters and the POD expan-

sion coefficients. The use of particular solutions in the POD expansion provides a way to embed physical

constraints, such as boundary conditions and other features of the solution that must be preserved. The

relative costs and effectiveness of four different machine learning techniques—neural networks, multivari-

ate polynomial regression, k-nearest-neighbors and decision trees—are explored through two engineering

examples. The first example considers prediction of the pressure field around an airfoil, while the second

considers prediction of the strain field over a damaged composite panel. The case studies demonstrate the

importance of embedding physical constraints within learned models, and also highlight the important

point that the amount of model training data available in an engineering setting is often much less than

it is in other machine learning applications, making it essential to incorporate knowledge from physical

models.

© 2018 Elsevier Ltd. All rights reserved.

1

m

d

e

c

a

a

c

l

a

l

a

t

m

h

o

g

w

a

h

c

a

r

B

m

a

d

m

t

t

t

m

h

0

. Introduction

This paper explores connections between model reduction and

achine learning, with a focus on using concepts from model re-

uction to achieve a parametrization of the learning problem that

mbeds physical constraints and aids interpretability. While ma-

hine learning has revolutionized modeling and decision-making in

 number of application fields, its black-box approach of learning

 model entirely from a stream of large data does not seamlessly

arry over to applications in engineering and science. One chal-

enge is to ensure that the models reflect physical constraints, such

s conservation laws and other governing equations. A second chal-

enge is that in many engineering and scientific applications, data

re expensive to generate (both computationally and experimen-

ally) and thus the amount of data available from which to learn

ay be relatively sparse. Yet another challenge lies in the need to

ave confidence in a model’s predictive power—especially since en-
� Paper submitted as part of the special issue of the 19th International Conference

n Finite Elements in Flow Problems.
∗ Corresponding author.

E-mail address: kwillcox@mit.edu (K. Willcox).

r

i

l

b

w

ttps://doi.org/10.1016/j.compfluid.2018.07.021

045-7930/© 2018 Elsevier Ltd. All rights reserved.

Please cite this article as: R. Swischuk et al., Projection-based model re

puters and Fluids (2018), https://doi.org/10.1016/j.compfluid.2018.07.021
ineering models are often used to issue predictions in settings for

hich little-to-no data are available (e.g., predicting failure bound-

ries in the design of an engineering system). Data-driven learning

as a large role to play in improving model capabilities, but these

hallenges can only be addressed by an integrated perspective that

lso accounts for the underlying scientific principles. To quote the

ecent paper by Coveney, Dougherty and Highfield: “Big Data needs

ig Theory too.” [1]

The field of model reduction encompasses a broad range of

ethods that seek efficient low-dimensional representations of

n underlying high-fidelity model. The majority of model re-

uction methods have targeted the case where the high-fidelity

odel is a high-dimensional system of ordinary differential equa-

ions or a system of equations stemming from the discretiza-

ion of partial differential equations that characterize the essen-

ial physics of the system under consideration. A large class of

odel reduction methods are projection-based; that is, they de-

ive the low-dimensional approximation by projection of the orig-

nal model onto a low-dimensional subspace (or, more generally, a

ow-dimensional manifold). The projection framework can be com-

ined with various ways of representing parametric dependence,

here, for example, the parameters might describe material prop-
duction: Formulations for physics-based machine learning, Com-

https://doi.org/10.1016/j.compfluid.2018.07.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
mailto:kwillcox@mit.edu
https://doi.org/10.1016/j.compfluid.2018.07.021
https://doi.org/10.1016/j.compfluid.2018.07.021

2 R. Swischuk et al. / Computers and Fluids 0 0 0 (2018) 1–14

ARTICLE IN PRESS

JID: CAF [m5G; August 10, 2018;6:37]

g

c

t

e

i

c

r

g

o

n

[

T

w

i

d

i

t

r

t

o

t

a

s

p

t

e

a

c

a

p

2

i

q

e

p

2

p

fi

t

s

c

D

d

e

c

o

a

c

i

r

t

l

W

a

T

t

a
erties, system geometry, system configuration, initial conditions,

and boundary conditions. See for example [2–8] for summaries

of state-of-the-art in projection-based parametric model reduction

methods and applications.

Model reduction has clear connections to machine learning. In

fact, many of the methods used to determine the low-dimensional

subspace are closely related to machine learning methods (e.g.,

the proper orthogonal decomposition (POD) [9–11] , perhaps the

most widely used model reduction method, is very closely re-

lated to the principal component analysis). The difference in fields

is perhaps largely one of history and perspective: model reduc-

tion methods have grown from the scientific computing com-

munity, with a focus on reducing high-dimensional models that

arise from physics-based modeling, whereas machine learning has

grown from the computer science community, with a focus on cre-

ating low-dimensional models from black-box data streams. Yet re-

cent years have seen an increased blending of the two perspectives

and a recognition of the associated opportunities.

Model reduction methods have been presented that build off

a set of “snapshots”—that is, solutions computed with the high-

fidelity model for different inputs. These methods first project

snapshot data onto a low-dimensional space and then use the low-

dimensional, projected snapshots as training data to build the re-

duced model as a map from the inputs to the low-dimensional rep-

resentations of the high-fidelity model data. Both interpolation and

machine-learning-based methods have been used to determine this

map. The low-dimensional spaces are typically computed with POD

from snapshot data of the high-fidelity model, but other basis con-

struction techniques such as the reduced basis method [3] have

been used as well. Perhaps the earliest example of this is [12] ,

which computes a POD representation of the temperature field in a

Rayleigh–Bénard convection problem, and then uses a cubic spline

interpolation to predict the temperature field at Rayleigh numbers

not included in the snapshot training data. The work in [13] re-

constructs POD representations of aerodynamic quantities from in-

complete data using interpolation via the gappy POD [14] . Other

approaches use Gaussian process regression to build a model for

the POD coefficients as a function of the inputs [15–17] . The work

in [18] learns the map from inputs to POD coefficients using an

adaptive combination of self-organizing maps and local response

surfaces, and the work in [19,20] learns the map from inputs to

POD coefficients with neural networks. In [21] , learning the POD

coefficients is coupled with a greedy approach to actively guide the

sampling in the input domain.

Instead of learning a map from the inputs to the coefficients of

POD representations, data-driven model reduction seeks to learn

the operators of reduced models. Thus, these data-driven model

reduction techniques provide a way to learn the dynamics of the

system of interest in the form of reduced-model operators that

respect some of the structure that arises through the underlying

governing equations. Data-driven model reduction shares similar-

ities with classical system identification [22] , where dynamical-

system models are extracted from time- and frequency-domain

measurements. The eigensystem realization algorithm [23–26] and

finite impulse response system identification [22,27–29] are two

system identification techniques that seek to learn reduced mod-

els from impulse responses of linear time-invariant systems. The

Loewner framework [30–34] provides a more flexible approach by

learning reduced models from frequency-response data (i.e., trans-

fer function values), instead of requiring impulse response data.

The Loewner framework has been extended to learning from time-

domain data [35,36] . Vector fitting is a regression-based approach

to learn a reduced model from frequency-response data [37,38] .

Data-driven model reduction methods based on dynamic mode de-

composition learn linear reduced operators that best-fit given data

in the L 2 norm [39–41] . The work in [42] uses least-squares re-
Please cite this article as: R. Swischuk et al., Projection-based model re

puters and Fluids (2018), https://doi.org/10.1016/j.compfluid.2018.07.021
ression to find operators in a similar way to dynamic mode de-

omposition but is applicable to models with low-order polynomial

erms. The work in [43] uses a recursive variable selection strat-

gy to learn a reduced model, with a focus on retaining physical

nterpretability. This approach is combined with model predictive

ontrol to optimize control decisions for real-time operation of a

eservoir in [44] .

A different body of literature leverages sparsity-promoting re-

ression techniques to learn reduced models from data. One line

f work employs � 1 regularization to select reduced-model compo-

ents from a library [41,45] . Another line of work seeks to recover

46,47] or to update [48–50] reduced models from sparse data.

he work in [51–54] augments projection-based reduced models

ith correction terms learned from data. Multifidelity and multi-

nformation source methods provide another way of combining re-

uced models with data, see, e.g., [55–58] .

Despite this wealth of literature, enforcing physical constraints

n machine learning-based models remains an open challenge. In

his paper we address this challenge by developing a POD rep-

esentation as a way to create a physics-inspired parametrization

hat embeds physical constraints. We then present a detailed study

f the relative cost and effectiveness of different machine learning

echniques in this setting. Section 2 presents the POD methodology

nd describes the use of particular solutions to enforce problem

tructure. Section 3 presents the setup of the machine-learning

roblem in the low-dimensional POD space and briefly describes

he four machine learning methods that are employed. More gen-

ral perspectives on the machine-learning techniques used by our

pproach are given in, e.g., [59–62] . Sections 4 and 5 present two

ase studies, respectively prediction of the pressure field around an

irfoil and prediction of the strain field over a damaged composite

late. Finally, Section 6 concludes the paper.

