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Quantification and management of uncertainty are critical in the design of engineer-
ing systems, especially in the early stages of conceptual design. This paper presents an
approach to defining budgets on the acceptable levels of uncertainty in design quantities
of interest, such as the allowable risk in not meeting a critical design constraint and the
allowable deviation in a system performance metric. A sensitivity-based method analyzes
the effects of design decisions on satisfying those budgets, and a multi-objective optimiza-
tion formulation permits the designer to explore the tradespace of uncertainty reduction
activities while also accounting for a cost budget. For models that are computationally
costly to evaluate, a surrogate modeling approach based on high dimensional model repre-
sentation (HDMR) achieves efficient computation of the sensitivities. An example problem
in aircraft conceptual design illustrates the approach.

Nomenclature

C Cost of changing the distributions of
the input variables

CL Cruise aircraft lift coefficient
Cb Budget on the cost of changes in the

input distributions
F Objective function for optimization

problem
G Nonlinear constraint for optimization

problem
Kn Input space mapped to the unit hy-

percube
MTOW Maximum Takeoff Weight
N Number of samples
OPR Overall pressure ratio
P Risk of QoI exceeding r
P0 Risk of QoI exceeding r for nominal

input variable distributions
Pb Budget on the risk of the QoI
P ′ Updated risk for changes in the distri-

butions of the input variables
Si, Sij , . . . Sensitivity indices
Tmetal Turbine metal temperature
(Tt4)CR Turbine inlet total temperature for

cruise
Vi, Vij , . . . Variance of component functions of

HDMR
f Probability density function

fY (r) Value of the probability density func-
tion of y at y = r

g Engineering system representation,
prescribing the relation between the
input variables and the QoI

g0, gi, gij , . . . Component functions of HDMR sur-
rogate

n Number of input variables
p̂ Risk of QoI y exceeding the value r
sfus Maximum allowable fuselage shell

bending stress
swt Maximum allowable wing and tail spar

cap stress
x, xi, xj Input variables
y Quantity of interest (QoI)

Symbols

α, β, γ Weighting parameters for the objec-
tive function

αir Weighting coefficient for first-order
component functions

βijpq Weighting coefficient for second-order
component functions

µ Vector containing the mean of each in-
put variable

µY Mean of QoI
σ Vector containing the standard devia-

tion of each input variable
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σY Standard deviation of QoI
σY,b Budget on the standard deviation of

the QoI

ϕi Basis functions
ξ Running parameter for basis functions

I. Introduction

This paper presents a sensitivity-based methodology to support decision-making in the design of multi-
disciplinary engineering systems, with a focus on the challenge of quantifying and managing uncertainty.

We consider the early stages of the design phase, where quantification of uncertainty permits designers to
identify critical areas of design risk and to allocate resources accordingly.Uncertainties abound in engineering
design and decision: technical uncertainties due to novel configurations and new technologies, programmatic
uncertainties in cost and schedule, design requirements and/or operating conditions that may evolve over
time, and uncertainties introduced due to the use of simplified models. These uncertainties pose a serious
risk to the critical decisions made in engineering design, especially when considering novel systems for which
experience and historical data are lacking. Despite a growing recognition of the importance of accounting
for uncertainties, systematic methods to quantify and manage uncertainty remain a significant challenge,
especially for systems that comprise many interacting subcomponents and/or disciplines.

Past work has addressed the challenge of forward propagation of uncertainty: Given uncertain parameters
and uncertain system inputs, what is the corresponding uncertainty in the outcome? Uncertain outcomes
are typically characterized by uncertainty associated with the design quantities of interest (QoI).1,2, 3 The
literature categorizes uncertainty as epistemic, owing to insufficient or imperfect knowledge, or aleatory,
which arises from natural randomness and is therefore irreducible.2,4, 5, 6 Other work has distinguished among
several types of uncertainty, including the many sources associated with the use of computer-based simulation
models in system design.7 In this paper, we use probabilistic models to represent uncertainty in design
parameters and QoI.2,8, 9 Other ways of characterizing uncertainty include using a probability box to capture
the imprecision in the available uncertainty information.10 Regardless of the method chosen to represent
uncertainty, forward propagation of uncertainty typically involves repeated model evaluations to conduct the
needed sampling; thus, a great deal of recent work has focused on methods to reduce computational expense,
including the use of less-expensive surrogate models to approximate system response.11,12,13,14,15,16

Sensitivity analysis targets the inverse question: What are the uncertain parameters and inputs that
contribute the most to output variability, and how would reducing uncertainty in these parameters lead to
reduction in output uncertainty? In the context of engineering system design, sensitivity analysis permits bet-
ter understanding of the effects of uncertainty in order to make well-informed decisions aimed at uncertainty
reduction.8,17 Existing sensitivity analysis approaches typically use variance as a measure of uncertainty.
The process of apportioning output variance across model factors in a global sensitivity analysis can be car-
ried out by both a Fourier Amplitude Sensitivity Test (FAST) method, and the Sobol’ method.18,19,20,21,22

The FAST method is based on Fourier transforms, while the Sobol’ method utilizes Monte Carlo simulation.
In addition to variance-based sensitivity analysis, work has also been done in the development of methods
for global and regional sensitivity analysis using information entropy as a measure of uncertainty. One such
method uses the Kullback-Leibler (K-L) divergence, or relative entropy, to quantify the distance between two
probability distributions.23 These distributions correspond to estimates of the QoI before and after some
model parameter has been fixed at a particular value (e.g., its mean value). The K-L divergence between the
two distributions then serves to quantify the impact of the factor that has been fixed: the larger the value
of the K-L divergence, the more substantial the contribution of that parameter to uncertainty in the QoI.

In addressing design under uncertainty, robustness—which according to Knoll and Vogel is “the property
of systems that enables them to survive unforeseen or unusual circumstances”24—and reliability—which de-
scribes a system’s “probability of success in satisfying some performance criterion”1—are typically treated
separately. The origins of robust design stem back to the pioneering work of Taguchi, with the aim of re-
ducing the sensitivity of products and processes to various noise factors, such as manufacturing variability,
environmental conditions, and degradation over time.25,26,27 In Ref. 28, an integrated framework for opti-
mization under uncertainty is developed that accounts for both design objective robustness and probabilistic
design constraints.

