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Abstract. Numerical simulation of large-scale dynamical systems plays a fundamental role in study-
ing a wide range of complex physical phenomena; however, the inherent large-scale nature
of the models often leads to unmanageable demands on computational resources. Model
reduction aims to reduce this computational burden by generating reduced models that
are faster and cheaper to simulate, yet accurately represent the original large-scale sys-
tem behavior. Model reduction of linear, nonparametric dynamical systems has reached
a considerable level of maturity, as reflected by several survey papers and books. How-
ever, parametric model reduction has emerged only more recently as an important and
vibrant research area, with several recent advances making a survey paper timely. Thus,
this paper aims to provide a resource that draws together recent contributions in different
communities to survey the state of the art in parametric model reduction methods.

Parametric model reduction targets the broad class of problems for which the equa-
tions governing the system behavior depend on a set of parameters. Examples include
parameterized partial differential equations and large-scale systems of parameterized ordi-
nary differential equations. The goal of parametric model reduction is to generate low-cost
but accurate models that characterize system response for different values of the param-
eters. This paper surveys state-of-the-art methods in projection-based parametric model
reduction, describing the different approaches within each class of methods for handling
parametric variation and providing a comparative discussion that lends insights to po-
tential advantages and disadvantages in applying each of the methods. We highlight the
important role played by parametric model reduction in design, control, optimization, and
uncertainty quantification—settings that require repeated model evaluations over different
parameter values.
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I. Introduction. Dynamical systems are the basic framework for modeling and
control of an enormous variety of complex systems of scientific interest or industrial
value. Examples include heat transfer, fluid dynamics, chemically reacting flows,
biological systems, signal propagation and interference in electronic circuits, wave
propagation and vibration suppression in large structures, and design of micro-electro-
mechanical systems (MEMS). Numerical simulation of the associated models has been
one of the few available means for studying complex underlying physical phenomena.
However, the growing need for improved accuracy requires the inclusion of more de-
tail in the modeling stage, leading inevitably to larger-scale, more complex models of
dynamical systems. The ever increasing push towards improving system performance
leads to a need to simulate many different possible realizations of the system. Per-
forming multiple simulations in such large-scale settings often presents unmanageably
large demands on computational resources. Alleviation of this computational burden
is the main motivation for deriving reduced models—low-dimensional, efficient mod-
els that are fast to solve but that approximate well the underlying high-resolution
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simulations. The field of model reduction encompasses a broad set of mathematical
methods to generate and evaluate these reduced models.

In this paper, we focus on the broad class of problems for which the equations
representing the system dynamics depend on a set of parameters, and the goal is to
characterize system response for different values of the parameters. These parameters
may enter the models in many ways, representing, for example, material properties,
system geometry, system configuration, initial conditions, and boundary conditions.
This parametric dependence presents a unique set of challenges for model reduction—
building a reduced model requires querying the expensive underlying full model, thus
one cannot afford to create a new reduced model for every change in the parameter
values. Hence, the desired approach is to generate a parametric reduced model that
approximates the original full-order dynamical system with high fidelity over a range
of parameters. This is the goal of parametric model reduction. This survey provides
an overview of state-of-the-art methods in parametric model reduction for large-scale
dynamical systems. Recent years have seen considerable progress in this field, with
several classes of methods emerging. This paper highlights the different approaches
within each class of methods for handling parametric variation. We provide a com-
parative discussion that lend insights to potential advantages and disadvantages in
applying each of the methods.

I.1. Applications of Parametric Model Reduction. Why is parametric model
reduction important and useful? It fills a critical need in design, control, optimiza-
tion, and uncertainty quantification settings—settings that require repeated model
evaluations over a potentially large range of parameter values. These are settings in
which we are willing to forgo a large up-front cost, the so-called offline cost, in order
to obtain a reduced model that allows rapid yet accurate simulation over the range
of parameters, the so-called online phase.

The design setting may require evaluation of system performance over a range
of parameter values representing critical design constraints. For example, parametric
reduced models capturing the coupled fluid dynamic and structural dynamic behavior
of an aircraft configuration provide rapid evaluation of aeroelastic performance over a
range of aircraft operating conditions [8, 158, 159]. This enables rapid characterization
of the aircraft’s flight envelope, calculations that would otherwise require many weeks
of computation time. Parametric reduced models have also shown to be an important
enabling technology in the synthesis and design of interconnect [55, 71], semiconductor
devices [130], and MEMS [31, 91] as well as in electrochemical [95] and electrothermal
applications [96].

In control design we desire to drive the system dynamics into a desired configura-
tion, while accounting for parametrically varying dynamics. Examples include design
process control in Rayleigh-Bénard convection with varying Rayleigh number [163],
and control for fluid flow with varying Reynolds number and/or shape parameters
[127, 170]. Instead of designing a new controller for every new parameter, which
would be a large computational burden and intractable for online controller design,
one could design either a single reduced-order controller that performs effectively over
the full parameter space or one that parametrically adapts to the changes. Model pre-
dictive control is another example for which a cheap and reliable model is required to
control the system of interest. Model reduction has been applied to model predictive
control in the nonparametric [133] and parametric [7] cases.

Both design and control can involve optimization, where the goal may be an
optimal system configuration with respect to a certain performance objective (e.g.,
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maximal throughput, minimal weight, minimal energy consumption, etc.) or an op-
timal controller. Most optimization algorithms require multiple evaluations of the
forward model for varying parameter configurations; this is where parametric reduced
models can play a role. Past work has used trust regions to manage the reduced
model as the optimization proceeds [17, 88, 227]. Another approach for optimal con-
trol incorporates the optimality conditions into derivation of the reduced model [144].
A combination of domain decomposition and model reduction has also been devel-
oped for optimal control and shape optimization problems [12, 13]. Another recent
framework employed parametric reduced models that ensure exact matching of the
objective function and gradient evaluations for a subset of parameter values [29, 80].
Model reduction for optimization problems constrained by partial differential equa-
tions (PDEs) has recently been surveyed in [49].

Uncertainty quantification is another area that demands repeated model evalua-
tions—often many thousands or even millions of evaluations are needed to sample the
uncertainty space (e.g., using Monte Carlo sampling). For example, using parametric
reduced models, the forward propagation of uncertainty through complex systems,
such as those typically modeled using large-scale computational fluid dynamic (CFD)
models can be achieved in turnaround times useful for design [62]. Parametric re-
duced basis models have also been combined with stochastic collocation to solve sys-
tems governed by PDEs with random coefficients [86]. Another example is large-scale
statistical inverse problems for which Markov chain Monte Carlo methods are compu-
tationally intractable, either because they require excessive amounts of CPU time or
because the parameter space is too large to be explored effectively by state-of-the-art
sampling methods. In these cases, parametric model reduction over both state and
parameter spaces can make tractable the solution of large-scale inverse problems that
otherwise cannot be solved [80, 102, 156, 220, 72].

While all four of these areas—design, control, optimization, and uncertainty
quantification—require repeated model evaluations over the parameter space, the na-
ture of the parameter sampling in an optimization setting is generally different from
that in the other settings. For design, control, and uncertainty quantification, we
are often (although not always) interested in querying the model over a range of pa-
rameter values (e.g., considering a range of operating conditions in a control setting
or considering a range of probable parameter values in an uncertainty quantification
setting). In contrast, an optimization search takes a targeted path through the param-
eter space; thus, a reduced model built for optimization requires a balance between
exploration and exploitation of the design space [139]. For this reason, building the
reduced model in an offline phase, as discussed above, is likely inefficient in an opti-
mization setting. Doing so may result in large regions of the parameter space being
sampled in the offline phase but not exploited in the online phase, as these regions
will not be explored by the optimizer. A more effective strategy in the optimization
setting blends the offline and online phases by rebuilding or adapting the reduced
model as the optimization search proceeds. Trust region methods are one way to
achieve this [17, 88, 227].

1.2. Parametric Model Reduction and Surrogate Modeling. Parametric model
reduction is but one approach within the more general area of surrogate modeling
strategies for reducing computational burden in applications such as design, control,
optimization, and uncertainty quantification. The paper [84] categorizes surrogate
models into three different classes: data-fit models, projection-based reduced models,
and hierarchical models. Data-fit models include response surface methods that use
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interpolation or regression of simulation data to fit a model for the system output
as a function of the parameters. In the statistical literature, Gaussian processes
have been used extensively as data-fit surrogates for complex computational models
[140], while data-fit surrogate approaches in optimization include polynomial response
surfaces [85, 108, 137, 216], radial basis functions [224], and Kriging models [204].
Stochastic spectral approximations, commonly used in uncertainty quantification, are
another form of response surface model. These methods are based on polynomial chaos
representations of random variables and processes [65, 223] and exploit regularity in
the dependence of an output (or solution field) on uncertain parameters. Stochastic
spectral approximations have been used both in forward propagation of uncertainty
[107, 226] and for statistical inverse problems [168, 169]. Hierarchical surrogate models
include a range of physics-based models of reduced computational cost (and possibly
lower accuracy). Hierarchical surrogates are derived from higher-fidelity models using
approaches such as simplifying physics assumptions, coarser grids, alternative basis
expansions, and looser residual tolerances. Examples in the literature include the
use of simplified-physics models in design optimization [3, 167], multigrid approaches
to optimization of systems governed by differential equations [124, 151], and mesh
coarsening for solving a linear inverse problem [18].

Each of these different classes of surrogate models has different advantages and
disadvantages. Simplified physics models are typically used in an opportunistic way
(i.e., when they are naturally available, as is the case in a great deal of engineering
practice), while data-fit and reduced models are derived mathematically from a higher-
fidelity model. A significant advantage of data-fit approaches is that the offline process
of deriving the surrogate model is nonintrusive. That is, the high-fidelity model can be
run in “black-box” mode, where the only task is to specify a set of input parameters
and generate the corresponding system output predictions. In contrast, the offline
process of deriving a projection-based reduced model is fairly intrusive; as we will
see in the next section, it requires projections of system operators onto a reduced
subspace. One of the potential advantages of a projection-based reduced model is that
it retains the underlying structure of the model. This is of particular importance for
dynamical systems, where there are often benefits to retaining the notion of “system
state” —meaning that our reduced model can be evolved dynamically in time (albeit
in a reduced subspace, but with an explicit relationship to the original state space).
Handling dynamical evolution with a data-fit model is more challenging and typically
leads to a loss of flexibility in the surrogate model (e.g., a statistical data-fit model
may be applicable only to aggregate outputs and/or to the specific conditions under
which it was derived, while a reduced model preserves the ability to simulate different
conditions within its range of applicability). Another advantage of projection-based
approaches is that, using the underlying system structure, they permit a rigorous
framework for deriving system-theoretic error bounds and error estimates.

The question of which surrogate modeling approach to use for a given problem
does not have a definitive answer—much depends on the structure of the problem, the
design/optimization/control/uncertainty quantification task at hand, the availability
of alternate models, and level of access to system operators. Projection-based reduced
models are known to be effective for systems where the input—output map is of low
rank (or can be well approximated by a low-rank representation) [14]. In the case
of a linear time-invariant (LTT) state-space system, this rank is described precisely
by the Hankel singular values of the system; model reduction is effective for systems
whose Hankel singular values exhibit rapid decay. For LTI systems that arise from
discretization of PDEs, it is the physical nature of the underlying PDE operator as
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well as the particular input and output quantities of interest that determine the rate
of decay of the Hankel singular values of the discretized system. Diffusive processes
(e.g., the heat equation) tend to be associated with rapid singular value decay, while
convection-dominated problems are not. However, the particular inputs and outputs
under consideration play a key role—even in the presence of strong convection, an
output that corresponds to an integrated quantity (e.g., an average solution over
the domain) or a highly localized quantity (e.g., the solution at a particular spatial
location) can be characterized by a low-dimensional input—output map [155].

In the case of nonlinear and/or parameterized systems, the elegant and rigorous
characterization of system rank is lost; however, we will see that the concept can be
extended empirically in useful ways. For example, the calculation of singular values
associated with an ensemble of representative system solutions (“snapshots”) lends
useful guidance in determining to what extent a system is amenable for reduction.
Smoothness or regularity of the solution with respect to the parameters is often in-
dicative of a problem that is reducible, although we emphasize again the important
role played by the output quantity of interest—even if the state solution depends in
an irregular way on the parameters, the observation equation (describing the state-
to-output map) often acts as a smoothing filter. Further, in some cases, a change of
coordinate system or other modification of the problem can expose low-dimensional
structure, as in the projective integration method that exploits system symmetries
such as translational invariance (associated with traveling solutions) and scale invari-
ance [138].

1.3. Parametric Model Reduction in Action. A further question that relates
to the amount of reduction that can be achieved is, When is model reduction worth-
while? That is, when does the upfront offline cost outweigh the benefit of having rapid
online evaluations? The recent advances in parametric model reduction surveyed in
this paper have made significant strides towards scalable methods that reduce the cost
of the offline phase; however, once again, a definitive answer to this question remains
problem and context dependent. There are some cases, such as onboard structural
assessment of an aircraft wing to support real-time mission replanning [4, 166], where
one is willing to tolerate an expensive offline phase requiring high-performance com-
puting in order to have the capability to react to aircraft data acquired in real time.
There are other cases, such as the design optimization setting discussed above, where
it may be just as efficient (or even more so) to solve the original problem using the full
model than to derive the reduced model. Throughout this paper we provide discus-
sions of both the quantitative and qualitative aspects of parametric model reduction,
as well as examples from the literature, all of which can help guide the practitioner
in making this assessment for their particular problem.

We lend more insight to the question of what kinds of problems are amenable to
parametric model reduction by citing some success stories from the literature.

e In [40], the authors consider thermal modeling of electric motors, specifically
two models used by Robert Bosch GmbH (the world’s largest supplier of au-
tomotive components!) for designing integrated motor generators for plug-in
hybrid electric vehicles. The models discretize the heat equation on the rather
complicated geometry of the engine and comprise 7 and 13 design parame-
ters, respectively, describing engine geometry and material parameters such

L According to 2011 revenues; see http://en.wikipedia.org/wiki/Robert_-Bosch_-GmbH, accessed
July 15, 2014.
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as heat transfer coefficients and thermal resistances. The simulation times
for these models using the parametric model reduction-via-bilinearization ap-
proach (described in section 4.1) can be accelerated by a factor of 500 and
300, respectively.