. A physics-inspired parametrization of physical fields

We consider systems in science and engineering that respond to

nputs with physical fields, for example representing such physical

uantities as pressure, temperature, stress, strain, etc. This section

stablishes a physics-inspired parametrization of such fields via the

roper orthogonal decomposition.

.1. Numerical approximation of physical fields

Consider a system that maps an input onto a physical field. The

hysical field is our prediction quantity of interest. We denote a

eld as a function q : X × T × P → R , with the spatial domain X ,

ime domain T , and input domain P . Thus, the field q varies in

pace and time, and depends on the input of the system. The fo-

us of this paper is on learning approximate models of q from data

 ⊂ { q (x , t; p) | x ∈ X , t ∈ T , p ∈ P} in a way that respects the un-

erlying physical constraints of the system, thus leading to models

ndowed with scientific interpretability and predictive power.

To begin, we recognize that the behavior of these systems is

haracterized by physical laws and governing equations, which are

ften represented in the form of partial differential equations. In

 classical computational science setting, numerical models dis-

retize the governing equations, approximating the solution fields

n different ways. For example, a finite difference approximation

epresents the solution at a set of discrete points in the space-

ime domain, while a finite element method represents the so-

ution using an expansion in a finite number of basis functions.

hichever numerical discretization method is chosen, the result is

 numerical model that embeds the physical governing equations.

he dimensionality of these models is typically high, which means

hat large-scale systems of equations have to be solved to evalu-

te the models. The dimension of numerical models can be in the
duction: Formulations for physics-based machine learning, Com-

https://doi.org/10.1016/j.compfluid.2018.07.021

R. Swischuk et al. / Computers and Fluids 0 0 0 (2018) 1–14 3

ARTICLE IN PRESS

JID: CAF [m5G; August 10, 2018;6:37]

r

d

f

a

i

m

l

d

e

s

s

[

a

[

a

t

b

2

T

p

c

t

s

c

s

d

s

a

p

t

s

t

t

s

Q

w

t

l

�

V

Q

o

r

s

r

V

T

t

s

g

t

c

t

w

g

“

2

i

fi

e

q

w

d

i

t

1

t

m

t

r

r

l

t

i

2

r

e

a

[

p

s

c

q

w

t

t

f

s

q

b

t

t

r

t

t

e

q

t

T

s {

t

i

f

t

v

P
ange of thousands to millions of unknowns (even more in three-

imensional time-varying simulations) [63,64] .

In our data-driven setting, we seek to learn a numerical model

rom data. While the numerical discretization models described

bove lend some insight to the form of the model we might learn,

t is typically infeasible to attempt to learn directly the large-scale

odels. Instead, we first introduce the notion of a physics-inspired

ow-dimensional parametrization. Such a parametrization can be

erived using the POD, which computes an expansion basis that

nables a low-dimensional representation of a high-dimensional

ystem state. POD is closely related to methods used in other fields

uch as Karhunen–Loéve expansions in stochastic process modeling

65,66] , principal component analysis in statistical analysis [67] ,

nd empirical orthogonal eigenfunctions in atmospheric modeling

68] . POD was introduced for the analysis of turbulent flows [9] ,

nd POD basis vectors are computed empirically using sampled

raining data, typically using the method of snapshots, introduced

y Sirovich [11] .

.2. Computing the POD basis

Consider the field q (· , t ; p) at time t ∈ T and input p ∈ P .

o compute the POD basis, we consider finite-dimensional ap-

roximations q (t; p) ∈ R

n x of q (· , t ; p), where n x is the (typi-

ally large) dimension of the finite-dimensional discretization of

he spatial domain. In the POD literature, q (t ; p) is called a “snap-

hot” [11] and we will collect many such snapshots in order to

ompute the POD basis. These snapshots may be computational

olutions generated by a numerical model, or they may be sensed

ata (or a combination thereof). Consider the set of n s = n t n p snap-

hots,
{

q (t i ; p j) | i = 1 , . . . , n t , j = 1 , . . . , n p
}
, which are snapsho ts

t n t different time instances t 1 , . . . , t n t ∈ T and n p different inputs

 1 , . . . , p n p ∈ P . Define the snapshot matrix Q ∈ R

n x ×n s , which con-

ains the snapshots q (t i ; p j) as its columns. Thus, each row in the

napshot matrix corresponds to a spatial location (e.g., a discretiza-

ion point for a finite difference model snapshot or a sensor loca-

ion for sensed data snapshots) and each column corresponds to a

napshot.

The (thin) singular value decomposition of Q is written

 = V �W

�
, (1)

here the columns of the matrices V ∈ R

n x ×n s and W ∈ R

n s ×n s are

he left and right singular vectors of Q , respectively. The singu-

ar values σ1 ≥ σ2 ≥ . . . ≥ σn s ≥ 0 of Q give the diagonal matrix

= diag (σ1 , σ2 , . . . , σn s) ∈ R

n s ×n s . The POD basis of dimension r ,

 r = [v 1 , . . . , v r] , is then defined as the r left singular vectors of

 that correspond to the r largest singular values. This yields an

rthonormal basis that provides an efficient low-dimensional rep-

esentation of the snapshot data. Among all orthonormal bases of

ize r , the POD basis minimizes the least squares error of snapshot

econstruction,

min

 r ∈ R n x ×r
|| Q − V r V

�
r Q || 2 F =

n s ∑

k = r+1

σ 2
k . (2)

he sum of the squares of the singular values corresponding to

hose left singular vectors not included in the POD basis gives the

quare of the error in the snapshot representation. Thus, the sin-

ular values provide quantitative guidance for choosing the size of

he POD basis, based on the number of basis vectors needed to ac-

urately represent the given snapshot data. A typical approach is

o choose r so that

∑ r
k =1 σ

2
k ∑ n s σ 2

> κ, (3)

k =1 k

Please cite this article as: R. Swischuk et al., Projection-based model re

puters and Fluids (2018), https://doi.org/10.1016/j.compfluid.2018.07.021
here κ is a user-specified tolerance, typically taken to be 90% or

reater. The lefthand side of (3) is often referred to as the relative

cumulative energy” captured by the first r POD modes.

.3. Parametrizing physical fields in the POD basis

The POD basis is learned from snapshot data of the system of

nterest and so provides a physics-based parametrization of the

eld q . For example, the field q can be approximated by a linear

xpansion in the POD basis:

˜
 (t; p) =

r ∑

k =1

v k αk (t; p) , (4)

here αk (t ; p) denote the POD expansion coefficients and

˜ q (t; p)

enotes the POD approximation of the field q (· , t ; p) at time t and

nput p . Given a snapshot q (t ; p), we can compute its representa-

ion in the POD basis via the coefficients αk (t; p) = v �
k

q (t; p) , k =
 , . . . , r, where we have used that the POD basis vectors are or-

honormal. Our learning task is now transformed into learning a

odel for the POD coefficients αk (t ; p). This transformation has

wo advantages. First, the dimension of the unknowns has been

educed from n x in the original discrete representation q (t ; p) to

 in the POD representation. As we will see in the example prob-

ems, typically r � n x for the target problems of interest. Second,

he representation (4) provides a mechanism for embedding phys-

cal constraints.

.4. Enforcing physical constraints in POD parametrizations

Mathematically, physical constraints may be enforced in a va-

iety of ways. One approach is to impose constraints on the infer-

nce of the αk coefficients; that is, to pose the learning problem as

 constrained optimization problem. This is the approach used in

69] to conserve linear and quadratic constraints arising from the

hysical design problem. Another approach is to embed the con-

traints into the form of the POD representation. For example, we

an consider an alternative representation to (4) as

˜
 (t; p) = q̄ +

r ∑

k =1

v̄ k αk (t; p) , (5)

here q̄ is a “particular solution,” also referred to in some litera-

ure as a “static correction” [70] . The particular solution is chosen

o embody particular attributes of the solution that we wish to en-

orce. In (5) we use the notation v̄ k to emphasize that the POD ba-

is vectors may be different to those used in (4) .