This paper develops a broadly applicable sensitivity-based methodology that, given a model of the sources
of uncertainty, provides systematic guidance to a decision-maker in identifying and selecting uncertainty
reduction options and design choices. Our goal is to allocate the resources of cost, schedule and risk,
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while also identifying opportunities to tailor the design so as to minimize uncertainty in key areas while
retaining flexibility in others. Underlying our proposed approach is the view that uncertainty is a currency:
a designer can tolerate a particular level of uncertainty, typically characterized by specified acceptable levels
(i.e., budgets) of risk, reliability and/or robustness. The key challenge then becomes how to “spend” the
uncertainty—where to focus uncertainty reduction efforts so as not to waste valuable resources reducing
uncertainty in parameters that contribute little to output uncertainty, but instead to target the most sensitive
parameters and manage resources in a systematic way. This modeling of the design process is consistent
with decomposition-based formulations of the design problem, such as analytical target cascading (ATC),
where the system is modeled using hierarchical levels and design targets are cascaded from upper levels
to lower levels.29,30,31 Similar ideas are explored in Chen et al., who propose a method that reverses the
computational flow in a design code.32 That work builds on the univariate reduced quadrature method of
Padulo et al.,33 which represents the QoI standard deviation as a function of the first four moments of a
univariate input distribution.

Our work builds on the mathematical framework of Ref. 34, which views the system design problem as
a stochastic estimation process as shown in Figure 1. The term “stochastic estimation process” is used to
convey the idea that the design process can be modeled as an iterative process of resolving uncertainty. That
is, at any point in time the design is represented through a set of state variables, each with an associated
uncertainty. Design effort results in the generation of new information (“measurements”), which can be used
to update the uncertain design state. This process continues until the uncertainty is resolved to acceptable
levels. In this paper, we advance that work by formalizing the idea of uncertainty budgeting. In particular,
we formulate and solve a multi-objective optimization problem that seeks optimal strategies to manage the
uncertainty and design risk. A second contribution of the paper is to introduce a tailored surrogate modeling
approach that permits analysis of complex system models. The remainder of the paper is organized as
follows. Section II provides a description of the problem formulation and background on the sensitivity
analysis methods. Section III describes the uncertainty budgeting methodology and formulates the resource
allocation optimization problem. Section IV presents a surrogate modeling approach that can be used to
reduce the computational expense of solving the uncertainty budgeting optimization problem. Section V
demonstrates the approach by presenting illustrative examples in conceptual aircraft design focusing on
propulsion uncertainty and uncertainty coming from multiple disciplines. Finally, Section VI concludes the
paper.

II. Problem Formulation and Background

This section defines the problem formulation in Section II.A, and introduces background on high dimen-
sional model representation (HDMR) and analysis of variance (ANOVA) in Section II.B.

II.A. Problem formulation

In the initial stages of designing a complex system, the key inputs for that design are still uncertain. In aircraft
design, for instance, engine technology has a major influence on the design, but may not be fixed at the start
of the design phase because of possible future advances.36 However, the designers still have requirements for
the system, and the risk of not meeting those requirements must be quantified and mitigated. Furthermore,
key QoI describing the performance and cost of the design are also uncertain during early design stages. This
uncertainty must be managed to acceptable levels as the design process evolves. In this work, we formalize
the view that uncertainty is a currency: a designer can tolerate a particular level of uncertainty; the decision
then becomes how to “spend” the uncertainty. To formulate this mathematically, we define cost budgets
and uncertainty budgets. The uncertainty budget allocates quantitative limits on the acceptable risk in not
meeting design requirements and on the acceptable variability in the design QoI (i.e., it specifies the desired
reliability and robustness of the design). The cost budget allocates quantitative limits on the resources that
can be expended on uncertainty reduction (e.g., money, time, computational resources).

We consider a general system, represented as

y = g(x),

where y is the system QoI, x are the system input variables, and g is the mapping from input x to QoI y.
Throughout this paper this system mapping is considered as a general black box—it could be, for example,
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Figure 1. Modeling the system design as a stochastic estimation process with feedback. Figure adapted from
Ref. 35.

a computational model or an experiment; however, it is assumed that there is freedom in choosing the input
values (i.e., the function g(x) can be evaluated for input x). In the following we develop the methodology
for a single scalar QoI, although the approach is straightforward to apply to the case of multiple QoI.

We represent the uncertainty in the input variables probabilistically, that is, we consider x to be a
random variable and we describe each component of x using a probability density function (PDF). The
PDFs for each input variable are specified by the designer and could be determined from historical data
or expert opinion. In current engineering practices, such PDFs are typically not readily available and this
is often put forward as a barrier against using probabilistic methods. In some cases, sufficient information
and data will be available to infer a reasonable PDF—for example, when considering uncertainty associated
with an advanced technology, one can often draw on experimental results that provide informed choices of
parameter ranges and probable values. However, in many cases, engineering judgement will be required to
define suitable PDFs for the input parameters. While this is certainly an important challenge that must be
addressed, current design practices simply ignore uncertainty, or they account coarsely for it by using safety
factors on the resulting design choices.a

The uncertainty in inputs induces uncertainty in the output QoI; thus, y is also modeled as a random
variable. The PDF of y is estimated using Monte Carlo simulation to propagate uncertainty through the
system. We then set budgets on allowable cost and uncertainty. In this work we consider a budget on
the allowable standard deviation of the QoI, a budget on the allowable probability of not meeting design
requirements, and a budget on the allowable cost of the changes in the input variables. Every design change
has an associated cost—whether it be a cost associated with a change in the mean values of the input
variables, or a cost associated with a reduction in input uncertainty. The problem therefore becomes a
constrained optimization problem to find the best resource allocation strategy that satisfies both cost and
uncertainty budgets. This is described mathematically in Section III. Our approach to formulating and
solving this problem uses a global sensitivity analysis (GSA), built on the theory of high dimensional model
representation (HDMR). The next subsection gives background on HDMR and GSA.

aAs Richard Feynman eloquently puts it: “I can live with doubt and uncertainty and not knowing. I think it is much more
interesting to live not knowing than to have answers that might be wrong. If we will only allow that, as we progress, we remain
unsure, we will leave opportunities for alternatives.”
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II.B. High Dimensional Model Representation (HDMR) and Global Sensitivity Analysis
(GSA)

HDMR is an analysis tool used in representing the relationship between inputs and outputs in a general
model.37,38,39 In this method, the function g(x) is expanded into independent component subfunctions in
terms of the input variables,

g (x) = g0 +

n∑
i=1

gi (xi) +
∑

1≤i<j≤n

gij (xi, xj) + . . .

+
∑

1≤i1<...<il≤n

gi1i2...il (xi1 , xi2 , . . . , xil) + . . .+ g12...n (x1, x2, . . . , xn) . (1)

Here, g0 represents the mean response of g (x) over the input space, while the component subfunction gi (xi)
captures the contribution of the ith input variable alone. We use the notation xi to denote the ith input
variable and we consider the case of n input variables, x = [x1, . . . , xn]>. The component subfunction
gij (xi, xj) represents the correlated contribution of the ith and jth input variable to g (x), and so on.