Batch chromatography is one of the major processes used for separation prob-
lems in chemical engineering. Therefore, finding the optimal operation mode
is of significant economical value. The mathematical model of batch chro-
matography consists of a system of coupled instationary nonlinear advection-
diffusion-reaction equations. In [230], the optimization of such a process for
the separation of two components is considered. The model is discretized in
space using the finite volume method. Applying the reduced basis method
(section 4.3) with a novel greedy snapshot selection (section 3.4) with re-
spect to time and discrete empirical interpolation (section 2.3) to treat the
nonlinearity, the optimization process could be accelerated by a factor of 54.
In [159], the authors use proper orthogonal decomposition (POD; section 3.3)
to create a reduced-order aeroelastic model of a complete F-16 configuration
with clean wings. The full-order aeroelastic model comprises a finite element
structural model with 168,799 degrees of freedom coupled with an Euler CFD
model with more than 2 million degrees of freedom. Local POD models of
dimension r = 90 computed at sampled Mach numbers are interpolated to
yield a parametric reduced model that estimates aeroelastic damping ratio
coefficients to within 10% accuracy.

In [154], the authors consider a convection-diffusion model of contaminant
transport on a complex three-dimensional domain, parameterized by the ini-
tial distribution of contaminant concentration. A POD model (section 3.3)
with structure-exploiting parametric sampling reduces the dimension of the
problem from more than one million states to 800 states, with no loss of accu-
racy in the parameter inversion estimates or in the subsequent predictions of
future contaminant evolution. The speedups in computing time in this case
are approximately 3,000.

In [147], the authors use the reduced basis method (section 4.3) to create a
reduced model of nonlinear viscous flows with varying Young’s modulus and
varying geometrical parameters, representing arterial wall shape in a fluid-
structure interaction problem with a stenosis and a shape optimization pro-
cess of an arterial bypass. They achieve a reduction from a full model of state
dimension 35,000 to a reduced model of state dimension 20 while maintaining
accuracy levels of O(1072) in the vorticity estimates for the shape optimiza-
tion process, and a reduction from a full model of state dimension 16,000
to a reduced model of state dimension 8 while maintaining accuracy levels
of O(1072) in the viscous energy dissipation estimates for the fluid-structure
interaction simulation in presence of a stenosis in the arterial branch. The
authors estimate speedups in computing time ranging from approximately 28
in the stenosis example to approximately 450 in the bypass example. These
examples represents complexity in terms of dealing with multiphysics (fluid-
structure interaction), shape optimization under uncertainty, nonlinear flows,
and advanced geometrical parametrization.

In [200], the authors use the reduced basis method (section 4.3) to model
control rod movement for a nuclear reactor core. The neutron kinetics are
described by a multigroup diffusion equation parametrized by the height of
the control rod (i.e., how far the rod is inserted). The reduced model has
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a computational speedup of a factor of 30,000 relative to a full model of
dimension 133,810, while reproducing the neutron flux distribution with a
relative accuracy of 1074,

In addition to these examples of parametric model reduction, several studies have
compared various surrogate modeling approaches in the context of specific examples.
For example, [32] shows that in a two-dimensional driven cavity flow example for
a viscoelastic material, a projection-based reduced model with 60 degrees of free-
dom performs significantly better than a coarser discretization with 14,803 degrees
of freedom. The paper [100] compares projection-based reduced models to stochastic
spectral approximations in a statistical inverse problem setting and concludes that,
for an elliptic problem with low parameter dimension, the reduced model requires
fewer offline simulations to achieve a desired level of accuracy, while the polynomial
chaos-based surrogate is cheaper to evaluate in the online phase. In [74] parametric
reduced models are compared with Kriging models for a thermal fin design problem
and for prediction of contaminant transport. For those examples, the Kriging models
are found to be rapid to solve, to be implementable with a nonintrusive approach,
and to provide an accurate approximation of the system output for conditions over
which they were derived. The projection-based reduced models are found to be more
flexible with regard to approximating system response for parameters and initial con-
ditions other than those over which they were derived. A detailed comparison of
Kriging(-type) methods and projection-based parametric model reduction methods
is, to the best of our knowledge, not currently available, although [70] derives a con-
nection between a residual-minimizing model interpolation approach and Kriging by
noting a relationship between the linear system of equations solved to determine the
Kriging model and the linear system of equations resulting from a constrained least
squares formulation of the model reduction method. Given the common interpolatory
perspective that underlies both Kriging and many parametric model reduction meth-
ods, a deeper investigation into their mathematical relationships and an extensive
comparison of method performance would be a welcome addition to the literature.

1.4. Outline of the Paper. In this paper, our focus is on dynamical systems—a
large class of problems for which projection-based reduced model approaches will of-
ten be a good choice, as highlighted by the examples in the previous subsection. The
remainder of the paper is organized as follows: In section 2, we define the problem
setup and introduce the general framework for projection-based model reduction of
parameterized dynamical systems. We also discuss measures of reduced model error.
Sections 3 and 4 discuss in detail the building blocks of parametric model reduction.
In particular, section 3 presents three different methods for deriving the reduced-order
basis: rational interpolation methods, balanced truncation, and proper orthogonal de-
composition. We also discuss methods for sampling the parameter space. Section 4
covers methods for constructing the parameterized reduced model. These construc-
tion methods are divided into those that use global information over the parameter
space, and those that use local information combined with an interpolation method.
Section 5 provides a comparative discussion of the various projection-based model re-
duction approaches, along with their relative advantages and disadvantages. Finally,
section 6 concludes the paper with a discussion of open challenges and future outlook.

2. General Problem Setup. In this section we define the parameterized dynam-
ical systems of interest. We present the general projection-based model reduction
framework for systems that are linear in state but have general nonlinear parametric
dependence. The projection framework also applies to systems that are nonlinear in
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state, but as discussed in section 6, the model reduction theory in this case is much
less developed. Throughout the discussion, we indicate which aspects of the methods
carry over to the nonlinear-in-state case. Section 2 concludes with a discussion of
error measures to assess the quality of the reduced model.

2.1. Parameterized Dynamical Systems. We consider dynamical systems that

are linear in state and parameterized with d parameters p = [p1,...,pq|T € Q C R?
(usually, © is a bounded domain) as
E(p)x(t;p) = A(p) x(t;p) + B(p) u(?) -
2.1 ' ' " with  x(0;p) =0,
&1 y(t:p) = C(p) x(1:p) (0:p)

where t € [0,00). The state-vector is denoted by x(t;p) € R™. wu(t) € R™ and
y(t;p) € R? denote, respectively, the inputs (excitations) and outputs (observations
or measurements) of the underlying model. Hence, the model has m inputs and ¢
outputs. The state-space matrices, then, have the dimensions E(p), A(p) € R**™,
B(p) € R**™, and C(p) € R?*™. We focus on models that are linear in state, but we
allow nonlinear parametric dependency in all system matrices. The length of the state-
vector x(t; p) (i.e., n) is called the dimension of the parametric model (2.1). For ease of
presentation, we will assume that for every p € 0, E(p) is nonsingular; however, most
of the discussion can be extended to the singular E(p) case as discussed in section 5.
We will further assume that the original model in (2.1) is asymptotically stable for
every p € ; i.e., the eigenvalues of the matrix pencil AE(p) — A(p) have negative
real parts; however, most of the methods can be applied with small modifications to
unstable systems, as discussed further in section 5.

We are interested in cases where n is very large, typically exceeding hundreds
of thousands. The goal is to replace the original large-scale model (2.1), sometimes
called the “truth model” or the “full model,” with a reduced model of the form

%,(t;p) = Ay (p) x-(t;p) + By (p) u(t),
yr(t;p) = Cr(p) %, (t;p),

such that the reduced output y, (¢; p) € R? is a good approximation of y(¢; p) with re-
spect to an appropriate error measure. Note that the reduced state-vector x,.(¢; p) has
length r < n, and the reduced state-space matrices have dimensions E,.(p), A, (p) €

R™7" B,.(p) € R™™, and C,(p) € R?*"; hence the dimension is reduced from n
down to r < n. This reduction process is illustrated pictorially in Figure 2.1.

(2.2) E.(p) with  x,(0;p) =0,

2.2. Projection-Based Model Reduction. Parametric model reduction can be
approached from a variety of viewpoints. This paper focuses on projection-based
approaches. To motivate the challenges associated with parameterized systems, first
consider the general projection-based reduction approach for a system with no para-
metric dependence; i.e.,

(2.3) Ex(t) = Ax(t) + Bu(t), y(t)=Cx(t).

One approximates the unknown state quantities in a basis of reduced dimension and
projects the governing equations onto a suitably defined low-dimensional subspace.
In particular, choose r-dimensional test and trial subspaces, denoted by V and W,
respectively, where r < n. Define the associated basis matrices V. € R™*" and
W € R™" where V = Ran(V) and W = Ran(W), with Ran denoting the range.
Using the approximation that the full state x(¢) evolves in the r-dimensional subspace
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n E(p). A(p) B(p)
r | E.p), A(p) B.(p)
Parametric Model
Reduction
a C(p) q C.(p)
Fig. 2.1 Parametric model reduction.

V, we write x(t) =~ Vx,(t), where x,(t) € R". Using this approximation in (2.
defines a residual (EVX%,.(t)—AVx, (t)—Bu(t)) and the reduced model output y,(¢)
CVx,(t). Then enforcing the Petrov-Galerkin condition

3)

(2.4) W (EV,(t) - AVx,(t) - Bu(t)) =0

leads to the reduced system

(2.5) E % (1) = Arx-(1) + Bru(t), y:(t) = Crx:(1),

where the reduced matrices are given by

(2.6) E,=W'EV, A, =WTAV, B,=W'B, and C,=CV.

2.3. Projection Framework for Parameterized Systems. In the case of a sys-
tem with no parametric dependence, the reduced quantities in (2.6) are precomputed
constant matrices, and the reduced model can be evaluated with no further refer-
ence to the full model. However, in the case of a parameterized system, the reduced
model will also be parameter dependent. Several challenges arise in achieving efficient
construction and evaluation of a reduced model as the parameters vary.

The first challenge is how to introduce parametric dependence into the basis ma-
trices V and W. One option is to construct “global” basis matrices over the parameter
space, that is, a single matrix V and a single matrix W, each of which captures para-
metric dependence by embedding information regarding the entire parameter space
(e.g., information collected by sampling multiple parameter values). A second option
is to construct “local” basis matrices. That is, consider K parameter sample points
Pi,..-,Pg. For the realization of the dynamical system corresponding to p, (i.e.,
E(p,) x(t) = A(p;)x(t) + B(p,) u(t), y(t) = C(p,)x(t)), the state-space matrices
are constant, and one computes appropriate local basis matrices V,; and W, (i.e.,
V, and W, denote the basis matrices corresponding to the parameter p;). There
are several ways one could then use these local basis matrices to construct the para-
metric reduced model. For example, one might interpolate the local basis matrices
over the parameter space and construct a family of parameterized reduced models, or
one might construct local reduced models and then interpolate the reduced models
themselves. These global and local approaches are discussed in detail in section 4.
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A second challenge is achieving efficient evaluations of the parametric reduced
model in the case that a global basis is used. For example, for a given V and W
consider evaluating A,(p) = WTA(p)V. For general parametric dependence, A,
cannot be precomputed; instead, evaluating the reduced model for a new parameter
value p requires computing A (p) and subsequent pre- and postmultiplication by W7
and V, respectively. These operations all depend on the (large) dimension n of the
original problem. Fortunately, in some cases the structure of the problem admits an
efficient strategy. For example, consider the case of affine parameter dependence with
M + 1 terms:

M
(2.7) A(p) = Ao+ Z fi(p) A,

where the scalar functions f; determine the parametric dependency, which can be
nonlinear, and A; € R"*" for ¢ = 0,..., M are parameter independent. Then the
reduced matrix is given by

M

(2.8) A (p)=WT"A(P)V =W"AV + > fi(p)W"A;V.
i=1

For affine parametric dependence in the other matrices E(p), B(p), and C(p), anal-
ogous expressions can be derived for the reduced-order counterparts. The two most
important advantages of an affine parameterization are clear from the structure of
the reduced model: First, once the basis matrices V and W are chosen, the com-
ponent reduced-order matrices (e.g., WTA;V, i =0,..., M) can be precomputed in
the offline phase. Hence, the reduced model for a given p can be constructed without
referring back to the original system, thus having a small online cost. Second, the
reduced model has the same parametric structure as the original one, which may be
appealing to designers who work with these models. Note that the affine representa-
tion in (2.7) always holds for any A (p) by letting M = n? and choosing A; as matrices
with only one nonzero entry. However, for the affine representation to have the com-
putational advantages discussed above, one needs M < n? and explicit expressions
for fi(p), i=1,..., M.

For the more general case where the parametric dependence is nonaffine, typically
one must introduce an approximation strategy in order to avoid costly O(n) evalua-
tions in forming the reduced matrices for each different parameter value—though some
parametric model reduction methods do not require affine parameter dependence; see
section 4. In some cases, the low-order terms of a Taylor series expansion provide a
suitable approximate affine decomposition of the system matrices [62, 112, 218]. A
more general approach that has been used successfully for nonlinear model reduction
is selective sampling of the nonlinear terms combined with interpolation among these
samples to recover an approximate nonlinear evaluation. Among this class of meth-
ods, the missing point estimation [19] and Gauss Newton with approximated tensors
(GNAT) [66] methods both build upon the gappy POD interpolation method [87]; the
empirical interpolation method (EIM) [26] and its discrete variant, the discrete em-
pirical interpolation method (DEIM) [67], conduct interpolation on a low-dimensional
basis for the nonlinear term. The EIM has been recently extended to the case where
A (p) represents a PDE operator [77].