As one example, consider the case where the particular solution

¯
 is chosen to satisfy a particular set of prescribed inhomogeneous

oundary conditions and the POD modes v̄ are defined so that

hey satisfy homogeneous boundary conditions. Then by construc-

ion, ˜ q in (5) will satisfy the inhomogeneous boundary conditions

egardless of the values of αk . To see this, we partition a quan-

ity of interest vector as q = [q

b q

f] , into entries associated with

he prescribed boundary conditions, q

b , and the remaining free

ntries, q

f . Now define the particular solution q̄ = [̄q

b q̄

f] , where

¯

b are the desired prescribed inhomogeneous boundary condi-

ions and q̄

f are the remaining entries of the particular solution.

he POD modes v̄ are computed using the same methodology de-

cribed in Section 2.2 , but operating on the modified snapshot set

q (t i ; p j) − q̄ | i = 1 , . . . , n t , j = 1 , . . . , n p
}

. Note that by subtracting

he particular solution q̄ , the modified snapshots q (t i ; p j) − q̄ sat-

sfy homogeneous boundary conditions, that is, they have the

orm q (t i ; p j) − q̄ = [0
(
q

f (t i ; p j) − q̄

f
)
] . Then by the properties of

he singular value decomposition (i.e., that the singular vectors

 k must be linear combinations of the modified snapshots), the

OD basis vectors also satisfy homogeneous boundary conditions
duction: Formulations for physics-based machine learning, Com-

https://doi.org/10.1016/j.compfluid.2018.07.021

4 R. Swischuk et al. / Computers and Fluids 0 0 0 (2018) 1–14

ARTICLE IN PRESS

JID: CAF [m5G; August 10, 2018;6:37]

Fig. 1. Heated rod example: auxiliary solutions q̄ 0 (left) and q̄ L (center) used to

create the particular solution, and snapshot mean (right).

Fig. 2. Heated rod example: Time averaged errors in prediction of the temperature

field over the spatial domain. Compared are enforcing the boundary conditions us-

ing a particular solution (solid), subtracting the mean solution from the snapshots

(dash), and raw snapshots (dash dot).

3

c

m

t

n

o

p

S

l

3

f

P

c

a

p

t

s

r

t

A
and the representation (5) will recover the desired inhomogeneous

boundary conditions.

The idea expressed in (5) can be extended to include multiple

particular solutions, as well as particular solutions scaled by func-

tions of time and inputs or particular solutions that themselves de-

pend upon time and/or inputs, chosen to satisfy more complicated

physical conditions. In this case, we write

˜ q (t; p) = q̄ (t; p) +

r ∑

k =1

v̄ k αk (t; p) , (6)

where again one must make corresponding modifications to sub-

tract out particular solutions from the snapshot set, so that the

modified snapshots—and thus the POD modes—satisfy homogenous

conditions in the appropriate entries.

2.5. Particular solution illustrative example

As an illustrative example, consider the use of particular so-

lutions to enforce boundary conditions in a model predicting

the evolution of temperature in a one-dimensional heated rod of

length L . The output quantity of interest, q (x, t), is the temperature

field over the rod, which varies as a function of distance along the

rod, 0 ≤ x ≤ L , and time, t ≥ 0. The evolution of the temperature is

governed by the heat equation, along with specified boundary con-

ditions and initial conditions. To demonstrate how to determine an

appropriate particular solution, consider the specific case that the

boundary at the left end of the rod (x = 0) is prescribed to follow

a time-dependent forcing function, q (0 , t) = γ0 f (t) , where γ 0 is a

scalar amplitude and f (t) specifies the time-varying component of

the boundary condition, and the boundary at the right end of the

rod is constrained to a fixed temperature value, q (L, t) = γL .

We wish to create a POD reconstruction of the form (6) that

respects these two boundary conditions. To do this, we first solve

an auxiliary problem with the same heated rod problem setup but

with boundary conditions q (0 , t) = 0 and q (L, t) = 1 . Denote the

resulting steady-state solution as q̄ L (x) . This first auxiliary problem

solution is used to enforce the boundary condition at x = L . Second,

solve an auxiliary problem with boundary conditions q (0 , t) = 1

and q (L, t) = 0 , and denote the resulting steady-state solution as

q̄ 0 (x) . This second auxiliary problem solution is used to enforce

the boundary condition at x = 0 . Then to reconstruct solutions for

our original problem, we define the particular solution q̄ (x, t) =
γ0 f (t) ̄q 0 (x) + γL ̄q

L (x) . It can be seen that subtracting this particu-

lar solution off each snapshot (noting that when considering each

snapshot, f (t) must be evaluated at the time corresponding to that

snapshot) yields a modified snapshot set with homogenous bound-

ary conditions, which in turn leads to a POD basis that satisfies

homogenous boundary conditions. Reconstruction of solutions via

(6) is then guaranteed to recover the boundary conditions.

Fig. 1 plots the auxiliary solutions q̄ 0 and q̄ L , along with the

mean of a snapshot set generated by sampling different values of

time and thermal diffusivity for a case with boundary conditions

q (0 , t) = 3 sin 2 t and q (L, t) = 3 . It can be seen that the auxiliary

solution q̄ L is qualitatively similar to the mean (which is to be ex-

pected in this specific problem setup since the average boundary

condition at the left end is zero), whereas q̄ 0 introduces the behav-

ior needed to model the time-dependent boundary condition ap-

plied to the left end of the rod. Fig. 2 shows the time-averaged er-

rors in reconstructions (where the POD coefficients are determined

using a decision tree, as described in Section 3). The enforcement

of the boundary conditions is clearly indicated by the zero errors

at x = 0 and x = L .
Please cite this article as: R. Swischuk et al., Projection-based model re

puters and Fluids (2018), https://doi.org/10.1016/j.compfluid.2018.07.021
. Machine learning methods

The numerical examples in this paper use four different ma-

hine learning methods to infer the physics-based low-dimensional

odels. This section describes the learning problem setup and

hen provides a brief overview of each machine learning method,

oting that these are standard implementations of existing meth-

ds and details are given only for completeness. Specific im-

lementation choices for each modeling approach are given in

ections 4 and 5 for the aerodynamic and structural example prob-

em, respectively.

.1. Learning problem setup

In each case, we learn a surrogate model for the map α : P → A
rom inputs p ∈ P to outputs α(p) ∈ A . The outputs α(p) are the

OD coefficients defined in Section 2 ; we consider the specific

ase of r POD coefficients, α(p) = [α1 (p) , . . . , αr (p)] . The inputs

re system parameters; we consider the specific case of m inputs:

 = [p 1 , . . . , p m

] . Note that we dropped the dependence of α on

ime for ease of exposition.

Consider the case that we have n s snapshots, where each snap-

hot corresponds to a different input. We collect the inputs cor-

esponding to each snapshot in the matrix P ∈ R

n s ×m . We collect

he corresponding POD coefficients for each snapshot in the matrix

 ∈ R

n s ×r . The remainder of this section provides an overview of
duction: Formulations for physics-based machine learning, Com-

https://doi.org/10.1016/j.compfluid.2018.07.021

R. Swischuk et al. / Computers and Fluids 0 0 0 (2018) 1–14 5

ARTICLE IN PRESS

JID: CAF [m5G; August 10, 2018;6:37]

Fig. 3. Structure of a neural net with a two dimensional input, two hidden layers

and a one dimensional output.

t

o

a

t

d

3

n

a

d

t

n

fi

a

a

t

n

p

�

E

p

n

n

i

E

w

t

t

t

T

f

d

e

i

i

j

e

p

T

i

w

p

f

3

g

s

q

fi

α

w

t

t

s

a

w

S

m

n

3

a

c

e

t

n

b

fl

w

t

t

t

b

t

a

s

d

o

3

n

d

m

a

e

E

a

t

i

t

l

p

(

a

[

r

t

t

s
he four methods used to make predictions. In each of these meth-

ds, our input and output data, P and A , are divided into training

nd test sets denoted by (P train , A train) and (P test , A test), respec-

ively. The goal is to learn the map α : P → A from the training

ata (P train , A train).

.2. Neural network

The first model considered is a fully connected, feed forward

eural network. Neural network models estimate the output α(p)

t an input p using weights and biases that are adapted to the data

uring training. With the use of adaptivity, these models are struc-

ured but can achieve great flexibility. A disadvantage of using a

eural net is that interpretation of the resulting model may be dif-

cult.

A neural net consists of sequential layers of nodes that define

 mapping between an input and an output. The basic structure of

 neural net is shown in Fig. 3 . The first layer of nodes is called

he input layer, which directly receives the input to the model. The

umber of nodes in the input layer is equal to the number of in-

uts. In each hidden (i.e., not an input or output) layer, l , there are

 l nodes. The i th node in layer l is denoted as ηi
l

for i ∈ { 1 , . . . , � l } .
ach node takes an input, evaluates an activation function, g , and

roduces an intermediate output, o i
l
, which is used as an input to

odes in the next layer, l + 1 . Every node in a given layer is con-

ected to every node in the following layer (fully connected) and

nformation is passed forward through the network (feed forward).

ach of these connections are given a weight, w

i
l
, and a bias, b i

l
,

hich defines the importance and the effect of a particular input

o the output [71] . The activation function at each node is a func-

ion of h i
l
= w

i
l
o i

l−1
+ b i

l
and thus depends on the input to the node,

he weight assigned to the connection to that node and the bias.

he output for node ηi
l

is determined by evaluating the activation

unction o i
l
= g(h i

l
) . The last layer is the output layer, which pro-

uces the final output. The number of nodes in the last layer is

qual to the number of output values.