The decomposition as written in Eq. (1) is not unique.4 It can however be uniquely defined by imposing
the vanishing condition,40,41,42 which states that the integral of an HDMR component function with respect
to any of its own variables is zero:43∫ 1

0

fs (xs) gi1i2...ik (xi1 , xi2 , . . . , xik) dxs = 0 ∀s ∈ {i1, i2, . . . , ik} , (2)

where fs (xs) is the probability density function of the sth input variable. Note that for ease of presentation
and without loss of generality, the variables xi have been rescaled by a suitable transformation such that
0 ≤ xi ≤ 1 ∀i. The HDMR representation with constraint (2) is called the ANOVA-HDMR; as described in
the following, the resulting functional decomposition of g(x) provides a quantitative basis on which to assess
how the various inputs contribute to QoI uncertainty.44,45

Because of the orthogonality constraints in Eq. (2), the variance of the QoI can be expressed as

V (y) =
∑
i

Vi +
∑

1≤i<j≤n

Vij + . . .+ V12...n, (3)

where Vi is the portion of the QoI variance associated with the subfunction gi,

Vi = V (gi (xi)) = V [E (y|xi)] , (4)

and Vij is the portion of the QoI variance associated with the subfunction gij ,

Vij = V (gij (xi, xj)) = V [E (y|xi, xj)]− V [E (y|xi)]− V [E (y|xj)] . (5)

Similar expressions can be built up for Vijk and further. Dividing by the total variance, the decomposition
of sensitivity indices is obtained, ∑

i

Si +
∑

1≤i<j≤n

Sij + . . .+ S12...n = 1, (6)

where Si = Vi/V , Sij = Vij/V , and so on for the higher-order terms. The main effect sensitivity index Si
represents the normalized expected reduction in total variance if the variance of the ith input variable were
reduced to zero. Computing these sensitivity indices is termed a global sensitivity analysis (GSA).44

III. Uncertainty Budgets in System Design

Figure 2 illustrates our overall uncertainty quantification method. Section III.A describes the initial prob-
lem setup. Section III.B formulates a multi-objective optimization problem to solve the resource allocation
problem and Section III.C discusses the solution to the optimization problem.
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Figure 2. Flow chart showing the uncertainty budgeting methodology.

III.A. Initial problem setup

As shown in Figure 2, the inputs to our methodology are the initial distributions describing uncertainty in
each of the system inputs, a model of the costs of uncertainty reduction activities, and cost and uncertainty
budgets. The initial uncertainty distribution for each input variable can be constructed from expert elicitation
and/or historical data. In this paper, only uniform distributions are considered; therefore in our setting,
for each input variable the designer has two degrees of freedom: the mean of the input variable and the
standard deviation of the input variable. Thus, with n input variables, the problem has a total of 2n
degrees of freedom in changing the input variable distributions. Figure 3 illustrates the degrees of freedom
in changing a single uniform input distribution. The extension to other distribution types is straightforward,
although the resulting parametrization of changes in uncertainty may have more degrees of freedom per
input variable.

For the QoI, three budgets are considered: a budget on risk, Pb, a budget on standard deviation, σY,b,
and a budget on the cost of changing the input variables’ distributions, Cb. Here we use as a risk metric the
probability that the QoI fails to meet a requirement, so that the risk budget constraint becomes P (y > ycrit) ≤
Pb, where P denotes probability, ycrit is a critical value that the QoI must not exceed, and Pb is the designer-
specified budget on the allowable risk probability. We note that common definitions of risk typically include
both the probability of occurrence and the impact of the event, through measures such as semi-deviations,
Value at Risk, or Conditional Value at Risk (see, e.g., Ref. 46)—any of these risk measures could be used
to define the risk budget. In the formulation presented here, the budgets Pb, σY,b, and Cb are set to be
constant, and so there are no correlations among them; however, a straightforward and interesting extension
would be to introduce some correlations (e.g., through dependence on a common parameter or through a
total budget constraint) and to explore the tradeoffs between allocating budget to cost versus uncertainty.

We also require the specification of a model for the cost of changing the distribution of each input variable.
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We consider both the cost of changing the mean input value (i.e., a change in the nominal design with no
accompanying change in uncertainty) and the cost of reducing the input variable’s uncertainty (i.e., changing
the range of the uniform distribution). A change in input variable mean could, for instance, imply a redesign
to a less aggressive design in order to reduce variance in the QoI and thus improve design robustness, or a
redesign to a higher-performing design in order to decrease risk of not meeting system requirements. The
costs of these changes should include the actual redesign activities as well as any costs that might be incurred
to advance technologies that underly the new design point. Reducing uncertainty of an input variable would
typically be achieved by additional research and development effort, and/or by experiments, again with
associated costs.

Given these initial distributions, a baseline GSA estimates the contributions of each uncertain input to
the QoI variance as described in Section II.B. The GSA results can then be used to screen for the input
parameters with the highest influence on the QoI. If a parameter has a low total sensitivity index, then
its effect on QoI variance will be small and it is better to exclude that parameter from the optimization.
This will speed up the optimization by reducing the number of degrees of freedom, and will also remove
low-sensitivity (flat) regions in the design space that would otherwise hamper the optimization convergence.

Xi

f(Xi)

(a) Shift in mean

Xi

f(Xi)

(b) Reduction in uncertainty

Xi

f(Xi)

(c) Shift in mean together with a reduc-
tion in uncertainty

Figure 3. Illustration of design freedom in changing the parameters of a uniform distribution.

III.B. Resource allocation optimization formulation

Our methodology next formulates the optimal resource allocation strategy as a constrained optimization
problem, where the optimization degrees of freedom are the parameters describing the input variable PDFs
(in our case, the mean and standard deviation for each input variable). The optimal resource allocation must
meet the budgets on cost and uncertainty. It is likely that there are multiple feasible input PDFs that meet
those constraints. Our approach is to identify an optimal strategy by forming an objective function that
expresses designer preferences on cost, standard deviation and risk. This optimization problem is written as

minimize
µ,σ

F(µ,σ) = α
P (µ,σ)

Pb
+ β

σY (µ,σ)

σY,b
+ γ

C(µ,σ)

Cb
subject to GP (µ,σ) = P (µ,σ) − Pb ≤ 0

Gσ(µ,σ) = σY (µ,σ) − σY,b ≤ 0

GC(µ,σ) = C(µ,σ) − Cb ≤ 0

(7)

where the designer selects the weighting factors α, β and γ assigned to the risk, standard deviation, and cost,
respectively. Here C is the cost associated with changing the input distributions, P is the risk (probability
of failing to meet a design requirement), and σY is the standard deviation of the QoI. Each of these three
quantities is shown as a function of µ, the vector containing the means of the n input distributions, and
σ, the vector containing the standard deviations of the n input distributions. The terms in the objective
function are normalized by the cost, risk and standard deviation budgets, Cb, Pb and σY,b, respectively.