In our finite-dimensional state-space framework as in (2.1), the fast evaluation
of WIA(p)V can be explained by exploiting how DEIM is used in handling nonlin-
earities for model reduction of finite-dimensional nonlinear dynamical systems x(t) =
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F(x(t)), where F : R" — R" is a nonlinear mapping. Let a(p) = vec(A(p)) € R™
denote the vector obtained by stacking the columns of A(p).? Similarly, define

(2.9 ar(p) = vec(A,(p)) = vec(WTA(p)V) = (VT @ WT)a(p) € R,

where ® denotes the Kronecker product. The goal is to approximate a(p) as a(p) =
a(p) = ®a(p), using M degrees of freedom, where ® € R™>*M i constant and
a(p) € RM. In this way, a,.(p) can be approximately computed, independently of n,

using
(2.10) a,(p) = (VI @ Wha(p) ~ (VI @ Wha(p) = (V! @ W')@a(p) = a(p).

In (2.10), (VT @ WT)® can be precomputed, and only M evaluations appearing in
a(p) need computing. One can interpret a(p) as a(p) = vec(A(p)) such that A(p)
is an approximation to A(p) that will allow faster online computation of A,.(p). The
DEIM basis @ is constructed by sampling the coefficient matrix A(p) at parameter
values py,...,py- Let ¢, = vec(A(p,)); then, for simplicity assuming linear inde-
pendence of the ¢;, the basis ® is given by ® = [y, ¢y ..., 0] € RV XM Using
the DEIM algorithm, choose a(p) to enforce that selected entries of a(p;) interpolate
the corresponding entries of a(p;). Once mapped back to A(p) (i.e., when the vec
operation is reversed), this corresponds to a selected set of entries of A(pi) exactly
matching the corresponding entries of A(p,).

Let z1,22,..., 2 be the indices to be exactly matched. There are a variety of
methods to select these interpolation indices [26, 67, 180]. Construct the permutation

matrix Z = [e,,,€y,...,€4,,] € R™ XM where e; is the ith canonical vector in R™".
Then forcing interpolation at the selected rows implies
(2.11) Z"a(p) =Z"®a(p) = a(p)=(Z"®) 'Z"a(p).

Hence, the approximation is given by
(2.12) a(p) = ®(Z"®) 'Z"a(p).

Note that, as discussed in [67], ®(ZT®)~1Z" in an oblique projector onto the range
of ® and

(2.13) Z"a(p) = Z"a(p),

i.e., the interpolation conditions are met at the required entries. Then, using (2.12)
in (2.10), one obtains

(2.14) a.(p) = vec(A,(p)) = (VI e WH®(z"®) 'Z a(p).

After reversing the vec operation, one obtains the reduced parametric coefficient ma-
trix

(215)  A.(p) =WT( Z ai(p)A(P,))V = §Mj i(p) (W A(p)V).
i=1 i=1

Note that in (2.15), the matrices W A(p;)V can be precomputed. Hence, for a new
parameter value p, the reduced-order matrix A,(p) can be computed without any
O(n) operations by exploiting (2.15) and (2.11). Also note that this DEIM-based

2Note that we define the n2-dimensional vector a for simplicity of presentation, but in practice,
one would never actually compute the basis representing the full matrix A. (Indeed, in many cases
of interest A will be sparse with many fewer than n? entries.)
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affine approximation approach will be cost-effective in cases when one can cheaply
compute only a few entries of ZTa(p), such as when A(p) is known analytically or
when it is possible to compute some entries of A(p) independently of the others.
Even though cheap computation of only a few entries of Z7a(p) is possible in many
cases, there are exceptions such as the case of a dynamical system originating from
the linearization of a nonlinear system around a steady state. For details, see [6, 158].

2.4. Error Measures. In model reduction, parametric or nonparametric, one
needs to quantify the error introduced by the underlying approximation scheme. Dif-
ferent communities have used different, but closely related, error measures. In the
POD and reduced-basis methods, one usually measures the error in time domain
using either

oo 1/2
(2.16) |wm%wmmm=(£nwm—wwm@0
(2.17) ly(-;8) =y (5P)le = sup v (t:8) -y (t:p)|

for a given p. In the systems and control theory community, on the other hand, the
concept of transfer function is used to analyze the accuracy of the reduced model by
measuring the error in the frequency domain. Recall that x(0; p) = 0, and let Y (s;p)
and U(s) denote the Laplace transforms of y(¢; p) and u(t), respectively, where s € C
is the Laplace variable. Then one can take Laplace transforms of (2.1) and (2.2) to
obtain

(2.18) Y(s;p) =H(s;p) U(s) and Y.(s;p) = H,(s;p) U(s),

where H(s; p) and H,(s;p) are, respectively, the (parameterized) full- and reduced-
order transfer functions defined by

(2.19) H(s;p) = C(p) (sE(p) — A(p))”' B(p)
and
(2.20) H,(s;p) = C.(p) (sE.(p) — A.(p))” ' B,(p).

From (2.18), one can see that the output error Y (s;p) — Y, (s;p) in the frequency
domain is directly related to how well the reduced-order transfer function H,(s;p)
approximates H(s;p). For a given p, the two most common error measures are the
Hoo error norm, defined as

(2:21) \Mmm—ﬂwmw%;ngMmm—HmMmh

and the Hs error norm defined as

oo 1/2
(2.22) ||H(,f)) —H,(-;p) |7_L2 = ( ! / || H(w;p) — HT(zw;f))||idw> ,

2r J_

where || - ||¢ denotes the Frobenius form.® Here, recall that we assumed (2.1) to be
pointwise asymptotically stable so that (2.21) and (2.22) are well-defined.

3Note that while the time-domain error measures (2.16) and (2.17) can be used for nonlinear
dynamical systems as well, the frequency-domain measures (2.21) and (2.22) need to be modified.
This is usually achieved by using the concept of Volterra series expansion; see, e.g., [36].
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There is a strong connection between the frequency-domain error measures (2.21)—
(2.22) and the aforementioned time-domain error measures (2.16)—(2.17); namely for
a given input u(t) with bounded Ly norm,

(2:23) 1y(-:8) =y, (0o < [H(:0) = H(-:8)| 5[l
and
(2.24) Iy(:0) = yr(50)oe < [|HC:P) = B (50) ||, ullrss

see [14, 231] for details. Hence, there is an equivalency in measuring the error in the
time domain and the frequency domain. Even though these types of error measures,
which are pointwise in the parameter p, prove effective in practice, the ultimate goal
is to minimize a joint error measure defined on a composite frequency and parameter
space. The work [29] introduced such a composite error measure, Lo error in the
parameter space and Hs error in the frequency domain, leading to

“+oo
e 2
(2.25) |H=—H. 3,000 = %/ /QHH(Zw, p) — H,(w, p)|[ dpi - . dpa dw.

Then, for a specific parameter dependency, [29] introduced a method to minimize this
error measure, as explained in section 3.4. One can similarly define a composite error
measure in uniform norm in both frequency and parameter domains, namely,

def
(2.26) H-H, %, ecow = sup [[H(w, p) — Hy(w, p)l;-
weER, peN
The ultimate goal is to construct parametric reduced models minimizing these com-
posite measures; however, except for special cases as considered in [29], this goal
remains an open challenge.

3. Basis Computation. This section presents three different methods for deriv-
ing the reduced basis matrices V and W: rational interpolation methods, balanced
truncation, and proper orthogonal decomposition (POD). The section concludes with
a discussion of strategies for sampling the parameter space.

3.1. Rational Interpolation Methods. Over the last decade, numerous paramet-
ric model reduction methods based on a rational interpolation framework have been
suggested. In accordance with the historical development, we first present the idea
of multivariate Padé approximation, or “multimoment matching,” and then discuss
the more general tangential interpolation approach. The tangential interpolation set-
ting proposed in [29] provides a unifying framework for interpolatory projection-based
model reduction of parametric systems and also paves the way to produce optimal
(at least locally optimal) parametric reduced models for the composite He ® Lo error
measure.

3.1.1. Moment-Matching. Moment-matching and Padé(-type) approximation for
linear nonparametric systems determine a reduced model that satisfies the Hermite
interpolation conditions
d* d*

@H(s): @HT(S) for k:O,l,...,N,

up to a maximal order N for § € C not a pole of H. This yields a reduced model
whose transfer function H, (s) coincides in as many coefficients of its Taylor expan-
sion (also called “moments”) about § as possible for a given order of the reduced
model. See, e.g., [22, 101] for a review of this approach and its close connection to the

(3.1)
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(nonsymmetric) Lanczos process. The case § = 0 is generally referred to as moment-
matching, while for § # 0 we obtain shifted moments, and § = co leads to matching
of the Markov parameters of the full system. One can also match moments (i.e., Tay-
lor series coefficients) around multiple expansion (interpolation) points 1, ..., 8 as
opposed to a single expansion point §, leading to the concept of multipoint moment-
matching, also called multipoint rational interpolation. Surveys on this class of model
reduction methods can be found in [22, 101]; see also [14, 15, 30, 44, 202].

The moment-matching idea can easily be extended to parametric model reduction
by using multivariate Taylor expansion of H(s,p) about (8,p). This has been dis-
cussed in numerous publications in the past two decades, e.g., [93, 96, 119, 153, 222]
for the single parameter case, [83] for a special two-parameter case arising in struc-
tural dynamics, [89, 91, 150] for linear and polynomial parametric dependence, and
[71, 120, 164, 176] for more general parametric dependence but only in some of the
state-space matrices. Moment-matching/interpolation properties can be proved (see,
e.g., [43, 71, 93, 120, 222]) analogously as for standard moment-matching methods
such as Padé-via-Lanczos [90, 103].

3.1.2. Tangential Interpolation. In the tangential interpolation setting, the
model reduction task is posed as follows: given a frequency interpolation point § € C,
a parameter interpolation point p € R?, and a nontrivial direction vector # € C™,
construct a reduced parametric model via projection as in (2.6) such that H,(s,p)
interpolates H(s, p) at (s,p) = (8, p) along the direction t, i.e., H, (3, p)r = H(8, p)f.
In this case, we say H,.(s, p) tangentially interpolates H(s, p) at (s,p) = (3, p) along
the right direction vector r. Similarly, if ETHT(é, p) = ETH(é,f)) for a nontrivial
vector £ € C4, we say H, (s,p) tangentially interpolates H(s, p) along the left direc-
tion vector £. Finally, if ETH; (8, p)r = ETH’(é, p)t, where ' denotes differentiation
with respect to the frequency variable s, we say H,.(s, p) is a bitangential Hermite in-
terpolant to H(s, p). For a discussion of projection-based tangential interpolation for
nonparametric systems, we refer the reader to [104]. Note that if m > 1 or ¢ > 1, i.e.,
if the system is not single-input single-output (SISO), the tangential interpolation
framework is different from the standard interpolation in moment-matching where
one enforces matrix interpolation, i.e., H(8,p) = H,.(8,p). This difference can prove
crucial, especially for systems with a large number of inputs and outputs, as discussed
in more detail below in Remark 1. Another important rationale for tangential inter-
polation is that it forms the necessary conditions for optimal model reduction in the
Ho norm as shown in (3.9) below.

3.1.3. Computing the Basis for Rational Interpolation Methods. The recent
work in [29] provided a unifying projection-based framework for structure-preserving,
tangential interpolatory parametric model reduction, which also permitted a robust
implementation. In what follows, we present the main results using the framework
of [29]. As stated earlier, optimal control and optimization are two of the common
applications for parametric model reduction. In these settings, when the objective
functions are approximated, [2] shows that to establish convergence of the underlying
optimization technique it is sufficient that the approximate models are first-order accu-
rate, meaning that the gradient with respect to the optimization variable is matched.
In our setting, this first-order accuracy corresponds to matching the gradient of the
transfer function H(s, p). Therefore, we present the results only up to matching the
first derivatives with respect to p (although higher derivatives can be matched in this
framework).
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The following theorem from [29] describes the conditions on the matrices V and
W such that H,(s,p) = C,(p) (sE,-(p) — A,n(p))f1 B, (p), obtained by projection as
in (2.6), is a rational tangential interpolant to H(s,p). § € C denotes an interpolation
point in the frequency domain and p is an interpolation point in the parameter domain.

THEOREM 3.1. Let 8 € C and p € C? be chosen such that both 3E(p) — A(p)
and SE.(p) — A, (p) are invertible. Suppose t € C™ and £ € C? are two nontrivial
vectors.

(a) If (3E(p) — A(p)) 'B(p)i € Ran(V), then

(3.2) H(3,p) = H, (3, ).
(b) If (£ C(p)(SEp) — A®B) )" € Ran(W), then
(3.3) ¢"H(3,p) = £ H,(3p).

(¢) Suppose, in addition, that E(p), A(p), B(p), and C(p) are continuously dif-
ferentiable in a neighborhood of p. If (SE(p) — A(p))” ' B(p)F € Ran(V) and
PV AN N\ —INT
(¢ C(p)(SE(p) —A(p)) ) € Ran(W), then

(3.4) Vp (ETH(g, f))f) LA (ETHT(g, f))f)
and
(3.5) 0TH(5,p)F = £ HL(3,p)F,

where ' denotes differentiation with respect to s and Vp denotes differentiation
with respect to p.

This theorem states that given §, p, and a right direction vector r, adding one
vector to the basis matrix V will satisfy the required right tangential interpolation
condition (and analogously for the left direction vector £). The cost in each case is
simply solving a (sparse) linear system, namely, ($E(p) — A(p))v = B(p)t in the
case of right tangential interpolation. This simplicity, both conceptually and with
respect to implementation, is an advantage of the rational interpolation methods for
parametric model reduction. As shown in Theorem 3.1, they also require basically no
assumptions on system properties. The reduced model is generated quickly, in most
cases requiring less time than generating a trajectory of the full-order model, making
the offline phase relatively cheap.