To train a neural net, training inputs, P train , and correspond-

ng training outputs, A train , are provided to the model. The train-

ng process iterates forward and backwards over the network, ad-

usting weights and biases so as to minimize the mean squared

rror between predicted and actual training outputs [72] . Each

air of forward and backward passes is referred to as an epoch.

he computational complexity of training a neural net is approx-

mately linear with the size of the network (nodes and layers),

hich in turn depends upon the dimension of the input and out-

ut, and with the number of epochs, assuming a smooth activation

unction [73] .
Please cite this article as: R. Swischuk et al., Projection-based model re

puters and Fluids (2018), https://doi.org/10.1016/j.compfluid.2018.07.021
.3. Multivariate polynomial regression

The second model considered is multivariate polynomial re-

ression (MPR), which approximates the outputs α(p) using least

quares regression. For the applications in this paper, we use

uadratic polynomial functions. Thus, our model for a POD coef-

cient α is written as

(p) = b 0 +

m ∑

i =1

b i p i +

m ∑

i =1

m ∑

j= i
c i j p i p j , (7)

here the b i , i = 0 , 1 , . . . , m and c i j , i = 1 , . . . , m, j = i, . . . , m are

he coefficients of the quadratic model. These coefficients are de-

ermined via least squares regression that minimizes the mean

quared error between the predicted and actual training outputs.

The largest computational complexity in fitting this model

rises from solving the least squares system, the dimension of

hich scales quadratically with the number of input parameters m .

till, in our numerical experiments below, the quadratic regression

odel is much cheaper to train and to evaluate than the neural

etwork model.

.4. k-nearest-neighbors regression model

The k-nearest-neighbors (kNN) model can be interpreted as

 localized form of multivariate regression: the approximation is

omputed over a local set of k training samples that are the clos-

st neighbors of the evaluation point p in the input space. Due to

he local nature of kNN approximations, the resulting models do

ot provide a global interpretation of the underlying relationship

etween inputs and outputs. Therefore kNN is an unstructured but

exible scheme, balancing the simplicity of polynomial regression

ith the flexibility of localized models.

In this paper, we consider a standard implementation of kNN

hat approximates α(p) by averaging the outputs associated with

he k nearest neighbors. The predicted output of the kNN model is

he weighted average of the training outputs at each of the neigh-

ors. This is in essence a localized linear regression model. During

raining, a k-d tree partitions the data along each input dimension

nd can be constructed in O(mn train) time, where m is the dimen-

ion of the input, without explicitly calculating any m -dimensional

istances. This allows for fast nearest neighbor searches averaging

n the order of O(log (n train)) [74,75] .

.5. Decision tree regression model

The fourth model considered expands on the use of nearby

eighbors to make predictions via localized regression models. A

ecision tree partitions the input domain into many regions and

akes local average estimates of the output. This is performed in

 top down fashion where the data are recursively partitioned at

ach node using a greedy algorithm to group similar data together.

ach node is assigned a certain split criteria, which aims to make

 split that creates similar valued subsets of data. Nodes in the

ree continue to split the data into left and right child nodes us-

ng a series of logical statements. This process continues until cer-

ain stopping criteria are met and nodes cease to split, becoming

eaf nodes. After the data are partitioned into multiple regions, a

iecewise constant regression model is built. Within each region

i.e., within each leaf node), a constant function is fit as the aver-

ge of each value in the region.

Efficient methods for constructing decision trees are available

76] . Once a tree has been learned, predictions can be made

apidly. Given an input, only simple logic statements are processed

o reach a leaf node where an average value is computed to obtain

he output. Partitioning the training data along each input dimen-

ion results in a computational complexity of O(mn log (n))
train train

duction: Formulations for physics-based machine learning, Com-

https://doi.org/10.1016/j.compfluid.2018.07.021

6 R. Swischuk et al. / Computers and Fluids 0 0 0 (2018) 1–14

ARTICLE IN PRESS

JID: CAF [m5G; August 10, 2018;6:37]

Fig. 4. Inputs and output quantity of interest for the aerodynamic example. High-fidelity CFD solver (top) and low-dimensional models (bottom).

Fig. 5. POD singular values and relative cumulative energy for the airfoil pressure field snapshot set.

s

h

i

r

P

M

e

c

s

l

s

c

s

i

s

i

P

fi

d

4

u

f

m

r

a

d

c

a

d

A

h

t

s

n
to build the tree. If a decision tree is approximately balanced, this

allows for fast predictions on the order of O(log (n train)) .

The following sections will illustrate how the proposed

parametrization of the output space using POD is an effective ap-

proach for two engineering applications, and will explore tradeoffs

in computational cost and prediction accuracy among the different

machine learning methods applied in the POD space.

4. Aerodynamic example

The first case study considers the prediction of the flow around

an airfoil, using data generated from a large-scale computational

fluid dynamics (CFD) simulation.

4.1. Problem setup: predicting the flow over an airfoil

The input parameters considered are the freestream Mach num-

ber, M , and the airfoil lift coefficient, c l . Thus we have m = 2 pa-

rameters with the input parameter vector p = [p 1 p 2] = [M c l] . The

output quantity of interest is the pressure field around the airfoil,

which varies as a function of the input parameters. In reality, the

pressure field is a continuous (infinite-dimensional field), varying

over the spatial domain. An expensive physics-based model com-

putes a high-fidelity finite-dimensional approximation of the pres-

sure field using a CFD model. In this example, we use the SU2

CFD tool suite [77] , a multi-purpose open-source solver, specifi-

cally developed for aerospace applications. SU2 uses a finite vol-

ume method to discretize the underlying partial differential equa-

tions. Here we use the Euler equations to model the inviscid steady

flow over the airfoil. We consider a range of Mach numbers, span-

ning subsonic and transonic flow regimes. Flow tangency bound-

ary conditions are imposed on the airfoil surface and the farfield

boundary is approximately 20 chord lengths away from the airfoil.

SU2’s discretization of the pressure field has n x = 9027 degrees

of freedom; that is, each SU2 pressure field solution is a vector

of dimension n x = 9027 , where each entry corresponds to the pre-

dicted pressure at a different spatial location in the computational

domain. We use training data generated by SU2 to learn a cheap
Please cite this article as: R. Swischuk et al., Projection-based model re

puters and Fluids (2018), https://doi.org/10.1016/j.compfluid.2018.07.021
urrogate model, but clearly this dimensionality of n x = 9027 is too

igh to use directly as the model output in our machine learn-

ng setting. We use the methodology described in Section 2 to

educe the dimensionality of the output representation using the

OD. To achieve this, snapshots are generated for a domain of

ach numbers from M = 0 . 6 to M = 0 . 8 in increments of 0.01. At

ach Mach number, the following seven lift coefficients are used:

 l = 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 85 , 0 . 9 . This provides a total of n s = 147

napshots, where each snapshot is a high-fidelity pressure field so-

ution, represented as a high-dimensional vector. From these snap-

hots, we compute the POD basis vectors. For each snapshot, we

ompute the corresponding POD expansion coefficients, which de-

cribe the representation of the snapshot in the POD basis accord-

ng to (5) , where q̄ is set to be the mean over all training snap-

hots. We then use the four machine learning methods described

n Section 3 to fit models between the input parameters p and the

OD coefficients α(p). Fig. 4 summarizes the input and output con-

guration associated with the high-fidelity SU2 solver and the low-

imensional model.

.2. Aerodynamic results

First, we determine the appropriate number of POD modes to

se in our reduced model. Fig. 5 shows the POD singular values

or the full dimensional pressure fields and the corresponding cu-

ulative energy as defined in (3) .

Based on Fig. 5 , we use the first r = 10 POD basis vectors to

epresent the pressure fields. The coefficients α(p) = [α1 , . . . , α10]

re thus the predictions of our surrogate models and then the pre-

icted pressure fields are reconstructed using (5) . To assess the ac-

uracy of each model, we withhold the set of samples containing

 particular Mach number from the training set and make pre-

ictions of the pressure solutions at the withheld Mach number.

t each Mach number there are seven lift coefficients, so with-

olding a Mach number involves withholding seven samples as a

est set. To illustrate the performance of the various models, Fig. 6

hows the actual and predicted pressure fields for the case of Mach

umber M = 0 . 7 and lift coefficient c = 0 . 7 . All pressure fields pro-
l

duction: Formulations for physics-based machine learning, Com-

https://doi.org/10.1016/j.compfluid.2018.07.021

R. Swischuk et al. / Computers and Fluids 0 0 0 (2018) 1–14 7

ARTICLE IN PRESS

JID: CAF [m5G; August 10, 2018;6:37]

Fig. 6. True pressure field (a) and predictions using POD in combination with four machine learning techniques (b)–(e).

d

f

p

t

n

g

T

a

r

fi

v

g

a

k

w

b

r

i
uced with Mach 0.7 have been held out of the training set used

or making these predictions.