III.C. Solving the resource allocation optimization

Figure 4 depicts the process of solving the optimization problem. Given updated input variable distributions
specified by µ and σ, we must estimate the QoI standard deviation, risk and cost to evaluate the objective
function F(µ,σ) and constraints GP (µ,σ), Gσ(µ,σ), GC(µ,σ).
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Figure 4. Flow chart for the resource allocation optimization.

In order to solve the optimization problem, the updated standard deviation and risk must be estimated
for changes in the input distribution (as provided by the optimizer). For the standard deviation, this requires
estimating

σ′Y
2

=

∫
(g (x)− g′0)

2
f ′x (x) dx (8)

where g′0 =

∫
g (x) f ′x (x) dx, (9)

where f ′x (x) is the updated joint probability distribution for the inputs x and σ′Y
2

is the corresponding
updated QoI variance. These integrals can be evaluated using quadrature methods. The risk can be estimated
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via Monte Carlo simulation on the updated distribution, using the unbiased estimator p̂:

P (Y > r) ≈ p̂ =
1

Ns

Ns∑
i=1

I (Yi) , (10)

with I (Yi) =

1, if Yi > r

0, if Yi ≤ r

where Ns is the total number of Monte Carlo samples, and I (Yi) is the indicator function.
The uncertainty budgeting methodology presented in this section applies to general models—it requires

only the ability to query the model output for specified input values. However, the sampling required
to evaluate the QoI standard deviation and risk over many potential input distributions will in general
require many model evaluations; that is, solving the optimization problem (7) may be expensive. A primary
source of cost is in computing, at each optimization iteration, the integrals that define the expected values,
standard deviation and probability of failure. If, for example, one uses standard tensor product quadrature
with Nq quadrature points in each dimension, then this would require evaluating the black-box system
model (Nq)

n
times, where n is the number of input variables. Although these computations can easily be

parallelized, for n > 3 one would need to use a more advanced (sparse) quadrature scheme in order to keep
the computational costs manageable. A second source of cost is in computing the gradients required at each
optimization iteration. Using a finite difference approximation for the gradient requires 2n(Nq)

n additional
function evaluations in the tensor product quadrature case, since each integral is recomputed for each of the
2n optimization variables.

To alleviate the computational cost of these model evaluations, one may use a surrogate model to estimate
the objective functions and constraints. While any surrogate model could be used, as described in the next
section, HDMR and local sensitivity analysis permit derivation of surrogate models that are tailored to the
task at hand. In addition, one of the attractive features of the HDMR surrogate presented in the next
section is that the gradient can be derived analytically and computed by evaluating the integrals only along
the faces of the hypercube. For example, for a uniform distribution, this reduces the number of function
evaluations to compute the gradients to be 2n(Nq)

(n−1). For more detail on an efficient strategy to compute
the gradients, see Ref. 47.

IV. Surrogate Modeling

This section presents a surrogate modeling approach that can be used to reduce the computational
expense of solving the uncertainty budgeting optimization problem. Section IV.A describes a surrogate
model based on HDMR, used to estimate the updated standard deviation. Section IV.B describes a local
approximation that provides a surrogate risk estimate.

IV.A. HDMR-based surrogate

For many systems, it is the case that main (single-variable) effects and two-way interactions dominate
the input–output relationship. In such cases, third-order and higher-order terms in the HDMR can be
neglected without incurring a large error, permitting an accurate surrogate to be derived via truncation of
the HDMR.37,38 This leads to the approximation

g̃ (x) ≈ g0 +

n∑
j=1

gi (xi) +
∑

1≤i<j≤n

gij (xi, xj) . (11)

Following Ref. 43, one can then build a surrogate model by representing the component functions using
expansions of an appropriate set of basis functions:

gi (xi) ≈
∑̀
r=1

αirϕr (xi) , (12)

gij (xi, xj) ≈
∑̀
p=1

∑̀
q=1

βijpqϕpq (xi, xj) , (13)
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where gi is represented by ` basis functions ϕ1, . . . , ϕ`, and αir is the coefficient corresponding to the rth
basis function. Similarly, gij is represented by the basis functions ϕpq with corresponding coefficients βijpq.
In this work, we use ϕpq (xi, xj) = ϕp (xi)ϕq (xj) and we use the same number of basis functions, `, for all
input variables, but this need not be the case. We employ orthonormal polynomials as basis functions, so
that the coefficients defining the surrogate model are found as40

αir =

∫
Kn

g (x)ϕr (xi) fx (x) dx ∀ r ∈ {1, . . . , `} , (14)

βijpq =

∫
Kn

g (x)ϕp (xi)ϕq (xj) fx (x) dx ∀ {p, q} ∈ {1, . . . , `} . (15)

Here Kn is the n-dimensional unit hypercube with Kn = {(x1, x2, . . . , xn) | 0 ≤ xi ≤ 1}.
To construct the HDMR-based surrogate model requires finding all αir and βijpq by evaluating the integrals

in Equations (14) and (15). We evaluate these integrals using Gauss-Legendre quadrature. For a low number
of inputs (e.g., less than five) and a relatively smooth response, the behavior of the QoI can typically be
characterized over the input space using on the order of tens or hundreds of samples. However, as the number
of inputs increases, one would most likely be better off using (quasi) Monte Carlo sampling to resolve the
integrals, as in the RS-HDMR method.43,48 Regardless of the method of integration, the same set of samples
can be re-used to find all αir and βijpq. For instance, if Gauss-Legendre quadrature is used, the function g(x)
is evaluated (Nq)

n
times, with Nq being the number of quadrature points in each dimension. We then use

that set of samples to evaluate each αir and each βijpq. We choose basis functions that are appropriate for
the specified input PDFs; for example, for uniform distributions, we employ shifted Legendre polynomials
on the domain [0, 1].