Theorem 3.1(c) reveals an important additional fact. By adding one vector each
to the bases V and W to tangentially interpolate H(s, p), one would match addition-
ally the gradient of the transfer function H(s, p) with respect to p and the derivative
with respect to s as shown in (3.4) and (3.5), respectively. This derivative matching
is obtained for free, i.e., without any additional computation related to the gradient,
and these quantities are matched without being computed; in other words no gradient
with respect to p and no derivative with respect to s is computed in the construction
of V or W, yet they are still matched. This differs from the earlier work in inter-
polatory parametric model reduction methods, such as [55, 56, 71, 119, 120], where
one-sided projection is employed, i.e., W = V. In one-sided approaches, to satisfy
(3.4), gradients of sE(p) — A(p) with respect to p need to be computed and added to
the basis V. Of course, we emphasize that in applications where E(p) and A(p) are
symmetric and symmetry needs to be preserved in the reduced model, one might be
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restricted to the one-sided projection due to the nature of the problem. However, for
the general nonsymmetric case, by taking advantage of the flexibility in choosing W,
one can obtain greater accuracy.

To illustrate Theorem 3.1 for multiple points, assume that the frequency inter-
polation points {s;}2, € C and the parameter interpolation points {pj}szl € R4
are given together with the right tangential directions {r”}fif =1 € C™ and the left

tangential directions {E”}fif j=1 C C%. One may, for example, choose the tangential
directions £;; and r;;, respectively, as the leading left and right singular vectors of
H(s;, pj) € C7*™. Below in section 3.1.4, we discuss a particular choice that results
in Hy optimality for the parameter sample p;. For i = 1,...,K and j = 1,..., L,
define the vectors

(3.6)

-1 _
Vij = (SiE(Pj) - A(Pj)) B(Pj)rij and w;; = (SiE(Pj) - A(Pj)) C(Pj)Teij
and construct the model reduction bases V and W as follows:
(37) V= [Vu, ey VIL, V21, oy VoL, oo, VK] e ;VKL] S CnX(KL),
(3.8) W = [Wi1,. ., WiL, Wal, ..o, War, .., WK, ..., Wi € CED),

Then the resulting projection-based parametric reduced model satisfies the interpola-
tion conditions of Theorem 3.1 for every pair (3,p) = (si,p;) where i =1,..., L and
j=1,...,K. One can go a step further and match the Hessian (curvature) informa-
tion with respect to the parameters as well. This is done in a similar way by adding
additional vectors to the reduction subspaces. For example, for a given vector n € C¢,

by adding one additional vector to V and W each, one can match V?, (@TH(é, ﬁ)f)n,
where Vl% denotes the Hessian with respect to p. For details, see [29].

REMARK 1. Given § € C, p € C%, and # € C™, tangential interpolation requires
(3E(p) — A(f)))_lB(f))f‘ € Ran(V); i.e., a single vector is added to the subspace. On

the other hand, full matriz interpolation requires (§ E(p) — A(f)))_lB(f)) € Ran(V);
i.e., m new vectors are added to the subspace. If we require interpolation at, for exam-
ple, L frequency points and K parameter points, full matriz interpolation can lead to
Ran(V) having dimension as large as mLK . For applications where the system input
dimension m is large, this would lead to a rather large reduced model dimension. In
comparison, tangential interpolation will at most lead to a reduced dimension of LK,
thus making the reduced order independent of the input dimension. Note that in the
full matriz interpolation case one can keep the dimension growth modest by truncat-
ing the linearly dependent components from the model reduction bases V and W while
still obtaining accurate reduced models; see, for example, [43, 68, 93]. Even though the
subspace dimension grows more slowly in the tangential interpolation case, if KL is
large in (3.7) and (3.8) due to choosing several frequency and parameter interpolation
points, one might still encounter linearly dependent columns and similarly truncate
these components from tangential interpolation bases as well.

REMARK 2. As noted above, if the system is not SISO, the tangential interpola-
tion is different than the full-matriz interpolation, i.e., full moment-matching. Dif-
ferent methods proposed in these references differ in the way moments are computed
(implicitly vs. explicitly) and in the number of (mized) moments that are matched. Ap-
proaches based on explicitly computed moments suffer from the same numerical insta-
bilities as analogous methods for model reduction of nonparametric systems [90, 103].
Implicit approaches appear to provide a robust resolution of these difficulties [43, 93].
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3.1.4. Optimal-H > Tangential Interpolation for Nonparametric Systems. In
rational interpolation methods, the choice of expansion points and tangential direc-
tions determines the accuracy of the reduced model. Until recently, this choice was
largely ad hoc as the original interpolation/moment-matching framework gives no
guidance on where to put the interpolation points. However, recently an interpolation-
based analysis of the H2 error norm revealed an optimal selection strategy for expan-
sion points and tangential directions.

Consider the nonparametric case. Suppose H,(s) is an Hs-optimal approxima-

tion to H(s) = C(sE — A)"'B. Let H,(s) = >;_, ﬁész be a partial fraction

expansion of H,(s). Note that &b? is the residue of H,(s) at s = A\;; & and b7
are called the residue directions. Then the Hy optimality of H,(s) means that, for
t=1,...,7,

H(-\)b; = H,(=\)b;, & H(=N) =&/ H.(-\),
(3.9) and &/H'(—\;)b; = &/ H..(—;)b;.
Meier and Luenberger in [173] proved these conditions for SISO systems originally;
generalizations to MIMO systems were given in [64, 116, 214]. The optimality condi-
tions in (3.9) mean that an Ha-optimal reduced model H,.(s) is a bitangential Hermite
interpolant to H(s). The optimal interpolation points are the mirror images of the
poles of H,(s), and the optimal tangential directions are the corresponding residue
directions. Thus, the optimal points and associated tangent directions depend on the
reduced model and are not known a priori. Gugercin, Antoulas, and Beattie [116]
introduced the iterative rational Krylov algorithm (IRKA), which, using successive
substitution, iteratively corrects the interpolation points and tangential directions
until the optimality conditions in (3.9) are satisfied, i.e., until optimal interpolation
points and tangential directions are reached. For details of IRKA, we refer the reader
to [15, 116]. IRKA can be used in the context of parametric systems for computing
locally optimal reduced models for the given parameter sample. This local informa-
tion can then be used to construct a parametric reduced model using the ideas of
section 4, as done in [29, 80].

3.2. Balanced Truncation. In the systems and control theory community, bal-
anced truncation [177, 175] is one of the most common techniques for approximating
linear dynamical systems without parametric dependency. In the parametric set-
ting, balanced truncation can be employed to construct local reduced models at given
parameter values. These local models can be used in various ways to construct a
parametric reduced model (see, e.g., [28]), as will be discussed in section 4. Here we
describe the construction of a balanced truncation reduced model at a single param-
eter point, p. For ease of notation, for the remainder of this subsection we denote
E(p) by E, and similarly for the other matrices, so that H(s) = C(sE — A)~'B is
our dynamical system (2.1) evaluated at p.

The balanced truncation basis matrices V and W depend on the two system
Gramians, which are defined by the integrals

(310) P = / eE_lAt E_lBBTE_T eATE_Tt at
0
and

(3.11) Q= /OO E TeA BT CTC B Mg g,
0
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Here, P € R"*"™ and Q € R™*" are called the reachability Gramian and the observ-
ability Gramian, respectively. The reachability of a state x is a measure of how easy
it is to reach the state x from the zero state. On the other hand, the observability of
a state xg is a measure of how easy it is to distinguish the initial state x¢ from the
zero state by observing the output y(¢) in the case of zero input.

To explain these concepts further, define

3.12 = i D%, ¢t <o,
(3.12) Tl = min @) <

(3.13) To(x0) := ly@®)|I?, x(0) =x0, u(t) =0, t>0.

Jr(x) is the minimal energy required to drive the system from the zero state at
t = —o0 to the state x at ¢ = 0. On the other hand, J,(x¢) is the energy observed at
the output due to the initial state x, with zero input. The smaller the reachability
energy J,(x), the easier it is to reach the state x. The larger the observability energy
Jo(x0), the easier it is to observe the state xg. These two energies are completely
determined by the Gramians P and Q:

(3.14) Tn(x) =xTPtx and Ty (x0) = x4 Qxo,

where P* denotes the Moore Penrose pseudoinverse of P. Thus, P and Q explain
how important a state x is for the input-to-state and the state-to-output mappings,
respectively.

When H(s) is asymptotically stable, both P and Q are positive semidefinite matri-
ces. Square roots of the eigenvalues of the product PQ are called the Hankel singular
values of H(s), denoted by 7;(H), and they are the singular values of the Hankel
operator associated with H(s). The states corresponding to the smallest Hankel sin-
gular values are the least important states in terms of the input-to-output map; that
is, these are states that are hard to reach and hard to observe. Model reduction via
balanced truncation corresponds to eliminating those states corresponding to small
Hankel singular values.

In practice one does not need to evaluate the infinite integrals (3.10) and (3.11);
instead one solves the corresponding Lyapunov equations that P and Q satisfy, namely,

(3.15) APET + EPAT +BBY =0 and ATQE+E'QA +C'C=0.

Instead of forming the full Gramians P and Q explicitly, one computes P = UU7T and
Q = LL7 in the factored form. For effective methods to solve large-scale Lyapunov
equations, see, e.g., [46, 47, 152, 219] for ADI-type methods, [117, 191, 199, 206] for
the Smith method and its variants, [78, 135, 203, 210] for Krylov-based methods, or
the recent survey [48] and the references therein.

Given the factorizations P = UU” and Q = LL”, let UTEL = ZSY” be the sin-
gular value decomposition with S = diag(ny,n2,...,n,). Let S, = diag(n1,n2, ..., 7)
with 7,41 <7, and r < n. Balanced truncation chooses the basis matrices

(3.16) V=UZS;"? and W=LY,S V2

where Z, and Y, denote the leading r columns of left singular vectors, Z, and right
singular vectors, Y, respectively. Then the reduced model is obtained by following
the projection in (2.6). The reduced model H,(s) obtained by balanced truncation is
asymptotically stable, and the Ho, norm of the error system satisfies |[H — HT’H’HOO <
2(np41 + -+ + np). For more details on balanced truncation, see [14].
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3.3. Proper Orthogonal Decomposition. Due to its broad applicability to lin-
ear and nonlinear systems, the proper orthogonal decomposition (POD) has become
widely used in many different application domains as a method for computing the
reduced basis. While the rational interpolation methods of section 3.1 formulate the
basis computation task in the frequency domain, POD formulations typically use the
time domain. In the case of LTI systems, duality between time and frequency domain
formulations reveals the connections between POD and balanced truncation.

3.3.1. Time Domain POD. POD was introduced for the analysis of turbulent
flows by Lumley [162] and is closely related to methods used in other fields such
as Karhunen-Loeve expansions in stochastic process modeling [160, 142], principal
component analysis in statistical analysis [132, 136], and empirical orthogonal eigen-
functions in atmospheric modeling [181]. POD basis vectors are computed empirically
using sampled data collected over a range of relevant system dynamics, typically using
the method of snapshots, introduced by Sirovich [205].

Consider a set of snapshots, x1,Xa,...,X,,: state solutions computed at different
instants in time and/or different parameter values, where x; € R™ denotes the jth
snapshot and one collects a total of ng < n snapshots. More specifically, write x; =
x(t5; pj), where ¢; and p; are, respectively, the time and parameter values for the jth
snapshot. Define the snapshot matrix X € R™*™s whose jth column is the snapshot
x;. The (thin) singular value decomposition of X is written

(3.17) X =UxY7,

where the columns of the matrices U € R™"*"s and Y € R"*™s are the left and
right singular vectors of X, respectively. ¥ € R"=*"s = diag(o1,09,...,0,,), where
o1 > 09 > -+ > 0y, > 0, are the singular values of X. The POD basis, V, is chosen
as the r left singular vectors of X that correspond to the r largest singular values.
This yields an orthonormal basis.*

The POD basis is “optimal” in the sense that, for an orthonormal basis of size r,
it minimizes the least squares error of snapshot reconstruction,

Ng Ns
(3.18) Jmin (X = VVIX|E = min 37l - VVixilf= Y of.
=1 i=r+1

As can be seen from (3.18), the square of the error in snapshot representation is given
by the sum of the squares of the singular values corresponding to those left singular
vectors not included in the POD basis. Thus, the singular values provide quantitative
guidance for choosing the size of the POD basis. A typical approach is to choose r so
that

(3.19)

S0
i=1 5 > K,
i

s
2l 0
where & is a user-specified tolerance, often taken to be 99.9% or greater. The numer-
ator of (3.19) is often referred to as the “energy” captured by the POD modes.

Since the POD basis is constructed from sampled solutions, the POD method
makes no assumptions about the form of the full model; POD applies to both linear

4Here, orthonormality is defined with respect to the Euclidean inner product. Often, it is mean-
ingful to use the Lg inner product instead, i.e., using the vector norm induced by the weighted inner
product related to the mass matrix E. This holds in particular if the system is derived from a
semidiscretization of a PDE by a finite element or finite volume method [49].



PARAMETRIC MODEL REDUCTION 503

and nonlinear systems, as well as to parametrically varying systems. One can also
include sensitivity information in the snapshot set [127, 131]. It is important to note
that the optimality of the POD basis applies only to error in reconstruction of the
snapshots, not to the error in solution of the POD-based reduced model. See [194] for
a detailed analysis of the error of a POD-based reduced model. Clearly, the choice of
snapshots is critical to the quality of the reduced model, although the POD theory
per se gives no guidance on how to select the snapshots. One can interpret the POD
as an approximation by quadrature of the reachability Gramian (3.10), as described in
[146] and in more detail in the discussion of the balanced POD method below. Using
this interpretation, a good snapshot set selection is thus one that leads to a good
approximation of (3.10). However, in many cases the POD is used to create a reduced
model that targets a particular range of system behavior, rather than attempting to
approximate all reachable states. In those cases, the snapshot set is chosen based on
knowledge of the desired range of validity of the reduced model. Optimal snapshot
selection for nonparametric POD is considered in [145], where the time locations
of snapshots are chosen to minimize the error between the POD solution and the
trajectory of the original dynamical system. General strategies for snapshot selection
in the parametric case are discussed in section 3.4.