The true pressure field is shown in Fig. 6 a. Fig. 6 b shows the

redicted pressure field using a neural network model. In this case,

he neural net is implemented with one hidden layer containing 50

odes and a sigmoid activation function defined as

(h) =

1

1 + e −h
. (8)

he neural net cost function is defined as the mean squared error

nd is minimized using stochastic gradient descent with a learning
Please cite this article as: R. Swischuk et al., Projection-based model re

puters and Fluids (2018), https://doi.org/10.1016/j.compfluid.2018.07.021
ate of 0.1 and 10,0 0 0 epochs. Fig. 6 c shows the predicted pressure

eld using multivariate polynomial regression. Our two predictor

ariables are Mach number, M , and lift coefficient, c l , and the re-

ression model is computed using quadratic (degree 2) polynomi-

ls following (7) . Fig. 6 d shows the predicted pressure field using

NN regression. The number of neighbors, k , is set to 5 and the

eights are inversely proportional to the distance to each neigh-

or. Fig. 6 e shows the predicted pressure field using decision tree

egression. No restrictions were set on the depth of the tree, result-

ng in 279 nodes in total, 140 of those as leaf nodes. Fig. 7 shows
duction: Formulations for physics-based machine learning, Com-

https://doi.org/10.1016/j.compfluid.2018.07.021

8 R. Swischuk et al. / Computers and Fluids 0 0 0 (2018) 1–14

ARTICLE IN PRESS

JID: CAF [m5G; August 10, 2018;6:37]

Fig. 7. The error field produced by predictions using POD in combination with four machine learning techniques.

h

p

e

a

b

g

m

t

t

e

a

r

T

c

t

5

r

s

5

l

e
the pointwise absolute error of the fields corresponding to each

of the predictions in Fig. 6 . It can be seen that the neural net-

work model has the largest regions of significant error of all the

surrogate models. The kNN and decision tree models both do an

excellent job of capturing the pressure field, and for the quadratic

regression model the error is mainly localized towards the trailing

edge of the airfoil upper surface.

To further quantify the performance of the methodology, we

calculate the mean absolute error (MAE) over the entire field for

each of the seven lift coefficient values. For each Mach number

in turn, we repeat the process of holding out samples for that

Mach number, training the surrogate models, predicting the pres-

sure fields, and computing the MAE over the held-out test set.

Fig. 8 plots the results. For each Mach number, the plot shows the

minimum, mean and maximum of the seven MAEs for that Mach

number. Again it can be seen that the neural network models have

the worst performance (note the different scale on the neural net

plot), despite having the largest training time and largest predic-

tion time (see Fig. 9). For these times, the models are implemented

in Python 2.7 and tested on a 2.3 GHz Intel Core i5.

Decision trees, quadratic polynomial regression and kNN regres-

sion have clearly outperformed the neural network in this exam-

ple. The relationship between the inputs (Mach number and lift

coefficient) and the output quantity of interest (pressure) is non-

linear and in theory should be better captured by a neural net-

work model than by the simpler regression models. However, in

this example the limited amount of training data is limiting the

performance of the neural net. This suggests that while neural nets

i

Please cite this article as: R. Swischuk et al., Projection-based model re

puters and Fluids (2018), https://doi.org/10.1016/j.compfluid.2018.07.021
ave become the machine learning models of choice in many ap-

lications with massive amounts of data (e.g., retail, finance), in an

ngineering setting the training data is often expensive to obtain

nd is sparse—as in this example, the training data are generated

y running an expensive simulation—and other modeling strate-

ies may be more appropriate. In this example, the strong perfor-

ance of the kNN and decision tree models is notable and relates

o the power of localization. As noted above, the relationship be-

ween inputs and outputs in this aerodynamic problem is nonlin-

ar, but it is well known that locally linearized models can provide

ccurate representations—in fact, locally linearized models are al-

eady widely used in many CFD physics-based engineering models.

he kNN and decision tree modeling approaches further exploit the

ombined power of localization and linearization by also learning

he neighborhood of locality during the model training phase.

. Structural example

The second case study considers the prediction of the structural

esponse of a composite panel, using data generated from a large-

cale finite element model.

.1. Problem setup: damaged composite panel

We model the structural state of a composite panel undergoing

ocal degradation of stiffness properties associated with the pres-

nce of a damage condition. The structural component under test

s a composite panel (18 × 18 square inches) made of four layers of
duction: Formulations for physics-based machine learning, Com-

https://doi.org/10.1016/j.compfluid.2018.07.021

R. Swischuk et al. / Computers and Fluids 0 0 0 (2018) 1–14 9

ARTICLE IN PRESS

JID: CAF [m5G; August 10, 2018;6:37]

Fig. 8. The mean absolute error (MAE) over all lift coefficients when making predictions of a pressure field for a Mach number that has been held out during training. Each

whisker shows the minimum, mean and maximum MAE.

Fig. 9. Time comparison for training and prediction using four different regression models.

p

[

e

a

c

d

(

a

d

p

t

c

p

c

T

c

Table 1

Composite panel input parameter space: boundaries and units.

Parameter component Range Units

y – Damage centroid coordinate along y [2,8] in.

z – Damage centroid coordinate along z [2,8] in.

�y – Damage extension along y [4,14] in.

�z – Damage extension along z [4,14] in.

ϱ – number of affected plies [1,3] plies

e

i

p

w

t

c
lain-weave carbon-fiber plies with symmetric stacking sequence

 ± 45 °, 0/90 °, 0/90 °, ± 45 °]. The panel is clamped along the four

dges with bolts. Two additional plain-weave plies ([± 45 °, 0/90 °])
re 2 in wide and reinforce the borders where bolt holes are lo-

ated. We consider compression static loading applied as imposed

isplacement (−0.01 in), uniformly distributed along the top edge

see Fig. 10).

The structural state is computed numerically for different dam-

ge conditions. We adopt a finite element model of the panel and

iscretize the domain with n x = 3921 two-dimensional laminate

late elements characterized with the carbon-fiber layup proper-

ies. The presence of the damage is modeled by weakening the lo-

al values of the stiffness for the affected elements and plies. In

articular, we consider rectangular damage regions spanning the

entral portion of the panel and involving the first 1, 2 or 3 plies.

he m = 5 input parameters describe the damage location (y and z

oordinates of damage centroid) and the damage extent (in plane

a

Please cite this article as: R. Swischuk et al., Projection-based model re

puters and Fluids (2018), https://doi.org/10.1016/j.compfluid.2018.07.021
xtension �y and �z , and number of affected plies ϱ), as indicated

n Fig. 10 . Thus, the input parameter vector is

 = [p 1 , p 2 , p 3 , p 4 , p 5] = [y, z, �y, �z,] , (9)

ith ranges shown in Table 1 . The output quantity of interest is

he strain field over the panel. We focus here on predicting a single

omponent of strain—the normal component of strain measured

long the first orthotropic axis of ply 4—giving the output quantity
duction: Formulations for physics-based machine learning, Com-

https://doi.org/10.1016/j.compfluid.2018.07.021

10 R. Swischuk et al. / Computers and Fluids 0 0 0 (2018) 1–14

ARTICLE IN PRESS

JID: CAF [m5G; August 10, 2018;6:37]

14”
18”

14”18”

A A

Ply 6: ±45◦

Ply 5: 0◦/90◦

Ply 4: ±45◦

Ply 3: 0◦/90◦

Ply 2: 0◦/90◦

Ply 1: ±45◦

A-A

y

z

Δy

Δz

zd

yd

l

Fig. 10. Left: Composite panel parameters (damage location and damage size) and loading definition. Right: Panel layout and layers sequence.

Fig. 11. Inputs and output quantity of interest for the structural example. High-fidelity finite element solver (top) and low-dimensional models (bottom).

Fig. 12. POD singular values and relative cumulative energy for the n train = 30 0 0 snapshots of normal component of strain along first main orthotropic axis of ply 4.

Fig. 13. Distributions of Normalized Root Mean Square Error (NRMSE) computed for the n test = 500 cases of the test set for different surrogate models: multivariate polyno-

mial regression (MPR) with a quadratic expansion; 1hl neural net with 4, 10 and 20 hidden neurons; 2hl neural net with 10 (5 + 5), 20 (10 + 10), 70 (40 + 30), and 100

(50 + 50) hidden neurons; kNN schemes with different neighborhood cardinality k ; a decision tree.

o

m

e

a

t
of interest vector q (p) ∈ R

n x . Fig. 11 summarizes the input and out-

put configuration associated with the high-fidelity finite element

solver and the low-dimensional model.