IV.B. Local sensitivity surrogate for risk estimation

For the risk estimation, one can use the HDMR-based surrogate derived in Section IV.A; however, performing
Monte Carlo sampling for every change in the input distributions may still be expensive, especially if the risk
budget is a small probability value (since estimating a low probability to within acceptable error typically
requires many more Monte Carlo samples than estimating the standard deviation). In order to obtain the
risk of the QoI more efficiently, one can additionally employ local sensitivity estimates for risk as in Ref. 34.
Firstly, we evaluate the risk for the baseline input distributions once using Monte Carlo sampling on the
surrogate model, and we evaluate the surrogate risk estimator p̂ defined in (10), where note now that the
QoI y is estimated using the surrogate model rather than the original model g. We denote this baseline risk
estimate by P0. Local sensitivity estimates then provide an approximation for the change in risk due to a
change in the mean of the QoI, ∆µY , as

∆Pµ ≈ −∆µY fY (r) , (16)

and for the change in risk due to a change in the standard deviation of the QoI, ∆σY , as

∆Pσ ≈
∆σY
σY

(µY − r) fY (r) . (17)

The risk associated with the updated distribution, P ′, can then be found cheaply using the approximation

P ′ = P0 −∆µY fY (r) +
∆σY
σY

(µY − r) fY (r) . (18)

This local approximation will become inaccurate for large changes in mean or standard deviation. In par-
ticular, for certain combinations of parameters, using Eq. (18) can result in negative risk. In that case, we
either set the risk to zero or we invoke a full Monte Carlo estimation of the risk.

Using the surrogate models presented in this section introduces errors into the estimation of the standard
deviation and risk, and consequently into the solution of the optimization problem. The described surrogate
strategies are based on assumptions that have been empirically validated for a wide range of problems in the
literature, but for a general model, the magnitude of these modeling errors will be unknown. It is important
to note, however, that the surrogate models are used to accelerate the optimization process, but after running
the optimization, all solutions of interest are evaluated a posteriori using the full model. In this way, we
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leverage the surrogate models to make the approach computationally tractable (avoiding repeated Monte
Carlo simulations inside the optimization loop) and to find potentially interesting areas of the decision space,
but we evaluate and investigate potential uncertainty reduction options using our highest fidelity models.
Nonetheless, it is important to note that using the surrogate model may result in suboptimal solutions, since
the surrogate model may miss a few potentially optimal decision areas in the space of input variables.

V. Results

The uncertainty budgeting method is applied to an illustrative example that considers conceptual design
of a commercial jetliner. The example aircraft is sized using the Transport Aircraft Sizing and OPTimization
tool (TASOPT). TASOPT comprises low-order physics-based aircraft sizing models with minimal reliance
on empirical and historical data, which makes it appropriate to simulate the changes in design QoIs with
respect to changes in input variables.49 The example problem considers a baseline aircraft based on the
Boeing 737-800. We consider a sizing mission with a range of 2950 nautical miles, 180 passengers, and a
cruise altitude of 35,000 ft. The first example considers just two uncertain input parameters, so that we can
extensively visualize the design space and optimization results; we then consider a more challenging example
with six uncertain parameters.

V.A. Problem setup: Propulsion system uncertainty

Our first illustrative example considers the effects of uncertainty in engine technologies on early conceptual
aircraft design decisions. The aircraft Maximum Take-off Weight (MTOW ) is used as the QoI y; this
is a quantity that represents many aspects of the overall vehicle design. The uncertainties in propulsion
technology are represented by taking the uncertain input variables to be x = [Tmetal, (Tt4)CR]

>
, where

Tmetal is the maximum allowable temperature of the metal in the turbine blades, and (Tt4)CR is the total
temperature at the inlet of the turbine at cruise conditions. (Tt4)CR is directly related to the thermal
efficiency of the engine and is at the same time restricted by Tmetal. Therefore, it is expected that uncertainty
in these two variables will have a large influence on the fuel efficiency and thereby the maximum takeoff
weight of the aircraft. It is also expected that there is an interaction between the two variables.

The corresponding distributions for Tmetal and (Tt4)CR are estimated using a combination of information
from Federal Aviation Administration (FAA) databases and expert elicitation from FAA consultants.50

Tmetal and (Tt4)CR are modeled as uniform random variables such that Tmetal ∼ U [1172, 1272] K and
(Tt4)CR ∼ U [1541.5, 1641.5] K. The initial mean value of Tmetal is therefore 1222 K with a standard de-
viation of 28.87 K, and the initial mean of (Tt4)CR is 1591.5 K with a standard deviation of 28.87 K. With
two input variables with uniform distributions, there are in total four degrees of freedom in changing the
distributions of the input variables, since both the mean and standard deviation of each parameter can be
altered.

Budgets are set on risk, standard deviation and cost. The risk budget is set such that the probability of
MTOW exceeding 1.802 × 105 lb is at most 4%, while the standard deviation of MTOW is required to
be at most 450 lb. The cost of changing the distributions of the input variables must remain below 18 cost
units. Thus, the budget constraints are written as

P(MTOW > 1.802 · 105 lb) ≤ 4% = Pb, σY ≤ 450 lb = σb, C ≤ 18 = Cb. (19)

The notional cost model for Tmetal and (Tt4)CR is shown in Figure 5. Note that the x-axis has been
normalized by their maximum allowable changes due to the different scales of the two input variables.
This cost model is used in the optimization process to quantify the cost of making changes in the input
distributions. The cost model for changes in mean is asymmetric, because it requires more effort to increase
the mean temperature and thus it is more expensive. For Tmetal, an increase in mean value would, for
instance, require using a new material for the turbine, which would be a major design overhaul and might
even require developing a new alloy with better thermal properties. The cost budget of 18 units in this
example was selected arbitrarily, but chosen to be consistent with the cost model and the problem’s levels
of uncertainty. When applying this approach in practice, the cost model and budget would be informed by
data about personnel requirements, time, equipment, and other resources required to make these changes to
the design. In these cases, the cost models and budgets would most likely be cast in units of actual dollars.

To determine an appropriate number of samples to use in the Monte Carlo simulations, we run a con-
vergence study. Figure 6 shows the estimated mean and standard deviation of the MTOW as a function of
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the number of samples in the Monte Carlo run. Each plotted point represents an average computed over ten
independent Monte Carlo simulation runs. From the plot, it can be seen that acceptable levels of accuracy
are achieved with 5000 samples; this number will be used in the following results.
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Figure 5. Notional cost model for the two-parameter example.