3.3.2. Frequency Domain POD. For linear systems, one can derive the POD in
the frequency domain. We present a brief discussion here because it highlights the
connection between POD and balanced truncation. The POD basis vectors are the
left singular vectors of the snapshot matrix X, and thus are the eigenvectors of the
matrix

(3.20) K, =XX" =) xx].
i=1

In the original formulation of the POD method of snapshots, K; is referred to as the
kernel [205]. In some applications of POD, the snapshots are centered to have zero
mean, in which case K; is a scaled covariance matrix.

Kim [141] develops the frequency domain POD method by showing that through
a simple application of Parseval’s theorem, in the single-input case one can write the
kernel as

1o
(3.21) Ko = - ;Xixi Aw;,

where now K, is the frequency domain POD kernel. Here, X; is the ith (complex)
snapshot computed at sample frequency w;,

(3.22) % = (jw;E — A)"'B,
where B is now a vector (due to the assumption of a single input), Aw; = w; — w;_1,
and x denotes the complex conjugate transpose.

3.3.3. Balanced POD. The connection between POD and balanced truncation
is described in [146]. For a fixed parameter p and single input, consider the snapshot
set generated by computing the impulse response of (2.1). In this case, the snapshot
at time ¢; is

(3.23) x; = B ALETIB,
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and the POD kernel (3.20) becomes

ns
(3.24) K =) P AETIBBTE TeA P
i=1

Comparing (3.24) and (3.10), it can be seen that the POD kernel (with suitable
scaling) computed from the system impulse response can be interpreted as an approx-
imation to the system reachability Gramian. The POD basis vectors are the dominant
eigenvectors of the POD kernel and thus approximate the most reachable modes in
the system.

As discussed in [225], the approximation introduced by the POD is further high-
lighted through the frequency domain formulation. Using (3.22) in (3.21), write

1 &

"o
i=1

(3.25) K., (jwiE — A) T 'BBT (—jw,ET — AT) ' Aw;,
which shows that the frequency domain POD kernel again approximates the integral
defining the reachability Gramian,

(3.26) P = 2i/ (JwE — A)"'BBT (—jwET — AT)™! duw.
T

— 00

Based on this observation, [225] proposed an approximate balanced truncation
approach using the POD method of snapshots. Computing a set of dual POD modes
from snapshots of the dual (adjoint) system leads to an approximation of the most
observable modes in the system. For a system with a single output, the ith (complex)
dual snapshot z; computed at sample frequency w; is given by

(3.27) 7; = (ju,ET — AT)"!CT.

Appropriately combining the primal and dual snapshots leads to an approximate
balanced truncation. A modified algorithm for computing this snapshot-based ap-
proximate balanced truncation was proposed in [196]. Despite the analogy between
the two methods, there is no asymptotic stability guarantee associated with balanced
POD, unlike balanced truncation. The relation between frequency-domain POD and
approximate balanced truncation is further discussed in [30], where also relations to
balanced truncation via low-rank Gramians computed by the ADI method and to
moment-matching methods are studied.

3.4. Parameter Sampling. We conclude this section on basis computation with
a discussion of parameter sampling. The choice of parameter sample points is a critical
question that arises in all methods to compute the basis. In the rational interpolation
methods, one must select parameter samples at which interpolation conditions are
applied; for balanced truncation, one must select parameter samples to generate the
local LTI systems at which balanced truncation is applied; and in the POD, one must
select parameter samples at which snapshots are computed. For problems with a
small number of parameters, a structured or random sampling method (e.g., grid-
based sampling or Latin hypercube sampling) is the simplest approach and, with a
sufficiently high number of samples, will generate a rich set of data that covers the
parameter space. For a moderate number of parameters, full grid sampling quickly
becomes expensive, since the number of points in the grid grows exponentially with the
dimension d. Latin hypercube sampling remains tractable, although a large number of
sample points may be needed to ensure sufficient coverage. For moderate-dimension
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problems that exhibit structure (e.g., smoothness), a sparse grid sampling approach
will likely be another effective strategy. However, when the dimension of the parameter
space is large (d > 10), it becomes challenging to balance sampling cost with coverage
of the parameter space. These cases require more sophisticated sampling approaches,
such as a problem-aware adaptive search of the parameter space. In this section, we
review adaptive sampling via greedy search and local sensitivity methods. We also
discuss optimal interpolation points for a special class of systems.

3.4.1. Adaptive Parameter Sampling via Greedy Search. Greedy sampling
methods for model reduction approach the task of choosing parameter sample points
one by one in an adaptive manner. The general steps in the greedy sampling approach
are as follows. First, given a current reduced model,

(3.28)  E.(p)%xr(t;p) = Ar(p) X, (t;p) + Br(p)u(t), vyr(t;p) = Cr(p)x:(t;p),

find the parameter value for which the error between the reduced model and the full
model is largest:

(3.29) ﬁ:argrr;aXHy(wp) —yr(3p)|Ls-

Second, solve the full model at p to generate new information with which to update the
reduced model. Then with the updated reduced model, repeat these two steps until the
error is acceptable. The greedy sampling method was first introduced in the context
of reduced basis methods in [193]. It was further developed in reduced basis models
for elliptic PDEs in [218], the steady incompressible Navier—Stokes equations in [217],
and parabolic PDEs in [111, 112]. Tt has since been applied in conjunction with POD
methods [61, 122, 230] and rational interpolation methods [79]. The key advantage
of the greedy approach is that the search over the parameter space embodies the
structure of the problem, so that the underlying system dynamics guide the selection
of appropriate parameter samples.

In the first step, the task of finding the worst-case parameter value can be ap-
proached in a variety of ways. In the general case, using the actual reduced model
error as a metric leads to a computationally intractable algorithm, since it requires
evaluating the full model solution at many parameter points. Instead, one can use
a posteriori error estimators if they are available for the given system under con-
sideration (e.g., error estimators are available for dynamical systems arising from
discretization of particular parameterized parabolic PDEs [112, 111]) or a residual-
based error indicator [61]. The process of locating the parameter of maximal error
indicator or error estimate can be conducted by a simple grid search if the parameter
dimension is low. For problems with more than a handful of parameters, the greedy
sampling approach can be formulated as a sequence of adaptive model-constrained
optimization problems [61]. In the special case of a linear map between parameters
and outputs, these optimization problems are convex and have explicit solutions in the
form of an eigenvalue problem [27]. In the general case, the optimization problems are
nonconvex and may lead to only a local maximum being determined. Another poten-
tial pitfall is that error estimators may not be tight and error indicators may be poor
representatives of the actual error; in such cases, solving an approximate optimization
problem using the error estimator or indicator will not result in maximizing (3.29).
However, even if the global maximum of (3.29) is not found, the greedy search will
often yield a good result that is more informed than random sampling. In [54], expo-
nential convergence rates of greedy sampling are shown in a reduced basis framework,
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both for strong greedy (the optimal next sampling point is always found) as well as in
computationally feasible variants. In [156], the optimization-based greedy sampling
approach was extended to construct both a basis for the state and a basis for the
parameter, leading to models that have both reduced state and reduced parameters.
This approach was demonstrated on a subsurface model with a distributed parameter
representing the hydraulic conductivity over the domain, and shown to scale up to
the case of a discretized parameter vector of dimension d = 494.

3.4.2. Adaptive Parameter Sampling via Local Sensitivity Analysis. Another
possible method of selecting the parameter values for sampling, proposed in [55], is
to use local sensitivity analysis to estimate whether a change in parameter value will
result in states that are not well represented in the current reduced basis. That work
uses a first-order Taylor series expansion to approximate the state solution as a func-
tion of small changes in parameters about the current sample point. The sensitivities
of the state variables with respect to the parameters are then obtained by solving a
large sparse linear system. When used in conjunction with the trajectory piecewise
linear approximation of [55], this auxiliary sensitivity system can be assembled with
no additional computational cost, using information already computed to create the
reduced model. This approach was demonstrated for a diode circuit, a MEMS switch,
and a nonlinear distributed circuit example.

3.4.3. Optimal Interpolation Points for a Special Class of Systems. Even
though the parameter selection strategies outlined above have led to high quality
reduced parametric models, they are not optimal in the error measures defined in
section 2.4. Such an optimal parameter selection strategy for the joint Ho ® Lo er-
ror measure (2.25) was recently introduced by Baur et al. [29] for the special case
of dynamical systems with affine parameter dependency in B(p) and C(p) and no
parameter dependency in either A or E. This method, inspired by IRKA of [116]
for nonparametric systems, converts the problem into an equivalent nonparametric
Ho minimization problem and optimizes over the frequency and parameter samples
jointly.

4. Parameterized Reduced Model Generation. In this section, we discuss dif-
ferent strategies for constructing the parameterized reduced model. Many of these
construction options are broadly applicable in that they can be used with any of the
basis computation methods discussed in section 3. Section 4.1 discusses approaches
that use a single global basis, while section 4.2 presents methods that use multiple
local basis matrices each computed at different parameter values. In the following
discussion, the parameter p belongs to a single domain 2 C R?. Recent work has pro-
posed approaches to split £ into multiple subdomains and construct reduced models
in each subdomain [10, 76, 82, 121, 190, 221]. Any of the model generation strategies
described in the following can be applied in a partitioning setting by replacing 2 with
the corresponding subdomain.

4.1. A Global Basis over the Parameter Space. A global basis is defined by a
single pair of basis matrices V and W, which are built by sampling information over
a range of parameters. These basis matrices could be computed using any one of the
methods described in section 3. In this case, the parametric reduced model takes the
form

WTE(p)Vx,.(t;p) = WIA(p)V x,.(t;p) + WIB(p) u(t),

(4.1) yr(t;p) = C(p)V x,.(t; p).
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Equation (4.1) shows that construction of the reduced model requires evaluation of
terms such as A,.(p) = WTA(p)V, E,.(p) = WTE(p)V, etc. As already discussed in
section 2, if one evaluates A, E,., and the other reduced matrices in this way for every
new parameter value p, then the reduced model will be inefficient and computational
savings over solving the original full system will be small. Section 2 showed that for
system matrices that depend affinely on the parameter p, computational efficiency
can be recovered. In this case, the parameterized reduced model is decomposed into
reduced-order matrices that do not depend on the parameter and hence can be pre-
computed. In the more general case, a method such as EIM or DEIM (also discussed
in section 2) is used to approximate A, (p) and the other reduced-order matrices in a
way that admits efficient evaluation over the parameter space.

4.1.1. Concatenation of the Basis. One of the common approaches to obtain the
global basis matrices V and W is to concatenate the local basis matrices obtained for
several parameter samples py,...,pg. Suppose that Vi,..., Vg and Wq,... Wg
denote the local basis matrices corresponding to py,...,px. Then one can construct
the global basis matrices V and W using

(42) V:[Vl, VQ, ceey VK] and W:[Wl, WQ, ey WK]

However, it is quite possible that the local matrices have common components among
each other, leading to potentially rank-deficient global basis matrices V and W. To
avoid this scenario, the concatenation step is usually followed by an SVD or a rank-
revealing QR factorization to remove these rank-deficient components from V and
W, leading to global basis matrices with orthonormal columns. It is important to
note that even though theoretically it would not matter whether the local matrices V;
and W are orthogonalized prior to the concatenation step (since the reduced model
is determined by the range, not by a specific basis), numerically it might (e.g., as in
the case of Krylov subspaces where the power basis [b, Ab, ..., A¥~1b] is replaced by
an orthogonal basis robustly computed via an Arnoldi process [157, 212]).

The local basis matrices can be obtained using any one of the methods described
in section 3. However, the method of choice results in different properties in the re-
duced model. The concatenation approach is especially appropriate when the local
basis matrices are obtained by rational interpolation methods of section 3.1. Due to
Theorem 3.1, even after concatenation, the final reduced parameterized model ob-
tained by the global basis matrices will still interpolate the original model at every
frequency and parameter interpolation point combination used in constructing every
local basis matrix, assuming that the SVD performed on the concatenated matrices
removed only the zero singular values. If this SVD step removes some small nonzero
singular values below a numerical tolerance, then the interpolation will be approx-
imate. This is in contrast to, for example, the balanced truncation approach. If
the local basis matrices are obtained via balanced truncation (i.e., V; and W; are
the balanced truncation basis matrices at the parameter values p;), then once the
concatenation is performed, the resulting reduced model is no longer guaranteed to
be balanced even at the parameter value p,. Nevertheless, concatenation of local
balanced truncation basis may yield a good reduced parametric model, since the re-
duction subspace carries the important balanced truncation basis information for the
individual parameters.

4.1.2. A Global Basis via Bilinearization. In the special case that only the ma-
trix A depends on the parameter, and that dependence is affine, another method
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to construct a global basis is to use a bilinearization approach. In this case, the
parametric system takes the form

Ex(t;p) = A(p) x(t;p) + Bu(t),

(4.3) y(t;p) = Cx(t;p),

with A(p) as in (2.7), i.e., affine parametric dependency is allowed in A only. Defining
now auxiliary input functions um+;(t) :== f;(p), s =1,..., M, and augmenting B by
M zero columns (denoting the resulting input function by @ and the new input matrix
by B), the parametric system (4.3) is transformed into a nonparametric bilinear system

M
EX(t) = Aox(t) + Yty () Aix(t) + Ba(t),

y(t) = Cx(t). "

Now any model reduction method for bilinear systems can be applied to (4.4). Us-
ing any two-sided projection method for this task yields basis matrices V and W.
The structure of the system has been exploited to recast it in a way that removes
the explicit parametric dependence and instead captures this dependence through the
introduction of the auxiliary inputs; thus, the resulting V and W are global basis ma-
trices for the original parametric system (4.3). Applying these basis matrices directly
to (4.3) as in (2.8) results in a parametric reduced-order model. The bilinearization
approach for parametric model reduction was first suggested in [35] and extended in
several ways in [40]. Possible choices for determining the global basis include balanced
truncation for bilinear systems [41, 110], Krylov subspace techniques [24, 58, 192], and
‘Ho-optimal methods [36, 99, 229]—in principle, any of the methods discussed in sec-
tion 3 can be generalized to apply to bilinear systems, and thus to yield a global basis
for model reduction of parametric systems that have the form of (4.3).