The finite element model is used to compute sets of snapshot

data for training and testing. The training set consists of n train =
30 0 0 damage cases determined with a Latin hypercube exploration
Please cite this article as: R. Swischuk et al., Projection-based model re

puters and Fluids (2018), https://doi.org/10.1016/j.compfluid.2018.07.021
f the parameter space; this dataset provides the snapshot infor-

ation to compute the POD modes and learn approximate mod-

ls for the POD coefficients. The test set collects n test = 500 dam-

ge cases determined with a second Latin hypercube exploration of

he parameter space; this dataset is used to evaluate the accuracy
duction: Formulations for physics-based machine learning, Com-

https://doi.org/10.1016/j.compfluid.2018.07.021

R. Swischuk et al. / Computers and Fluids 0 0 0 (2018) 1–14 11

ARTICLE IN PRESS

JID: CAF [m5G; August 10, 2018;6:37]

Fig. 14. True strain field (a) and predictions using POD in combination with four machine learning techniques (b)–(e), for a 6.074 × 6.938 square inch damage centered at

(7.69,4.51) and affecting 3 plies (p = [7 . 69 , 4 . 51 , 6 . 074 , 6 . 938 , 3]).

a

p

5

e

i

m

s

i

P

m

d

a

i

o

t

(

t

o

N

nd efficiency of the approximation techniques discussed in this

aper.

.2. Structural results

Fig. 12 plots the POD singular values and relative cumulative

nergy associated with the POD modes computed from the train-

ng set. For this case, r = 176 POD modes recover 95% of the cu-

ulative energy. We compute the POD coefficients α(p) for each

napshot in the training set. The POD coefficients of the snapshots

n the training set are then used to learn a map from inputs to

OD coefficients for each of the r = 176 retained POD modes. These

odels are then used to predict α(p) for each of the n test = 500
Please cite this article as: R. Swischuk et al., Projection-based model re

puters and Fluids (2018), https://doi.org/10.1016/j.compfluid.2018.07.021
amage cases of the test set. Finally, the predicted POD coefficients

nd the POD basis vectors are combined to estimate the strain field

n the form of POD expansions (5) , where q̄ is set to be the mean

ver all training snapshots.

To assess the performance of the machine learning methods on

his example, we compute the normalized root mean square error

NRMSE) between the actual and reconstructed strain fields over

he test set. The NRMSE measures the generalization performance

f the methods and is computed as:

RMSE =

‖ ̃

 q − q ‖ 2

(q max − q min)
√

n x
× 100% (10)
duction: Formulations for physics-based machine learning, Com-

https://doi.org/10.1016/j.compfluid.2018.07.021

12 R. Swischuk et al. / Computers and Fluids 0 0 0 (2018) 1–14

ARTICLE IN PRESS

JID: CAF [m5G; August 10, 2018;6:37]

Fig. 15. The error field produced by predictions using POD in combination with four machine learning techniques for p = [7 . 69 , 4 . 51 , 6 . 074 , 6 . 938 , 3] .

i

fi

e

w

t

n

i

p

w

t

F

fi

a

p

T

t

fi

t

r

t

s

i

a

t

s

t

s

l

a
where q max and q min denote the maximum and minimum values

in the true strain field snapshot q . Fig. 13 illustrates the NRMSE for

the different methods with various modeling choices. Each box in

the plot shows the quartiles of NRMSE; outliers are defined using

1.5 times the interquartile range and are marked with a + sym-

bol. Moving from the left of the plot, MPR denotes the multivari-

ate polynomial regression model, using a quadratic expansion of

the form (7) . The next batch of results are for the neural network

models. The neural net implementation for this structural example

uses a feedforward neural net with sigmoid activation functions. In

particular, we consider two architectures: (i) a single hidden layer

of neurons (denoted 1hl) with 4, 10 and 20 hidden neurons, and

(ii) two hidden layers of neurons (denoted 2hl) with 10 (5 + 5),

20 (10 + 10), 70 (40 + 30), and 100 (50 + 50) hidden neurons.

In all cases, the mean squared error is minimized during train-

ing using stochastic gradient descent with a learning rate of 0.1

and 10 0 0 epochs. Moving to the right, the next batch of results in

Fig. 13 are for the kNN model with k = 5 , 10 , 20 and 50 neighbors.

The weights in these kNN models are inversely proportional to the

distance to each neighbor. The rightmost result is a decision tree.

No restrictions were set on the depth of the tree, resulting in 5993

nodes in total, 2997 of those as leaf nodes.

Among the methods considered for this study, kNN, decision

tree and multivariate polynomial regression models show better

median performance in NRMSE than the neural networks, with

kNN producing the lowest error. In particular, the kNN model with

k = 5 neighbors gives the lowest NRMSE mean (3.37%) and in-

terquartile range (1.10%) over the entire test set. For the structural

problem at hand, the strain quantity of interest field exhibits dis-

continuities along the edges of the damage region (as can be seen
Please cite this article as: R. Swischuk et al., Projection-based model re

puters and Fluids (2018), https://doi.org/10.1016/j.compfluid.2018.07.021
n Fig. 14 a); hence, the relationship between inputs and POD coef-

cients is nonlinear and the neural network architectures might be

xpected to work better. However, the great flexibility of these net-

orks comes with the risk of overfitting the training dataset and

hus losing generalization capabilities. As we saw in the aerody-

amic example, a lack of sufficient training data may be prevent-

ng the neural network models from showing better generalization

erformance.

Fig. 14 compares approximations of the strain field computed

ith the four different machine learning methods for one par-

icular damage case of the test set p = [7 . 69 , 4 . 51 , 6 . 074 , 6 . 938 , 3] .

ig. 15 illustrates the corresponding pointwise errors in the strain

eld predictions. The neural network prediction in Fig. 14 b is not

ble to capture visual characteristics of the strain field. This is sur-

rising behavior as the NRMSE for this method is less than 10%.

his poor performance is likely due to our implementation and

he relative lack of training data. A single neural net has been

t to predict a r = 176 dimensional output with a relatively small

raining set (n train = 30 0 0). An implementation involving 176 neu-

al networks each fit to a single output may perform better in

his example. As shown in Fig. 14 c, the quadratic regression model

mears out the strain field and does not capture the discontinu-

ties that characterize the strain field along the borders of the dam-

ge region. This is due to the strong assumption of smoothness in

he map α : P → A from inputs p ∈ P to outputs α(p) ∈ A , an as-

umption that is poor for the nature of the physics in this par-

icular problem. The kNN prediction in Fig. 14 d has a similar re-

ult to the polynomial regression, but this method is able to high-

ight more distinctive visual discontinuities in the strain field. The

ccuracy of the kNN model is also apparent in the error plots in
duction: Formulations for physics-based machine learning, Com-

https://doi.org/10.1016/j.compfluid.2018.07.021

R. Swischuk et al. / Computers and Fluids 0 0 0 (2018) 1–14 13

ARTICLE IN PRESS

JID: CAF [m5G; August 10, 2018;6:37]

Fig. 16. Training time and online execution time for different surrogate models: decision tree; multivariate polynomial regression (MPR); 1hl neural networks with 4, 10 and

20 hidden neurons; 2hl neural networks with 10 (5 + 5), 20 (10 + 10), 70 (40 + 30), and 100 (50 + 50) hidden neurons; and kNN schemes with different neighborhood

cardinality k .

F

t

i

c

d

o

f

p

n

t

i

A

f

b

a

l

b

s

c

6

i

t

a

t

d

a

c

p

i

T

s

a

d

t

T

i

r

f

s

b

e

c

r

i

n

p

o

c

g

c

A

0

b

o

a

R

ig. 15 c. The decision tree prediction in Fig. 14 e is able to capture

he sharp discontinuities well, but the location of the discontinu-

ties is incorrect. While the location of the discontinuities is ac-

urate in the z -direction, they span well past the range in the y -

irection. This is possibly explained by the lack of restrictions set

n the decision tree and the risk of overfitting.

Fig. 16 illustrates the training time and online execution time

or the different approximation methods employed for this exam-

le. Training time is the time required to train the model using

 train = 30 0 0 training samples. Prediction time is the time required

o predict all n test = 500 test cases. For these times, the models are

mplemented in Python 2.7 and tested on a 2.3 GHz Intel Core i5.

mong the methods compared in Fig. 16 , the kNN models are the

astest to learn. They are also efficient to evaluate when the num-

er of neighbors is low. Training neural networks is computation-

lly more expensive. Note that the prediction times in Fig. 16 are

arger than those for the aerodynamic example in Fig. 9 . This is

ecause both the dimension of the inputs and of the POD expan-

ion are much larger (r = 176 and m = 5 for the structural problem

ompared to r = 10 and m = 2 for the aerodynamic problem).