V.B. Surrogate and sensitivity analysis

We construct an HDMR-based surrogate model using the method described in Section IV. This requires
estimating the coefficients αir and βijpq by evaluating the integrals in Equations (14) and (15). Since the
inputs Tmetal and (Tt4)CR are modeled using uniform distributions, we employ shifted Legendre polynomials
for the basis functions. The first three shifted Legendre polynomials are

ϕ1 (ξ) =
√

3 (2ξ − 1) ,

ϕ2 (ξ) = 6
√

5

(
ξ2 − ξ +

1

6

)
,

ϕ3 (ξ) = 20
√

7

(
ξ3 − 3

2
ξ2 +

3

5
ξ − 1

20

)
,

(20)

with 0 ≤ ξ ≤ 1. Furthermore, because the number of inputs is low, the integrals in Equations (14) and (15)
are solved efficiently using Gauss-Legendre quadrature, requiring a minimum number of TASOPT runs. In
this case, only 49 TASOPT runs are required to build the surrogate model.

For purposes of illustration, we assess the convergence of the root mean squared error between the
surrogate QoI estimate and the TASOPT QoI estimate for different numbers of quadrature points and
orders of basis functions. We use the error definition from Sobol’,42 defined as

δ (g, g̃) =
1

V

∫
[g(x)− g̃(x)] dx (21)

with V =

∫
[g (x)− g0]

2
dx.

Here g is the actual function mapping input to QoI (here the TASOPT simulation), g̃ is the truncated
ANOVA-HDMR surrogate model, and V is the variance associated with the actual QoI.

Figure 7 shows the convergence of the error δ (g, g̃), where we solve the integral in Eq. (21) using quasi
Monte Carlo sampling with 5000 samples. For this problem, a choice of Nq = 7 quadrature points in each
dimension and fifth-order basis functions leads to a surrogate model with acceptably low error (below 10−5).
As mentioned above, this surrogate is constructed with just 49 TASOPT evaluations. To further illustrate
the accuracy of the surrogate model, TASOPT is evaluated at 225 points in the interior in order to compare
estimates of MTOW over the design space. Figure 8 shows the resulting contours of MTOW estimated by
TASOPT and by the surrogate model.
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Figure 9 shows the GSA results using the HDMR-based surrogate model. The results show that Tmetal

accounts for an expected 10% of the MTOW variance, while (Tt4)CR is responsible for 75%. (Tt4)CR is
directly related to the fuel efficiency of the engine; it is therefore expected that it contributes a larger
portion of the uncertainty in the maximum take-off weight. Lastly, in line with expectations, a considerable
interaction term between the two variables accounts for the remaining 15% of the variance in MTOW . Both
input parameters have considerable influence on the uncertainty in the QoI and therefore both are included
in the resource allocation optimization.
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Figure 8. MTOW estimated by surrogate model
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The circles indicate the quadrature points used to
create the surrogate model.
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Figure 9. Sensitivity analysis results from the
HDMR-based surrogate model.

V.C. Design space visualization

Visualization of the design space can provide the designer with useful insight into the effects on QoI un-
certainty and cost of changing the input distribution parameters. We explore the design space via a series
of two-dimensional plots, as shown in the pairwise contour plot for risk in Figure 10(a) and for standard
deviation in Figure 10(b). These slices are generated by evaluating the risk, cost, and standard deviation of
the QoI in the same way as in Figure 4, only now for a specified µ and σ. We vary µ and σ to generate
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a contour plot. We slice through the design space by varying two design parameters (e.g., the mean and
standard deviation of one particular input variable) and fixing the other design parameters at the mean
value of their respective nominal distributions. For problems with higher-dimensional inputs, we note that
this visualization will be much more challenging, since the two-dimensional plots will represent only a tiny
fraction of the overall design space. In higher dimensional cases, more sophisticated visualization techniques
will be needed, such as those described in Ref. 51.

The general shape of these contours is consistent with expectations based on knowledge of the design
problem: as the input standard deviation is reduced, the risk is reduced because the output distribution
is more concentrated around the mean. However, the plots also show a large area where the risk is zero;
therefore, it is expected that there are multiple ways to achieve a minimum-risk solution. Furthermore,
Figure 10(b) shows that, for this problem, a reduction in input standard deviation has a larger effect on the
QoI standard deviation than a shift in input mean.
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Figure 10. Pairwise contour plot of QoI risk and QoI standard deviation as a function of changes in input
means and input standard deviations.

Applying the budget constraints to the estimated surfaces of risk, standard deviation and cost defines a
feasible region with respect to each budget constraint. Overlaying the results allows for visualizing the feasible
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design space, i.e., the range of input distribution changes for which all budget constraints are met. This is
shown in Figure 11, where the darkest area indicates the feasible region. Other shaded areas correspond to
region where only one or two of the three budget constraints are met. For this problem, it can be seen that
the feasible region is mostly constrained by the cost and standard deviation budgets. This is consistent with
the previous result that showed a large area of low-risk solutions.

Figure 11. Feasible area in the design space, satisfying risk, standard deviation and cost budgets. Also shown
are the areas that satisfy one or two of the three budgets.

V.D. Resource allocation optimization

The initial uncertainty distributions on Tmetal and (Tt4)CR lead to the distribution of MTOW shown in
Figure 12. The corresponding initial estimate of standard deviation is σY = 503.13 lb and of risk is p̂ = 5.49%.
Both the standard deviation and the risk exceed the specified uncertainty budgets. We now solve the
optimization problem (7) to determine redesign options that will reduce uncertainty to below the specified
levels, while also satisfying the allowable cost budget. We solve the optimization problem using the Method
of Moving Asymptotes52 within NLoptb.53 Because the design space is non-convex, we run each optimization
from several different initial conditions. While this helps to avoid being trapped in a local minimum, it does
not guarantee that we find a globally optimal solution.

bNLopt is a nonlinear optimization library by Steven G. Johnson, available at http://ab-initio.mit.edu/wiki/index.php/

NLopt.
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Figures 13(a) and 13(b) show optimal solutions for two cases: minimum standard deviation (α = γ =
0, β = 1), and equal weighting among risk, standard deviation and cost (α = β = γ = 1). The radar plots
indicate the relative changes in mean values and standard deviations from the baseline initial values for each
design variable. Figure 13(a) indicates that relatively large changes to the original input distributions are
required to achieve the minimum-standard-deviation solution. This solution is achieved by a 32% standard
deviation reduction for Tmetal while shifting its mean to 1210 K, and a standard deviation reduction of 74%
for (Tt4)CR while shifting its mean to 1584 K. This results in 0% risk, a QoI standard deviation of 109 lb, and
an associated cost of 18 cost units. In this case, the active cost constraint is preventing further reductions in
QoI standard deviation. In this solution, the required standard deviation reduction for (Tt4)CR is larger than
for Tmetal, which is consistent with the GSA results in Figure 9, although the cost models play an important
role in determining the optimal uncertainty reduction balance across inputs.