(4.4)

4.2. Local Bases at Multiple Parameter Points. As opposed to constructing
fixed global basis matrices V and W, one might construct several local ones by sam-
pling the parameter space at points py,...,px. As before, denote these local bases
by Vi and Wy for k = 1,..., K. One can then proceed by interpolating the local
bases, interpolating the local reduced model matrices, or interpolating the local re-
duced model transfer functions, as described in more detail below. It is important to
recognize that an LTI system has a nonunique state-space representation; in partic-
ular, any reduced-order basis that spans a given subspace of R™ is an equally valid
representation of that subspace. This is an important consideration for approaches
that interpolate local bases or local reduced model matrices, and is dealt with in
various ways in the methods described below.

4.2.1. Interpolating the Local Bases. Given a set of local basis matrices, {V1,
..., Vig} and {Wy,..., Wk}, a basis matrix for a new parameter value can be ob-
tained by interpolating the local reduced bases. Straightforward interpolation of the
entries in the basis vectors can lead to an interpolated quantity that does not preserve
desired properties. Consider the simple case Vo = — V7. Let p = 21£P2 Tn this case,
a straightforward linear interpolation leads to V(p) = 0.5(V; — V3) = 0, which is
clearly not a basis. Thus, as [8] recognized, the quantity to be interpolated should
not be the local basis, but rather the underlying subspace. Thus, a better method
interpolates the subspaces corresponding to Vi, and Wy, for k = 1,..., K on a tangent
space to a manifold of these subspaces [8]. The manifold is chosen so as to preserve
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desired properties. It also results in the property that the subspace spanned by the
interpolated basis depends only on the underlying local subspaces, and is indepen-
dent from the coordinate representations of the local bases. Below we briefly explain
this approach for the particular case of constructing an orthonormal V, where the
Vi, k=1,..., K, each represent an orthonormal basis, and the interpolation is done
on the tangent space to the Grassmann manifold.

The Grassmann manifold G, , is the set of all r-dimensional subspaces of R".
Then, in the model reduction setting, the ranges of the model reduction bases Vy, i.e.,
Ran(Vy), can be suitably considered elements of G, .. Define R, = Ran(Vy) € G, .
The Stiefel manifold, S, ., is the set of all r-dimensional orthonormal bases of R™ for
1 < r < n. Thus, the orthonormal basis V € R™"*" for Ry is a point on the Stiefel
manifold S, ;.. For more details regarding the Stiefel and Grassmann manifolds, see,
c.g., [8, 81].

The first step in the approach proposed in [8] is to choose a reference point. For
simplicity, take Ry € G, » as the reference point. Let Tz, be the tangent space of G,,
at Rq. The next step is to map all other subspaces Rs, R3, ..., Rx onto the tangent
space defined by R;. A point Ry € G, in a neighborhood of R can be mapped to
Tr, by the logarithmic map

(4.5) X = LOgR1 (Rk) S T’Rl-

Let T be the matrix representing the point X, € Tr,. To compute T}, first compute
a thin SVD:

(4.6) (I-V VD) Vi(VIVy) ™ = U ZT.
Then
(4.7) T = Uy arctan(Xy,)Z7 .

The map T} defines a geodesic on the manifold from R; to Ri.
Now, given a new parameter point p, the method interpolates the local bases in

their mapped representations. That is, interpolate {T4, ..., Tk} using the parameter
interpolation points {p;,...,px}. For example,

K
(4.8) T(p) = > Li(p) T,

k=1

where Li(p) are the Lagrange basis functions. Let X € Tr, be the point correspond-
ing to the matrix T(p). After X is computed, the exponential map

(4.9) Expg, (X) € Gpr

maps it back to the original manifold G,, ,. Let V € S,, ;- span the resulting subspace.
This results in an interpolated basis V at the new parameter point p. Numerically,
the step mapping back to the original manifold is achieved by computing a thin SVD,

(4.10) T(p)=UxZT,
followed by

(4.11) V(p) = ViZcos(E) + Usin(D).



510 PETER BENNER, SERKAN GUGERCIN, AND KAREN WILLCOX

4.2.2. Interpolating the Local Reduced Model Matrices. Interpolating the lo-
cal basis matrices as outlined above has the disadvantage that when the new basis
matrices are computed for a given p, the multiplications W7 E(p)V and WA (p)V
need to be recomputed. In general, these multiplications depend on the original sys-
tem dimension n and thus are expensive. Recent work has addressed this issue for
affine parametric dependence (as in (2.7)) by precomputing those quantities that do
not depend on the parameters [207]. An approach to overcome this problem in the
general nonaffine case is to interpolate reduced state-space quantities as opposed to
the basis matrices themselves. This idea was recently introduced in [5, 9, 74, 161, 188].
The methods proposed in [9, 188] first perform a congruence transformation of the
local basis matrices in {V1,..., Vg} (and similarly for {W1,..., Wg}), so that
the reduced systems are expressed in the same generalized coordinate system—this
is to provide a consistent reduced basis representation across all parameters. Then
the reduced-order coefficient matrices constructed from these transformed projection
matrices can be interpolated by using matrix manifold interpolation [9] and direct
interpolation [188]. In [74], global basis vectors Vi =V and W = W are used for
all p,, and therefore there is no need to perform the congruence transformation on
the bases before interpolating the reduced models.

Suppose one has local reduced-order coefficient matrices A,.(p,) = W% A(p,,) Vi
corresponding to parameters py,...,pPx. 1o perform the congruence transformation,
first select a reference reduced system. For simplicity, take k& = 1 as the reference
system. Next, compute transformation matrices Qx € R"*" and Py € R"™*" for all
k=1,...,K by solving

(4.12) Qi = argmqin [VkQ — V1| subject to Q'Q =1,
and
(4.13) P, = argmlgn [WiP — Wi|r subject to PTP =1,

where the orthogonality constraints on Q and P assume that the local bases are
orthogonal. The optimization problems (4.12) and (4.13), known as the orthogonal
Procrustes problem [109], are solved analytically by the SVD. Towards this goal, define
the SVDs V]'V; = Uy, 5y, Z], and Wi W, = Uy, Sy, ZL . Then the solutions to

Vi

(4.12) and (4.13) are given by
(4.14) Qr=U,,ZI and P,=Uy,Z, for k=1,... K.

For k = 1, the reference system Q = Py = I.. For k = 1,..., K, define the
transformed local reduction matrices by Vi := Vi Qi and Wy := W;P. Then the
congruence-transformed local state-space matrices are given by

(4.15) A.(p) =PI WIA(p,)ViQr = PFA(p,)Qx for k=1,... K.

Note that the transformed basis matrices \~/'k and Wk are applied throughout the
original system associated with p, and therefore not only transform A, (p;) to A, (p,),
but also transform other coefficient matrices. More specifically, the kth local reduced
model

(4.16) E,(pr)%r = Ar(Pr)Xr + Br(py)u, yr = Cr(Pr)Xr,
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is transformed into
(4.17) E.(py)Xr = A, (pp)% + B, (p)u, ¥, = Co(pp)%y,

where E.(p,) = P{E.(p;)Qx, Br(p;) = P{B;(p,), and C.(p;) = C;(p;)Qs. In
contrast to the local systems in (4.16), the transformed systems in (4.17) are expected
to lie in the same generalized coordinate system.

Then the question becomes how to construct the reduced-order matrices A,.(p),
E.(p), B, (p), and C,(p) for a new parameter value p using the local congruence-
transformed matrices. The reduced matrices A,.(p) and E,.(p) are obtained by ap-
plying (similar) manifold interpolation ideas explained in the previous section to the
matrices {A,(py),...,Ar(Pr)} and {E.(p;),...,E.(pg)}, respectively, assuming
nonsingular transformed matrices. On the other hand, when the transformed co-
efficient matrices are not square as in the case of B, (p,,) and C,(p;,), or are singular,
the reduced-order matrices can be obtained for the new parameter p by using direct
interpolation from [9].

A similar approach based on matrix interpolation is also proposed in [188]. In
this approach, the local reduced-order matrices are also first transformed and then
interpolated; however, the transformation and the interpolation techniques are differ-
ent from the ones used in [9]. Let U, denote the first » dominant left singular vectors
of [V1,..., Vk]. Define My, := (W}U,)"! and Ny := (VLU,)~!. Then the reduced
system (4.16) is transformed into

(4.18) E (pp)%Xr = Ar(Pr)%r + Br(py)u, ¥r = Cr(py)%r,
where E.(p;) = MiE/(p;)Nk, Ar(py) = MpA,(p,)Ny, B (pp) = MiB,(py),
= C,(py)Nj. After this transformation, for a given parameter p, the

)
matrices {E;(py),...,Er(Pg)}t, {Ar(pP1),-- - Ar(Pi)}, {Br(P1):--- Br(pg)}, and
{C,(p1),-.-,Cr(px)} are directly interpolated using any appropriate interpolation
method.

Both of these methods achieve the goal of interpolating the reduced state-space
quantities while avoiding interpolation of the basis matrices themselves and avoiding
the multiplications WTE(p)V and WT A (p)V, and thus are likely to be computation-
ally more efficient than the methods described in section 4.2.1. The second approach
differs from the first in that it uses the SVD of the concatenation of the local bases,
[V1,..., Vk], to define the common generalized coordinate system rather than pick-
ing one of the local systems as a reference. The tradeoff is then computing the SVDs
of 2(K —1) matrices of size n x r to determine Qy, and P, versus computing the SVD
of a single matrix of size n x (rK) to determine My, and Ny; thus the computational
complexity of these two options is roughly the same.

4.2.3. Interpolating the Local Transfer Functions. Yet another option for in-
terpolating local information is to interpolate the transfer functions of local reduced

models. Given the sampled parameter points p,,k = 1,..., K, the local reduced
models have transfer functions
(4.19) H,(s,p) = Cr(Pu)SEr(p) — Ar(P)) ' Br(py), k=1,....K,

where H, (s, p;,) denotes the transfer function of the reduced model constructed at
p = p;- The order of each local reduced model is permitted to differ. Denote the
order of the reduced model H,(s,p;) as r;. These local reduced models can be
constructed with any set of local bases.
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The reduced-order transfer function at a new parameter point p can then be
obtained by interpolating the H, (s, p;,):

K
(4.20) H,(s,p) = Y Li(B)H,(s,py),
k=1

where Ly (p;) = dx;j, k,j = 1,..., K. This yields the functional interpolation condition
(4.21) H,(s,p,) = H,(s,p,) for k=1,... K.

Because each local transfer function is independent of the representation of its local
basis, the nonuniqueness of the state-space representation is not an issue for this
interpolation approach.

This strategy was studied in detail in [28, 31]. Generally speaking, any interpola-
tion technique could be used to select the functions Ly (which also applies to (4.8)).
Considering the case of a scalar parameter, d = 1, one choice is the Lagrange polyno-
mials, which were used in [28]. A computationally more efficient and reliable form is
obtained if one uses the barycentric form of Lagrange interpolation [52]. Other choices
are rational interpolation (which is used in [31] in barycentric form based on [51]), vari-
ants of Hermite interpolation, sinc or spline interpolation, etc.; see [31] for experiments
with some of these variants. These interpolation techniques can all be generalized to
d > 1 using tensorization, but with limited success for growing dimension d of the
parameter space. We discuss this issue in some more detail in section 4.2.4.

We will consider one particular case to highlight the advantages and disadvantages
of interpolating the reduced-order transfer functions. Consider the case of a scalar pa-
rameter, where balanced truncation with a specified error tolerance g is used for gen-
erating all the local reduced models, as in [28]. Noting that the representation (4.20)
separates the variables s and p, we are now free to put the parametric dependence in
any one of the matrices realizing the reduced model. A convenient choice results from
the representation (4.20), where a particular realization of H, (s, p) is obtained by

E, = diag(E,(p,),..., E+(pg)) € R™,
(4.22) A, :diag(AT(pl),...,A,«(pK)) cR™",
: ~ T
B, = [Br(pl)T7 .., B (PK)T] e R™™,

Cr(p) = [L1(p)Cr(P1); - -, Lk (P)Cr(pi)] € RT™,

withr=r1+ro+---+rg.

Similar to the approaches of section 4.2.2, the method is flexible in the sense that
it does not require affine parameter dependence as in (2.7) for efficient online reduced
model generation. In addition, the structure of the approximate transfer function per-
mits using local reduced models of different orders. This is important since balanced
truncation with adaptive order will in general yield models with varying r,. Another
advantage is that the main features of balanced truncation are inherited. In particular,
if the full model is uniformly stable in the parameter domain €2, then this property
is preserved in the reduced model: for a uniformly stable system, (E(p), A(p)) is
an asymptotically stable matrix pencil for all p € Q, and hence (E(p;), A(py)) is
asymptotically stable for all k if the parameter samples are taken from Q. By stabil-
ity preservation of balanced truncation, then also (E,(p;), A, (p;)) is asymptotically
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stable for all k and, due to the block-diagonal structure, (E,«, 11,«) inherits this prop-
erty. Also, instead of balanced truncation, other balancing-based strategies can be
employed (e.g., LQG balancing, which is also applicable in the unstable case). See
[34, 115, 183] for overviews of possible choices and corresponding properties preserved
in the reduced models.