. Conclusions

The case studies in this paper have demonstrated that the POD

s an effective way to parametrize a high-dimensional output quan-

ity of interest in order to define a low-dimensional map suit-

ble for data-driven learning. Not only does the POD representa-

ion provide computational tractability by making the map low-

imensional, it also provides a way to embed physical constraints

nd it aids in interpretability of the resulting learned models. The

ase studies in this paper have also highlighted the important

oint that the availability of data in an engineering setting is typ-

cally much less than it is in other machine learning applications.

his is because engineering data are often generated from expen-

ive physics-based simulation codes or from sensors embedded on

 physical system. In either case, it is reasonable to expect hun-

reds or thousands of training data points, but not millions as is

he case in many non-engineering machine learning applications.

he results in this paper highlight the need to account for this fact
Please cite this article as: R. Swischuk et al., Projection-based model re

puters and Fluids (2018), https://doi.org/10.1016/j.compfluid.2018.07.021
n choosing an appropriate machine learning strategy. While neu-

al networks have considerable modeling flexibility, there are pit-

alls when training data coverage of the input space is sparse. In

uch settings, a simpler kNN or polynomial regression model may

e safer choices—even when the underlying physical phenomena

xhibit nonlinear behavior, the power of the POD representation

an transform the problem into one that is amenable to a simpler

epresentation. Lastly we note that for the two examples studied

n this paper, which are representative of many problems in engi-

eering, the kNN models with a small number of neighbors out-

erformed other machine learning methods. This shows the power

f using simple, explainable models but combining them with lo-

alization over the parameter space—an approach long used in en-

ineering modeling, but formalized through the kNN training pro-

ess.

cknowledgments

This work was supported in part by AFOSR grant FA9550-16-1-

108 under the Dynamic Data Driven Application System Program,

y the Air Force Center of Excellence on Multi-Fidelity Modeling

f Rocket Combustor Dynamics, Award Number FA9550-17-1-0195,

nd by the MIT-SUTD International Design Center.

eferences

[1] Coveney PV , Dougherty ER , Highfield RR . Big data need big theory too. Philos

Trans R Soc Lond A 2016;374(2080):1–11 .
[2] Antoulas AC , Sorensen DC , Gugercin S . A survey of model reduction methods

for large-scale systems. Contemp Math 2001;280:193–219 .

[3] Rozza G , Huynh DBP , Patera AT . Reduced basis approximation and a posteriori
error estimation for affinely parametrized elliptic coercive partial differential

equations. Arch Comput Methods Eng 2007;15(3):1–47 .
[4] Chinesta F , Ladeveze P , Cueto E . A short review on model order reduc-

tion based on proper generalized decomposition. Arch Comput Methods Eng
2011;18(4):395 .

[5] Quarteroni A, Rozza G, editors. Reduced order methods for modeling and com-
putational reduction. Springer; 2014.

[6] Benner P , Gugercin S , Willcox K . A survey of projection-based model reduction

methods for parametric dynamical systems. SIAM Rev 2015;57(4):483–531 .
[7] Hesthaven J , Rozza G , Stamm B . Certified reduced basis methods for

parametrized partial differential equations. Springer; 2016 .
[8] Chinesta F , Huerta A , Rozza G , Willcox K . Model reduction methods. In: Ency-

clopedia of computational mechanics, second edition; 2017. p. 1–36 .
duction: Formulations for physics-based machine learning, Com-

https://doi.org/10.13039/100000181
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0008
https://doi.org/10.1016/j.compfluid.2018.07.021

14 R. Swischuk et al. / Computers and Fluids 0 0 0 (2018) 1–14

ARTICLE IN PRESS

JID: CAF [m5G; August 10, 2018;6:37]

[

[9] Lumley J . The structures of inhomogeneous turbulent flow. In: Atmospheric
turbulence and radio wave propagation; 1967. p. 166–78 .

[10] Holmes P , Lumley J , Berkooz G . Turbulence, coherent structures, dynamical
systems and symmetry. Cambridge, UK: Cambridge University Press; 1996 .

[11] Sirovich L . Turbulence and the dynamics of coherent structures. part 1: coher-
ent structures. Q Appl Math 1987;45(3):561–71 .

[12] Ly H , Tran H . Modeling and control of physical processes using proper orthog-
onal decomposition. J Math Comput Model 2001;33:223–36 .

[13] Bui-Thanh T , Damodaran M , Willcox K . Aerodynamic data reconstruc-

tion and inverse design using proper orthogonal decomposition. AIAA J
2004;42(8):1505–16 .

[14] Everson R , Sirovich L . The Karhunen-Loeve procedure for gappy data. J Opt Soc
Am 1995;12:1657–64 .

[15] Audouze C , De Vuyst F , Nair PB . Reduced-order modeling of parameterized
PDEs using time-space-parameter principal component analysis. Int J Numer

Methods Eng 2009;80(8):1025–57 .

[16] Wirtz D , Karajan N , Haasdonk B . Surrogate modeling of multiscale models us-
ing kernel methods. Int J Numer Methods Eng 2014;101(1):1–28 .

[17] Audouze C , De Vuyst F , Nair PB . Nonintrusive reduced-order modeling of
parametrized time-dependent partial differential equations. Numer Methods

Partial Differ Equ 2013;29(5):1587–628 .
[18] Mainini L , Willcox K . Surrogate modeling approach to support real-time struc-

tural assessment and decision making. AIAA J 2015;53(6):1612–26 .

[19] Ulu E , Zhang R , Kara LB . A data-driven investigation and estimation of optimal
topologies under variable loading configurations. Comput Methods Biomech

BiomedEng 2016;4(2):61–72 .
[20] Hesthaven JS , Ubbiali S . Non-intrusive reduced order modeling of nonlinear

problems using neural networks. J Comput Phys 2018;363:55–78 .
[21] Chen W , Hesthaven JS , Junqiang B , Yang Z , Tihao Y . A greedy non-intrusive

reduced order model for fluid dynamics. J Northwest Polytech Univ 2017 .

[22] Ljung L . System identification. Prentice Hall; 1987 .
[23] Viberg M . Subspace-based methods for the identification of linear time-invari-

ant systems. Automatica 1995;31(12):1835–51 .
[24] Kramer B , Gugercin S . Tangential interpolation-based Eigensystem real-

ization algorithm for MIMO systems. Math Comput Model Dyn Syst
2016;22(4):282–306 .

[25] Qin SJ . An overview of subspace identification. Comput Chem Eng

2006;30(10–12):1502–13 .
[26] Reynders E . System identification methods for (operational) modal analysis:

review and comparison. Arch Comput Methods Eng 2012;19(1):51–124 .
[27] Abderrahim K , Mathlouthi H , Msahli F . New approaches to finite impulse

response systems identification using higher-order statistics. IET Signal Proc
2010;4(5):488–501 .

[28] Rabiner L , Crochiere R , Allen J . FIR system modeling and identification in

the presence of noise and with band-limited inputs. IEEE Trans Acoust
1978;26(4):319–33 .

[29] Mendel J . Tutorial on higher-order statistics (spectra) in signal processing
and system theory: theoretical results and some applications. Proc IEEE

1991;79:278–305 .
[30] Antoulas AC , Anderson BDQ . On the scalar rational interpolation problem. IMA

J Math Control Inf 1986;3(2–3):61–88 .
[31] Lefteriu S , Antoulas AC . A new approach to modeling multiport systems

from frequency-domain data. Comput Aided Des Integr CircuitsSyst IEEE Trans

2010;29(1):14–27 .
[32] Mayo A , Antoulas AC . A framework for the solution of the generalized realiza-

tion problem. Linear Algebra Appl 2007;425(2–3):634–62 .
[33] Beattie C , Gugercin S . Realization-independent H 2 -approximation. In: Proc.

IEEE conf. decis. control, Maui, HI, USA; 2012. p. 4953–8 .
[34] Schulze P , Unger B , Beattie C , Gugercin S . Data-driven structured realization.

Linear Algebra Appl 2018;537:250–86 .

[35] Ionita AC , Antoulas AC . Matrix pencils in time and frequency domain system
identification. In: Developments in control theory towards glocal control. In:

Control, Robotics & Sensors. Institution of Engineering and Technology; 2012.
p. 79–88 .

[36] Peherstorfer B , Gugercin S , Willcox K . Data-driven reduced model con-
struction with time-domain Loewner models. SIAM J Scient Comput

2017;39(5):A2152–78 .

[37] Drma ̌c Z , Gugercin S , Beattie C . Quadrature-based vector fitting for discretized
H 2 approximation. SIAM J Scient Comput 2015;37(2):A625–52 .

[38] Drma ̌c Z , Gugercin S , Beattie C . Vector fitting for matrix-valued rational ap-
proximation. SIAM J Scient Comput 2015;37(5):A2346–79 .

[39] Tu JH , Rowley CW , Luchtenburg DM , Brunton SL , Kutz JN . On dynamic mode
decomposition: theory and applications. J Comput Dyn 2014;1(2):391–421 .

[40] Proctor JL , Brunton SL , Kutz JN . Dynamic mode decomposition with control.

SIAM J Appl Dyn Syst 2016;15(1):142–61 .
[41] Proctor JL , Brunton SL , Brunton BW , Kutz JN . Exploiting sparsity and

equation-free architectures in complex systems. Eur Phys J Spec Top
2014;223(13):2665–84 .

[42] Peherstorfer B , Willcox K . Data-driven operator inference for nonintru-
sive projection-based model reduction. Comput Methods Appl Mech Eng

2016;306:196–215 .