The optimal solution for equal weighting among risk, standard deviation, and cost (Figure 13(b)) shows
less dramatic changes in the input distributions than the solution for minimum standard deviation. For this
problem, this result is due to cost now playing a role in the objective function. We can see, for instance, that
the mean of (Tt4)CR is barely changed, because it is expensive to do so (see Figure 5). The equally-weighted
optimal solution is achieved by a standard deviation reduction of 15% for Tmetal with its mean shifting to
1212 K, and a standard deviation reduction of 32% for (Tt4)CR with its mean unaltered. These changes
result in 0% risk, a QoI standard deviation of 306 lb, and an associated cost of 3.6 cost units.
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Figure 13. Optimum resource allocation strategy for two different objective functions. Left: minimum standard
deviation (α = γ = 0, β = 1). Right: equal weighting among risk, standard deviation and cost (α = β = γ = 1).
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< 2444 K, 0 K < µ(Tt4)CR
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< 28.87 K, 0 K < σ(Tt4)CR
< 28.87 K.

Instead of looking at an individual optimization result for a single combination of α, β and γ, a Pareto
front gives the designer more insight into the tradespace of uncertainty reduction options. We generate
a Pareto front by running the optimization for different values of α, β and γ. In Figure 14, the Pareto
front is projected onto the cost–standard deviation plane for MTOW , with the radar plots depicting the
corresponding solution values for the optimization variables for three different points. The minimum-cost
solution is that for which there are almost no changes in the input distribution and for which the requirements
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are just barely met (i.e., the standard deviation is exactly 450 lb and the risk is close to 4%). This minimum-
cost solution requires only a small standard deviation reduction in Tmetal of 6% while shifting its mean to
1219.4 K, and a standard deviation reduction in (Tt4)CR of 7% with no change in its mean. These updated
input distributions then result in a QoI standard deviation of 450 lb with a risk of 3.3% and an associated cost
of 0.23 cost units. In contrast, the minimum-standard-deviation solution requires considerable changes in the
input distribution and just barely meets the cost budget, as already explained and shown in Figure 13(a).
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Figure 14. Pareto front projected onto the cost – standard deviation plane of MTOW .

Lastly, we plot the changes in distributions for some of the optimal solutions. Figure 15 shows the initial
and updated input distributions that correspond to the equally-weighted optimized solution. Figure 16
compares the initial QoI PDF and the QoI PDF resulting from the optimal uncertainty reduction choices,
for the minimum-cost solution and equally-weighted solution. For the purposes of illustration, the QoI PDFs
are estimated using kernel density estimation with 10,000 samples drawn from the surrogate. The vertical
line indicates the do-not-exceed-value r, which is used to evaluate the risk of the solutions. Figure 16 shows
that the change in QoI distribution for the minimum-cost solution is small, but leads to a sufficient reduction
in risk to satisfy the budget constraints. For the equally-weighted solution, the change is more significant;
the standard deviation is considerably smaller and the risk approaches zero.

V.E. Assessment of optimization results

A final step in the methodology is to evaluate the most interesting (according to designer preferences) results
from the optimization, using the original model in place of the surrogate. In our case, this assessment is
performed by evaluating the uncertainty in TASOPT estimates of MTOW, using the updated distributions
for Tmetal and (Tt4)CR. As an illustration, we execute this process for four different objectives: minimum
risk, minimum standard deviation, minimum cost, and equal cost/risk/standard deviation weighting. In
each case, we evaluate TASOPT at 5,000 input samples using quasi Monte Carlo sampling, and estimate the
variance and risk of the MTOW QoI. Table 1 compares the results to those estimated using the surrogate
model. The relative errors are all small, indicating that the surrogate modeling approach introduces little
error.
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Figure 16. Initial MTOW QoI PDF compared to updated PDF for two different optimal solutions.

Table 1. Risk and standard deviation estimates of optimal strategies; TASOPT estimates compared to surro-
gate model estimates.

Surrogate TASOPT

Objective Risk σY [lb] Risk σY [lb]

Minimum Risk 0 109.5 0 109.5

Minimum σY 0 109.4 0 109.5

Minimum Cost 0.033 449.6 0.033 449.7

Equally important 0 305.7 0 305.6

V.F. Aircraft system uncertainty

We consider now a more complex example that includes a larger number of uncertain parameters drawn
from different disciplines across the aircraft system design problem. Propulsion uncertainty is represented
by the variables Tmetal, (Tt4)CR and OPR, the overall pressure ratio of the engine. Structural uncertainties
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are represented by uncertainty in the maximum allowable fuselage shell bending stress, sfus, and in the
maximum allowable wing and tail spar cap stress, swt. The lift coefficient during cruise, CL, represents an
aerodynamic uncertainty. As quantities of interest, we use both PFEI and MTOW .

To create the six-dimensional surrogate model is more challenging than in the two-dimensional case,
since using a tensor product quadrature rule as before, would require (Nq)

6
sampling points. Instead if we

neglect the higher-order terms in the HDMR—using the so-called cut-HDMR38—the required number of
samples reduces to

(
6
2

)
(Nq)

2
. We build up a surrogate for this six-dimensional input space using Nq = 7

quadrature points in each dimension and fifth-order basis functions. This yields an acceptable error with
only 735 TASOPT function evaluations.

For the resource allocation problem, we place similar budgets on the design as in Section V.A:

P(MTOW > 1.810 · 105 lb) ≤ 5% = Pb1 , σY1
≤ 600 lb = σY,b1 , C ≤ 25 = Cb

P(PFEI > 8.47 KJ/kg · km) ≤ 4% = Pb2 , σY2
≤ 0.16 KJ/kg · km = σY,b2 ,

where the subscript 1 corresponds to the MTOW QoI and the subscript 2 refers to the PFEI. However, we
relax the budgets slightly because there is more uncertainty in the initial design with respect to the problem
in Section V.A and the consideration of two QoIs introduces additional budget constraints. We again use a
notional cost model for the parameters, as shown in Figure 17.
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Figure 17. Notional cost model for the six-parameter example.

We now consider multiple QoIs and therefore reformulate Eq. (7) into

minimize
µ,σ

F(µ,σ) =
∑2
j=1 αj

P (µ,σ)

Pbj
+
∑2
j=1 βj

σYj
(µ,σ)

σY,bj
+ γ

C(µ,σ)

Cb
subject to GP1

(µ,σ) = P1(µ,σ) − Pb1 ≤ 0

GP2
(µ,σ) = P2(µ,σ) − Pb2 ≤ 0

Gσ1(µ,σ) = σY1(µ,σ) − σY,b1 ≤ 0

Gσ2
(µ,σ) = σY2

(µ,σ) − σY,b2 ≤ 0

GC(µ,σ) = C(µ,σ) − Cb ≤ 0.