Using balanced truncation for the local models induces an error bound which is
obtained by splitting the interpolation error in parameter space from the balanced
truncation error. Since the expressions for the error bound depend strongly on the
chosen interpolation method, we only provide a version for (polynomial) Lagrange in-
terpolation, but writing the bounds down for other interpolation techniques is straight-
forward. For details, we refer the reader to the original sources [28, 31]. Assume H is
uniformly stable in €2, at least K times differentiable with respect to p, and let A4
denote the Lebesgue constant of our node set {p;,...,px}. Then one obtains

(4.23) HH(S, p) — H, (s, p)

‘2 < p(H,p,s) + BrAK_1,

where p(H, p, s) is the interpolation error, which for polynomial interpolation is given
by

K
: H |f)_pk|a

(4.24) (Hp.s) = - Hfms @)
. AHP.s) = g7 | gr €N | -1

with £(p) € (ming py,, maxy p;, ) (to be understood componentwise). The presence of
the Lebesgue constant in the error bound suggests using a node set that produces a
small Ax_1; hence, a uniform distribution of the p, should be avoided. A reason-
able choice is the Chebyshev nodes, particularly in their second form. As usual, the
interpolation error will in general not be determined explicitly, but can be estimated
using, e.g., the reduced model instead of H; see, e.g., [28, 31].

A clear disadvantage of the transfer function interpolation approach is that the
state-space obtained from the realization A, B, E,, C,.(p) may grow quickly with
the number of parameter samples. However, note that for evaluating the reduced
model online, it is not necessary to explicitly form this realization since the only
computation required is the evaluation of the reduced-order transfer functions at the
given value s and the evaluation of the (scalar) parametric functions L. This amounts
to interpolating the outputs computed by the reduced-order models using the given
Lj’s. This results in an input/output representation of the system and not a state-
space realization per se. A similar idea is used in [163], where interpolation is used
to create a parametric POD model for a convection problem where the mathematical
model is unknown.

Another disadvantage is that by interpolating the reduced-order transfer functions
as in (4.20), the poles of H, are fixed and do not vary with p as the poles of H
most likely do. In addition, some poles of the original model may be duplicated in
several of the local reduced models, leading to spurious poles of the reduced-order
transfer function. These observations are reported in [188], where it is suggested to
interpolate the realizations of the local reduced models instead, as already discussed
in the previous subsection.

4.2.4. Interpolating Local Information for Systems with Multiple Parame-
ters. For systems with multiple parameters (i.e., d > 1) interpolation of local in-
formation (as in, e.g., (4.8) and (4.20)) can become more challenging. For regular
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grids, tensorization of scalar interpolation methods is fairly easy, resulting, e.g., in
bi-/trilinear /-cubic (Hermite, spline) interpolation. Due to the curse of dimensional-
ity, the resulting reduced models quickly become complex even for small d. In [28],
the use of sparse grid interpolation [63, 113, 228] is suggested for the interpolating-
the-transfer-function approach. The coupling of balanced truncation with piecewise
polynomial interpolation using sparse grid points is reported in [28]. Promising results
are obtained for this approach for examples with d < 10; see [31]. Another possibility
to extend the idea of interpolating local objects would be to use irregular grid inter-
polation approaches such as radial basis functions. Results reported in [213] are also
promising and certainly deserve further investigation. It should be noted, though,
that dealing with cases d > 10, e.g., in the case of discretized distributed parameters,
with multivariate interpolation parametric model reduction approaches has not been
investigated so far. Future research is needed to fuse ideas from high-dimensional
approximation theory with parametric model reduction techniques. We hope this
review can trigger some of this necessary research. Another important aspect not
yet treated in much depth in the existing literature is the regularity of the solution
manifold or the transfer function with respect to the parameters. So far, we have
assumed a smooth dependency, which, generally speaking, allows the application of
all the discussed (multivariate) interpolation approaches, where weaker assumptions
would certainly suffice in most cases. But it is not clear yet what type of regularity
assumption (weaker than analyticity) with respect to p is necessary for good approx-
imability in the sense described here, i.e., in the sense that a reduced-order, dynamical,
parametric system can be derived yielding good output reconstruction with respect
to variations in both p and u.

4.3. Comparing Different Reduced Model Generation Approaches. This sec-
tion has discussed several approaches for parametric reduced model generation, either
using a global basis as in section 4.1 or interpolating local information as in section
4.2. The specific approaches presented are

e using a single global basis;

e interpolating among local bases;

e interpolating among local reduced-order state-space matrices; and

e interpolating among local reduced-order transfer functions.
The following discussion provides some insight into the class of problems for which
the different approaches may be most appropriate.

4.3.1. Parameter Sampling. All the presented reduced model generation ap-
proaches require an effective sampling of the parameter space, whether samples are
used to construct global or local bases. For high-dimensional parameter spaces, the
global basis approach is particularly amenable to the greedy adaptive parameter sam-
pling approach discussed in section 3.4, as shown in [61] for building a global POD
basis. Similarly, a greedy sampling approach can be easily combined with balanced
truncation or rational interpolation methods to construct a global basis. In theory,
it would be possible to wrap a greedy sampling approach around the local inter-
polation methods, although in practice formulation of the problem would be more
complicated (and perhaps expensive to solve). Adaptive selection of parameter sam-
ple points in conjunction with these local interpolation methods has not been explored
in the literature. The parameter selection strategies that are optimal in the composite
system-theoretic error measures defined in (2.25) and (2.26) remain an open challenge
except for the very special parameter dependence as in [29].
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4.3.2. Reduced Model Construction. In terms of basis construction, any of the
methods for computing the basis matrices can be used with any of the reduced model
generation approaches. However, the global basis approach is a more compelling
choice to use with model reduction by rational (tangential) interpolation since the
final parametric reduced model then retains the interpolation property in both the
frequency and parameter domains. The global basis and interpolation among local
bases approaches both require construction of a new reduced model (via projection)
at every parameter value to be solved; hence it is important that the original system
has an affine parametrization or is approximated by an affine decomposition so that
the repeated reduced model construction is not too costly. However, for the other two
methods of interpolating the local reduced matrices and interpolating local transfer
functions, reduced models are only constructed at the parameter sample points and
not at other parameter values to be solved. Thus, these latter two methods may
be more appropriate in the case of general parameter dependence where a DEIM or
other affine approximation is inaccurate, or in the case where a DEIM approximation
cannot be efficiently applied (as discussed in section 2.3).

4.3.3. Reduced Model Size. The different methods vary in how the overall size
of the reduced model behaves, as well as in their flexibility to adapt order in different
regions of the parameter space. Interpolating local transfer functions allows for local
models with different orders, whereas interpolating the local bases and local reduced
matrices both require the same order of local models. The flexibility of having different
local orders is important in problems where the system dynamics are significantly more
or less rich (i.e., significantly harder or easier to approximate) at different parameter
values. In the global basis approach there is only a single order of the basis, but
adaptivity can be achieved by uneven sampling of the parameter space (e.g., using
the greedy adaptive sampling approach). An advantage of interpolating the local
bases or local reduced matrices is that the order of the reduced model does not grow
with the number of parameter samples (it is fixed at the local reduced order). This
is in contrast to the transfer function interpolation approach, where the order of the
parametric reduced model can grow quickly due to the block-diagonal structure of
construction. For the global basis approach, the order will also grow if the global
basis is obtained by concatenating the local bases. However, if the concatenation is
followed by a rank revealing QR or SVD, growth in the overall reduced model order
can be managed appropriately. In the nonparametric case, typically, one expects the
reduced order r to be at least equal to the minimum of m (the number of inputs) and
g (the number of outputs). However, even in the nonparametric case, the relationship
between r and the number of inputs and outputs can vary significantly, depending
on the particular system dynamics under consideration. In the parametric case, this
relationship is similarly problem dependent and is now also affected by the particular
parametric dependency of the system. In most cases, especially for the global basis
approach where the local bases are concatenated, the dimension r is expected to
be larger than ¢ and m. Moreover, in general, as r increases, the approximation is
expected to improve, although this cannot usually be guaranteed. In some cases,
accuracy behavior with increasing r is well characterized; for example, it can be seen
that the H error bound for balanced truncation guarantees improvement in a local
reduced model at a fixed parameter point. As expected, a definitive answer to these
questions in the general parametric model reduction case, such as how quickly error
decays as r increases, depends on the particular system dynamics and the parametric
dependency under consideration.
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4.3.4. Error Estimates. An advantage of interpolating local reduced-order trans-
fer functions is that it separates the interpolation error in the parameter space from
the model reduction error (in the frequency domain) and allows an error bound as
shown in (4.23), assuming that local reduced models are obtained with an error tol-
erance. Thus, balanced truncation, which has an a priori error bound, is appropriate
to employ in this approach. For other methods, a posteriori error estimates may
be possible for certain classes of problems and could be similarly combined with the
interpolation error estimate.

4.3.5. Dynamical System Poles. For the global basis, interpolating local bases,
and interpolating local reduced matrices approaches, the poles of the reduced models
vary with the parameter p, due to the parametric dependency in the reduced E,(p)
and A,(p) matrices. This is desirable, since the poles of the original model also
vary with the parameter p. This is not the case for the reduced models obtained by
interpolating the local transfer functions, for which the poles are fixed at the poles of
the local models, which can lead to spurious poles in the reduced model.

4.3.6. Reduced Basis Method. In recent years, the reduced basis method [189)
has been widely used for parametric model reduction. This method provides a strategy
for sampling the parameter space, generating the basis, and creating the reduced
model. We note that we do not explicitly present the reduced basis method in this
paper. One reason is that the reduced basis method is usually formulated in the
continuous (PDE) domain rather than in the dynamical state-space setting of this
paper. Our starting point, the dynamical system in (2.1), is referred to as the “truth
model” in the reduced basis framework. The second and more important reason
is that this paper presents a general flexible framework for formulating parametric
model reduction. The framework involves three distinct steps: parameter sampling,
basis generation, and reduced model generation. For each step we have presented a
number of different options, many of which can be combined in flexible ways. The
reduced basis method implemented in discretized form corresponds to one specific
choice for each step: the greedy search strategy for parameter sampling, the POD
snapshot method for basis generation, and a global basis approach for reduced model
generation. Nonetheless, developments in the reduced basis method have contributed
important general advancements to the field of parametric model reduction, especially
in methods to efficiently handle nonaffine parametric dependency and in the use of
error estimates. These contributions are reflected in the literature cited throughout
this paper.

5. Discussion. The preceding sections have presented the different elements for
projection-based model reduction of parameterized systems. The major components
can be summarized as follows: (1) Choose the parameter values at which to sample.
This may be done at once as a first step or in an iterative fashion in conjunction with
other reduced model construction components. (2) Evaluate the full model for each
sampled parameter, which might involve evaluating system matrices and solving linear
systems, solving Lyapunov equations, or evolving the full model dynamics, depending
on the reduction method chosen. (3) Build the reduced basis, using a local or global
strategy. (4) Project the governing equations to produce the reduced-order state-
space matrices. (5) Use the resulting reduced model for simulation, optimization,
control, or uncertainty quantification. Within each element of the model construction
we have highlighted a number of different methods that can be employed. While
in general there is no definitive “recipe” on how to combine elements to achieve the
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most effective reduction strategy for a given problem, we highlight in this section
some of the relative advantages and disadvantages of the various methods and how
that relates to their effectiveness for various classes of problems. We also cite examples
from the literature that demonstrate the effectiveness of different reduction strategies
for different applications.

5.1. Commonalities among Model Reduction Methods. We begin with the
observation that there are significant commonalities among the different methods for
computing the reduction bases V and W. While the specific strategies used in ratio-
nal interpolation methods, balanced truncation, POD, and the reduced basis method
are at surface level quite different, their commonalities are perhaps stronger than the
usual presentation of the methods suggests. Rational interpolation methods, POD,
and the reduced basis method are all snapshot-based methods. In classical rational in-
terpolation methods, the snapshots correspond to sampled solutions over the complex
frequency domain, with extensions to sampling over the parameter domain for the
parametric model reduction variants. For the reduced basis method and POD, snap-
shots correspond to sampled solutions over the parameter domain in the case of static
problems, and to sampled solutions over both time and parameter domains in the case
of dynamic problems. POD is more commonly applied to dynamic problems, although
examples in the literature also include static problems. Different communities seem
to prefer different strategies for sampling the parameter domain, but as discussed in
section 3.4, there is a great deal of flexibility in combining sampling strategies with
basis computation strategies. For example, the combination of POD with a greedy
parameter sampling strategy as in [61, 122] results in an overall reduction approach
that is essentially the same as the reduced basis method. The reduced basis commu-
nity largely focuses on formulation of the model reduction problem in the continuous
(PDE) domain; however, the resulting numerical algorithms build a projection basis as
the span of a set of discrete snapshots over the parameter domain, just as in the POD.
As discussed in section 3.3, duality between time and frequency domain formulations
for linear systems also reveals the connections between POD and balanced truncation,
and between POD and rational interpolation methods; see [30] for a more detailed dis-
cussion of these connections. Nonetheless, some important differences remain among
the methods, most notably the error bounds associated with balanced truncation (for
a fixed parameter sample) and the applicability of POD to general nonlinear systems.