[43] Castelletti A , Galelli S , Restelli M , Soncini-Sessa R . Data-driven dynamic emula-
tion modelling for the optimal management of environmental systems. Environ

Model Softw 2012;34:30–43 .
Please cite this article as: R. Swischuk et al., Projection-based model re

puters and Fluids (2018), https://doi.org/10.1016/j.compfluid.2018.07.021
44] Galelli S , Castelletti A , Goedbloed A . High-performance integrated control
of water quality and quantity in urban water reservoirs. Water Resour Res

2015;51:9053-9072 .
[45] Brunton SL , Proctor JL , Kutz JN . Discovering governing equations from data

by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci
2016;113(15):3932–7 .

[46] Dean S, Mania H, Matni N, Recht B, Tu S. On the sample complexity of the
linear quadratic regulator. ArXiv e-prints 2017. arXiv:1710.01688 .

[47] Tu S, Recht B. Least-Squares temporal difference learning for the linear

quadratic regulator. ArXiv e-prints 2017. arXiv:1712.08642 .
[48] Balzano L , Nowak R , Recht B . Online identification and tracking of subspaces

from highly incomplete information. In: 2010 48th annual Allerton conference
on communication, control, and computing (Allerton); 2010. p. 704–11 .

[49] Peherstorfer B , Willcox K . Online adaptive model reduction for nonlinear sys-
tems via low-rank updates. SIAM J Scient Comput 2015;37(4):A2123–50 .

[50] Zimmermann R , Peherstorfer B , Willcox K . Geometric subspace updates with

applications to online adaptive nonlinear model reduction. SIAM J Matrix Anal
Appl 2018;39(1):234–61 .

[51] Yano M , Penn JD , Patera AT . A model-data weak formulation for simultaneous
estimation of state and model bias. CR Math 2013;351(23–24):937–41 .

[52] Maday Y , Patera A , Penn JD , Yano M . PBDW State estimation: noisy observa-
tions; configuration-adaptive background spaces; physical interpretations. In:

ESAIM: Proc, 50; 2015. p. 144–68 .

[53] Parish EJ , Duraisamy K . A paradigm for data-driven predictive modeling using
field inversion and machine learning. J Comput Phys 2016;305:758–74 .

[54] Singh AP , Duraisamy K , Zhang ZJ . Augmentation of turbulence models using
field inversion and machine learning. In: 55th AIAA aerospace sciences meet-

ing. In: AIAA SciTech Forum. American Institute of Aeronautics and Astronau-
tics; 2017. p. 1–18 .

[55] Lam R , Allaire D , Willcox K . Multifidelity optimization using statisti-

cal surrogate modeling for non-hierarchical information sources. In: 56th
AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference;

2015. p. 0143 .
[56] Poloczek M , Wang J , Frazier P . Multi-information source optimization. In: Ad-

vances in neural information processing systems; 2017. p. 4291–301 .
[57] Ghoreishi SF, Allaire DL. A fusion-based multi-information source optimization

approach using knowledge gradient policies. American Institute of Aeronautics

and Astronautics; 2018 . doi: 10.2514/6.2018-1159 .
[58] Peherstorfer B , Willcox K , Gunzburger M . Survey of multifidelity methods in

uncertainty propagation, inference, and optimization. SIAM Rev 2018 . (to ap-
pear).

[59] Bishop C . Pattern recognition and machine learning. Springer; 2006 .
[60] Hastie T , Tibshirani R , Friedman J . The elements of statistical learning.

Springer; 2009 .

[61] Murphy K . Machine learning. MIT Press; 2012 .
[62] Haykin SS . Neural networks and learning machines. Pearson; 2008 .

[63] Akçelik V , Bielak J , Biros G , Epanomeritakis I , Fernandez A , Ghattas O ,
et al. High resolution forward and inverse earthquake modeling on terascale

computers. In: SC03: proceedings of the international conference for high per-
formance computing, networking, storage, and analysis. ACM/IEEE; 2003 . Gor-

don Bell Prize for Special Achievement.
[64] Rudi J , Malossi ACI , Isaac T , Stadler G , Gurnis M , Ineichen Y , et al. An ex-

treme-scale implicit solver for complex PDEs: highly heterogeneous flow in

Earth’s mantle. In: SC15: proceedings of the international conference for high
performance computing, networking, storage and analysis. ACM; 2015 . Winner

of Gordon Bell Prize. 5:1–5:12.
[65] Loéve M . Probability theory. New York: D. Van Nostrand Company Inc.; 1955 .

[66] Kosambi D . Statistics in function space. J Indian Math Soc 1943;7:76–88 .
[67] Hotelling H . Analysis of a complex of statistical variables with principal com-

ponents. J Educ Psychol 1933;24:417–441,498–520 .

[68] North G , Bell T , Cahalan R , Moeng F . Sampling errors in the estimation of em-
pirical orthogonal functions. Mon Weather Rev 1982;110(7):699–706 .

[69] Raghavan B , Hamdaoui M , Xiao M , Breitkopf P , Villon P . A bi-level meta-mod-
eling approach for structural optimization using modified POD bases and dif-

fuse approximation. Comput Struct 2013;127:19–28 .
[70] Hall K , Thomas JP , Dowell EH . Proper orthogonal decomposition technique for

transonic unsteady aerodynamic flows. AIAA J 20 0 0;38(10):1853–62 .

[71] Nielsen MA . Neural networks and deep learning. Determination Press USA;
2015 .

[72] Rumelhart DE , Hinton GE , Williams RJ . Learning representations by back-prop-
agating errors. Nature 1986;323(6088):533 .

[73] Livni R , Shalev-Shwartz S , Shamir O . On the computational efficiency of train-
ing neural networks. In: Advances in neural information processing systems;

2014. p. 855–63 .

[74] Bentley JL . Multidimensional binary search trees used for associative searching.
Commun ACM 1975;18(9):509–17 .

[75] Friedman JH , Bentley JL , Finkel RA . An algorithm for finding best matches in
logarithmic expected time. ACM Trans Math Softw 1977;3(3):209–26 .

[76] Breiman L , Friedman J , Stone CJ , Olshen RA . Classification and regression trees.
CRC Press; 2017 .

[77] Palacios F , Colonno MR , Aranake AC , Campos A , Copeland SR , Economon TD ,

et al. Stanford University Unstructured (SU2): an open-source integrated com-
putational environment for multi-physics simulation and design. In: 51st AIAA

aerospace sciences meeting, Grapevine, Texas; 2013. p. 1–60 .
duction: Formulations for physics-based machine learning, Com-

http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0022
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0022
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0029
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0029
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0030
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0030
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0030
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0042
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0042
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0042
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0044
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0044
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0044
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0044
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0045
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0045
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0045
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0045
http://arxiv.org/abs/1710.01688
http://arxiv.org/abs/1712.08642
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0048
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0048
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0048
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0048
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0049
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0049
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0049
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0050
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0050
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0050
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0050
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0051
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0051
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0051
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0051
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0052
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0052
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0052
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0052
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0052
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0053
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0053
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0053
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0054
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0054
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0054
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0054
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0055
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0055
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0055
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0055
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0056
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0056
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0056
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0056
https://doi.org/10.2514/6.2018-1159
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0058
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0058
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0058
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0058
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0058
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0059
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0059
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0060
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0060
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0060
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0060
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0061
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0061
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0062
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0062
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0063
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0063
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0063
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0063
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0063
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0063
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0063
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0063
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0063
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0064
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0064
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0064
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0064
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0064
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0064
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0064
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0064
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0064
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0065
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0065
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0066
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0066
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0067
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0067
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0068
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0068
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0068
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0068
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0068
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0069
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0069
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0069
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0069
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0069
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0069
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0070
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0070
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0070
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0070
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0071
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0071
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0072
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0072
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0072
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0072
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0073
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0073
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0073
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0073
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0074
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0074
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0075
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0075
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0075
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0075
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0076
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0076
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0076
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0076
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0076
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0077
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0077
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0077
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0077
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0077
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0077
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0077
http://refhub.elsevier.com/S0045-7930(18)30425-0/sbref0077
https://doi.org/10.1016/j.compfluid.2018.07.021

	Projection-based model reduction: Formulations for physics-based machine learning
	1 Introduction
	2 A physics-inspired parametrization of physical fields
	2.1 Numerical approximation of physical fields
	2.2 Computing the POD basis
	2.3 Parametrizing physical fields in the POD basis
	2.4 Enforcing physical constraints in POD parametrizations
	2.5 Particular solution illustrative example

	3 Machine learning methods
	3.1 Learning problem setup
	3.2 Neural network
	3.3 Multivariate polynomial regression
	3.4 k-nearest-neighbors regression model
	3.5 Decision tree regression model

	4 Aerodynamic example
	4.1 Problem setup: predicting the flow over an airfoil
	4.2 Aerodynamic results

	5 Structural example
	5.1 Problem setup: damaged composite panel
	5.2 Structural results

	6 Conclusions
	 Acknowledgments
	 References