5.2. Applicability of the Basis Computation Methods. POD is the most gener-
ally applicable of the methods for computing the basis, since it relies only on snapshots
of the underlying simulation code. As a result, the POD basis can be computed easily,
even when the simulation is a black-box code (although note that in the black-box
case, the projection step to determine the reduced model remains a challenge). The
POD can also be applied to general nonlinear problems, since computation of the
POD basis does not rely on a specific problem structure. POD can also be used with
any of the sampling strategies discussed. POD has shown to be effective in many ap-
plication domains, including fluid dynamics, structural dynamics, thermal modeling,
atmospheric modeling, and many more. Early applications of POD include unsteady
flows and turbulence modeling [73, 105, 205], and unsteady fluid-structure interaction
[75]. The study in [73] is perhaps the earliest example of the POD being used for a
parametric problem. That work considers rotations of POD basis vectors computed
at one Reynolds number to provide a POD basis for a different Reynolds number. An
early example of POD snapshots being computed over the parameter domain is [163],
which considered Rayleigh-Bénard convection with varying Rayleigh number.
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In contrast, balanced truncation and rational interpolation methods are based
on system-theoretic quantities such as Gramians and transfer functions, and exploit
the specific dynamical system structure. This paper has focused on systems that
are linear in state. Even though balanced truncation has been elegantly extended
to nonlinear systems in [201], the approach is not yet computationally feasible, even
for systems with modest dimension. As already discussed in section 3.3, extending
approximate balanced truncation via empirical Gramians to nonlinear systems is a
feasible approach [146], though the favorable properties of balanced truncation for
linear systems cannot be shown in general in this setting. For the case of bilinear
systems, a computationally more feasible approach to balanced truncation has been
developed in [41]. Rational interpolation methods have been extended to bilinear
[24, 36, 37, 39, 58, 92, 98, 192] and quadratic-in-state systems [37, 38, 97, 114]. Even
though these methods have proven effective for a wide range of problem settings, they
are most widely used in circuit theory, such as [23, 44, 90, 184, 195], e.g., to ana-
lyze and predict signal propagation and interference in electric circuits; in structural
mechanics, such as [53, 106, 174, 198, 211], to study, e.g., vibration suppression in
large structures or behavior of micro-electromechanical systems; and in (optimal) con-
trol and controller reduction, such as [11, 21, 126, 185, 215, 231], e.g., in LQR/LQG
control design.

5.3. Capturing Parametric Dependence. Section 4.3 discussed the different at-
tributes of the approaches for generating the parametric reduced model, including
both global and local approaches. Clearly there is no one “best” approach; rather,
the different approaches will work well for different problems depending on the model’s
underlying parametric structure. As already discussed, the literature shows several
examples of successful applications of these approaches; however, it is lacking a rig-
orous analysis that connects the performance of the methods with the structure and
regularity of the parametric dependence in the problem. Since most of the methods
rely on interpolation in one form or another, it might be expected that the large body
of mathematical literature on analysis of interpolation methods is a fruitful avenue of
investigation. The manifold interpolation methods are particularly novel and inter-
esting; again, more work is needed to understand for what class of problems they are
best.

5.4. Preservation of Properties. When choosing a model reduction method, it
is also important to consider what mathematical properties are essential to preserve
in the reduced model. Rational interpolation methods have the advantage that the
transfer function of the parametric reduced model exactly interpolates the transfer
function of the full model at sampled frequency and parameter points (as long as
the required vectors are included in the global basis). Stability of the parametric
reduced model remains an important open question in most cases. Other than for
a few exceptions related to specific problem structure, the approach of interpolating
the local transfer functions is the only way to guarantee that the reduced model is
stable for the full parameter range (provided each local reduced model is stable).
Even for linear nonparametric problems, the other approaches do not guarantee in
general that an interpolation of stable models yields a globally stable parametric re-
duced model. Exceptions include the case of negative definite pencils (E(p), A(p)),
where one-sided projection, V.= W combined with either a global basis approach or
with positive interpolation weights on local reduced-order matrices will also guaran-
tee stability. However, the general stability preservation property by transfer function
interpolation comes at a cost—it results from the fact that the approach does not let



PARAMETRIC MODEL REDUCTION 519

the reduced model poles vary as the parameters change. A number of stabilization
methods have been proposed for LTI reduced models in the nonparametric case. For
the bilinearization approach discussed in section 4.1.2, some of these stabilization
techniques have been adapted in [40]; further extensions of these approaches to the
parametric case is an important area of future research. Preservation of other proper-
ties such as passivity and contractivity® may be important in some applications, but
have yet received little attention in parametric model reduction methods.

5.5. Scalability. For problems that involve state dimensions of very large scale
and/or very expensive forward model simulations, it is important to consider how
amenable the parametric model reduction framework is to high-performance com-
puting. We briefly consider this issue here. The offline stage of parametric model
reduction may be data intensive due to extensive large-scale operations. However,
if parameter sampling is done using a random or structured grid (e.g., sparse grid)
approach, the offline stage lends itself well to parallelism since local model reduction
bases corresponding to different parameter samples can be computed independently.
For the greedy selection approach, one computes the parameter samples sequentially;
however, the basis computation operations for a selected parameter sample could still
be done in parallel in some cases. For example, one could parallelize the numerical
simulations required to generate POD snapshots or parallelize the linear solves in the
rational interpolation case. In addition, the efficiency of the offline phase of rational
interpolation methods can be improved by employing subspace recycling, a technique
to accelerate the iterative solution of families of linear systems by reusing information
obtained in previous solves. See [1, 42, 94] for applications of these techniques to (para-
metric) model order reduction. For some problems, the state dimension may become
sufficiently large-scale that storage becomes an issue. In those cases one would have to
use algorithms that trade additional computations for storage (e.g., incremental SVD
algorithms that could process data in batches) and that use scalable implementations
(e.g., for recent work in this area see [69], which uses MapReduce/Hadoop for scalable
parametric model reduction). Given the current research focus on “big data,” much
attention is being given to such algorithms; parametric model reduction is one area
that might benefit from these advances.

5.6. Error Bounds and Error Estimates. Guarantees on the quality of the para-
metric reduced models remain an important question. The reduced basis community
in particular has promoted a strong emphasis on the derivation of error estimates for
parametric model reduction [112, 123, 189, 197, 217, 218]. This work has created new
methods that certify the reduced model through error estimates that can be computed
without recourse to the full model [189]. An important observation is that these error
estimates are related to the structure of the system (e.g., properties of the underly-
ing PDEs) being approximated but are not specific to a particular basis computation
method. In other words, the basis behind the model reduction step can come from
rational interpolation, balanced truncation, or POD. This can be seen by analyzing
these error estimates in state-space form as recently presented in [123]. Recall that
projection-based model reduction as in (4.1) corresponds to approximating x(t; p) by
Vx,(t;p). As in [123], take E =T and let e(0; p) denote the error in the state x(¢; p)

5The concepts of passivity and contractivity appear frequently in circuit and microwave theory.
Passive dynamical systems can only absorb power. The transfer function H(s) of a nonparametric
passive system (i) is analytic for Re(s) > 0, (ii) satisfies H(s) = H(3S) for s € C, and (iii) satisfies
H(s) + H” (3) is positive semidefinite for all Re(s) > 0. The transfer function of a nonparametric
contractive system, on the other hand, satisfies I — H? (—w)H(w) > 0, w € R.
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at time ¢t = 0 and at parameter p = p. Then e(0;p) = (I - V(WTV)"*WT)x(0; p).
Similarly define the residual in the state equation

(5-1) p(t;p) = A(P)Vx,(t;p) + B(p)u(t) — VX, (t;p).

Let £(p) = sup, ||6A(p)tH2. Then the error in the state variable at time ¢ and at
parameter p is bounded by

t
62 Ixee) - Vsl < €0) (le:plla + [ lo(ripladr )
The output error at time ¢ and the parameter p can be bounded similarly using

(5:3) Iy (& p) — yr(t;p)ll2 < [CM@)I[x(EP) — VXt D) ll2-

Although the error estimates apply to a general basis, a key remaining question is the
computability of the constant £(p). This computation must be done in an efficient
way, without recourse to the full model, otherwise the error estimate is of limited prac-
tical value. Again, the reduced basis community has derived efficient offline/online
decomposition approaches to address this issue [189]. These decompositions rely on
an affine parametric dependency obtained through an EIM approximation. A second
issue is the tightness of the bounds (5.2) and (5.3), which depends on the properties
of the underlying full system. In many cases, the effectivity of the error estimate
(i.e., the ratio of the estimated error to the true error) can be quite large (see, e.g.,
[179, 187]).

5.7. Extensions to More General System Structure. The extension of the
parametric reduction methods to general nonlinear systems was discussed above. An-
other assumption on system structure in this paper is that the E(p) matrix is non-
singular for any parameter selection p. However, in several important applications
(e.g., incompressible flows and circuit design) one obtains a system of the form (2.1),
where E(p) could be singular for some or all selections of p. Such systems with a
singular E(p) matrix are called systems of differential-algebraic equations (DAEs).
Projection-based model reduction of DAEs has been studied extensively; see, for ex-
ample, [45, 50, 118, 129, 172, 195, 208, 209]. The theoretical discussions of this
paper directly extend to this setting. While in many cases numerical methods can be
implemented as effectively as for the ordinary differential equation case, there exist
scenarios in which reducing a system of DAEs might prove more costly due to the
need for computing projectors on certain deflating subspaces; for details, we refer the
reader to the above references.

We also assume that the full-order model H(s, p) is asymptotically stable for ev-
ery p € ; indeed the discussion as presented only requires that H(s, p;) be stable
where p;, for ¢ = 1,..., K, are the sampled parameter points. However, even this is
unnecessary since most of the model reduction methods presented have already been
extended to reducing unstable systems. From a numerical implementation perspec-
tive, the rational interpolation methods do not require H(s,p,) to be stable. The
only requirement is that the frequency interpolation points § should not be a pole
of H(s,p;). In the asymptotically stable case, this is easily guaranteed by choosing
§ € C4, where C; = {z € C|Re(z) > 0}. In the unstable case, however, one needs
to be more careful since some of the poles lie in C; and they need to be avoided.
Even the optimal rational interpolation-based model reduction methods have been
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extended to unstable systems; see, e.g., [143, 165]. Balanced truncation has been
also generalized to reducing unstable systems, by either appropriately redefining the
system Gramians [25, 232, 233] or by using different balancing techniques, such as
LQG balancing [185]. For the POD, the frequency domain formulation will be the
appropriate choice for unstable systems since the time-domain snapshots will grow ex-
ponentially in this case. This would be a similar approach to the balanced truncation
method for unstable systems presented in [232].

We assume zero initial condition for the state-vector, i.e., x(0;p) = 0. When the
initial condition is nonzero but known, this information could be easily included in
the time-domain POD method as the initial condition for the numerical simulation.
For rational interpolation and balanced truncation approaches, the nonzero initial
conditions can be appended to the input-state-matrix B(p) representing an initial
impulse as done in [30, 57, 128]. However, if the initial condition is unknown and/or
the reduced model needs to provide a good approximation for a wide range of ini-
tial conditions, the corresponding model reduction problem can no longer be easily
handled by simple modification of the zero-initial condition case. In these cases, if
one treats the initial condition as the parameter set, then the parameter dimension d
becomes as large as the system dimension n leading to a high-dimensional parameter
space. In some cases this high dimension can be efficiently sampled by exploiting
system structure; see, e.g., [27, 154] for recent work that considers initial condition
parameters for problems that have linear state dependence.

5.8. Equation-Free Model Reduction. In this paper, we have focused on pro-
jection-based model reduction techniques that assume the availability of a state-space
description of the original model (2.1) and that apply an explicit projection to state-
space dimension. However, there are settings where equations describing the evolution
of a dynamical system are not explicitly specified (i.e., E(p), A(p), etc., are unavail-
able) and the only access to dynamics is via input/output measurements. This might
be in the form of system responses such as measurements of H(s,p), or simulation
outputs of a black-box code. In these cases, a reduced parametric model as in (2.2)
is obtained directly from measurements or from simulation outputs without access to
internal dynamics. For the case of dynamical systems with no parametric dependence,
the Loewner-based data-driven framework [148, 149, 171] has been applied with great
success to construct reduced models using only transfer function samples. Recently,
this approach has been used to produce even locally optimal reduced models; see [33].
The data-driven Loewner framework has been extended to parameter-dependent sys-
tems as well [16, 134], where the reduced parametric model is a rational function
not only in the frequency s but also in every parameter pi, £k = 1,...,d. This al-
lows choosing the order of approximation in s and p independently. Even though the
theoretical discussion extends to the multiple parameter case directly, the numerical
computation and construction of the reduced model might present a challenge, and the
order of the reduced model might grow undesirably as d, the number of parameters,
grows. Another set of nonintrusive approaches represents the parametric solution in a
reduced subspace (usually using POD) and then interpolates those solutions without
recourse to the underlying full system. Interpolation can be achieved using polyno-
mial or spline interpolation [60, 163, 69], least squares fitting [59, 178], or radial basis
function models [20].

6. Outlook. We close this review paper with a brief discussion of promising cur-
rent research directions and some open challenges. As already mentioned, recent
development of the EIM and DEIM methods has led to significant progress in model
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reduction for nonlinear systems using POD and the reduced basis method. It re-
mains an open question whether the rational interpolation approaches and balanced
truncation can be extended beyond bilinear- and quadratic-in-state systems to han-
dle general nonlinear dependence in the state variable x(t). A balancing method for
nonlinear systems was proposed in [201], but a scalable algorithmic implementation
remains an open challenge. Even for the linear-in-state systems we consider in this
paper, despite the existence of effective sampling strategies discussed above, the opti-
mal parameter selection strategies for the composite system-theoretic error measures
defined in (2.25) and (2.26) remain an open challenge for the case of general para-
metric dependence. Further open challenges include parametric model reduction for
systems with time-dependent and/or stochastic parameters. The bilinearization ap-
proach discussed in section 4.1.2 permits time dependency of the parameters since it
treats the parameters as auxiliary inputs; see [35]. The POD approach, in principal,
will also allow time-dependent parameters; the snapshot generation will then require
simulating a dynamical system with time-dependent coefficients. In general, though,
extending parametric model reduction methods to these broader classes of systems will
require new approaches for defining the reduced subspaces, as well as new methods for
constructing and solving the reduced model. Handling high-dimensional parameter
spaces remains another challenging problem. While some progress has been made in
this area, in particular with greedy sampling approaches, further work is needed to
develop methods that exploit system structure to avoid the curse of dimensionality.
Promising recent efforts towards this goal use tensor techniques [182, 186]. The com-
bination of tensor calculus [125] and parametric model reduction techniques for time-
dependent problems is still in its infancy, but offers a promising research direction.
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