(22)
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Figure 18. Histograms of MTOW and PFEI using 60,000 quasi Monte Carlo samples in the six-parameter
example (dashed line indicates the do-not-exceed-value for risk).

For the initial input parameter distributions, the resulting standard deviation of MTOW is estimated to
be 1553 lb, while the standard deviation of PFEI is estimated to be 0.172 KJ/kg · km. These initial input
parameter distributions lead to a distribution of MTOW and PFEI as in Figure 18. The corresponding
initial risk estimate for MTOW is 15% and the risk estimate for PFEI is 11%.

Table 2. Optimal mean and standard deviation for input parameters for six-parameter example.

Parameter µ σ

Tmetal [K] 1212.9 18.3

(Tt4)CR [K] 1591.5 15.6

OPR [−] 26.24 0.50

sfus [Psi] 3.000e4 135

swt [Psi] 3.000e4 59.0

CL [−] 0.5772 1.03e-3

Using these budgets and initial distributions, we perform the resource allocation optimization. Figure 19
presents the results where the objective function is to minimize the sum of the MTOW standard deviation
and the PFEI standard deviation. The optimization results for this objective function are listed in Table 2.
We see that indeed all budgets are satisfied in Table 2. The general trend shows mostly large uncertainty
reductions in the structural parameters (sfus and swt) and the aerodynamics parameter CL. There are still
uncertainty reductions in the engine parameters, because they have such a large influence on the uncertainty
in the QoIs; however, according to our cost model (Figure 17), changes in those engine parameters are costly
and are therefore kept to a minimum. This trend is also seen in the minimum-cost solution, where the
changes in the engine parameters are kept to a minimum.

Again, given our optimized input distributions we assess the accuracy of the approximations used during
the optimization problem solution. Therefore, we rerun the original model in place of the surrogate model,
with the optimized input distributions. This assessment is performed by running a quasi Monte Carlo
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Table 3. Comparison of estimated risk, standard deviation, and expected values between the HDMR surrogate
and a Monte Carlo simulation with 15,000 TASOPT samples for the six-parameter example. In both cases the
cost budget constraint is active at C = 25.0.

Parameter HDMR MC

Risk MTOW 0% 0%

Risk PFEI 0% 0%

σY MTOW [lb] 398 398

σY PFEI
[

KJ
kg·km

]
0.089 0.088

E[MTOW ] [lb] 1.791e5 1.791e5

E[PFEI]
[

KJ
kg·km

]
8.203 8.202

Tmetal

(Tt4)CR

OPR

sfus

swt

CL

µ

σ

0.5

1.0
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2.0

0.5

1.0

Optimized

Baseline

Figure 19. Results for the six-parameter example resource allocation optimization for minimum combined
standard deviation (β1 = β2 = 1, α1 = α2 = γ = 0).

simulation with 15,000 samples of TASOPT, from which we then compute the variance and risk of the QoIs.
Those results are shown in Table 3, labeled by “MC”. The results from the optimization using the original
ANOVA-HDMR expansion and the local sensitivity estimates are labeled “HDMR”. We see that both the
standard deviation and the risk agree well.

The results from this multidisciplinary problem illustrate how our uncertainty budgeting methodology
can help guide designers on where to reduce uncertainty and where to target design changes. This is turn
allows decision-makers to identify early in the design process where they need to allocate more resources to
meet requirements. For the illustrative example presented here, a decision could be, for instance, to focus
efforts towards uncertainty reduction in the structural and aerodynamic components of the design. The new
input distributions would serve as quantifiable targets for the uncertainty of the structures and aerodynamics
design groups. We also note that this process of managing uncertainty is an iterative process—at each stage
of the design process, different levels of uncertainty and risk can be tolerated and this will translate into
evolving targets across the disciplinary design groups.

VI. Conclusion

This paper presents an uncertainty budgeting approach for supporting conceptual design decisions, and
illustrates the approach on an example problem. An HDMR-based surrogate model allows for fast and accu-
rate estimates of the QoI standard deviation and risk, evaluated as a function of changes in the distributions
of uncertain inputs. The tradespace of re-design and uncertainty reduction decisions can then be evaluated
and visualized; a multi-objective optimization problem can also be solved to determine a specific resource
allocation strategy that balances cost and uncertainty reduction. This supports designers in deciding which
areas require additional resources for maximum benefit. While the probabilistic analysis presented here may
be somewhat costly to conduct, the decisions it is intended to support involve the allocation of significant
resources (money, time, facilities and people).

The first illustrative example considers the influence of uncertainties in propulsion technology on the
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overall conceptual design of a commercial aircraft. The results highlight the kinds of useful conclusions
that may be drawn from the analysis. In the case considered, the uncertainties in engine technology are
represented by Tmetal—the maximum allowable temperature of the metal in the turbine—and (Tt4)CR—the
total temperature at the inlet of the turbine. For the specific analysis case studied, (Tt4)CR has the largest
influence on the uncertainty in the Maximum Take-off Weight (MTOW ) of the aircraft, while the interaction
between Tmetal and (Tt4)CR is also responsible for a substantial part of the uncertainty in MTOW . The
resource allocation optimization leads to solutions for which the standard deviation of (Tt4)CR is reduced
more than the standard deviation of Tmetal, reflecting this higher sensitivity. A second example considers
the influence of system-wide uncertainties—in propulsion technology, material properties, and aerodynamic
performance parameters—on the overall conceptual aircraft design. The resource allocation optimization
shows that for the specific problem analyzed, the best strategy is to “spend” the uncertainty budget by
targeting a large uncertainty reduction in the material properties and the aerodynamic performance, and
only a small uncertainty reduction in the propulsion technology. This result would permit a design group to
assign quantitative re-design targets to each disciplinary sub-group.

In both cases, the optimization yields strategies for which the changes in mean value are much smaller
(relatively speaking) than the changes in input standard deviation. While the solutions found here reflect
our particular problem set up and our chosen notional cost model, which places a large penalty on changes
in the mean design point, this general result is consistent with many conceptual design problems where the
cost of design changes are large. This paper aims not to recommend a specific aircraft design choice, but
rather to provide a general methodology by which the designer can systematically explore these tradeoffs
between design modifications and uncertainty reduction. We note that the bulk of multidisciplinary design
optimization methods focus on finding a single “optimal design”—even if uncertainty is included, the problem
is still usually formulated as finding a single optimal design that minimizes some statistic of the QoI. However,
the analysis enabled by our methodology suggests that focusing on uncertainty reduction rather than just
design changes may be a more productive approach. A potential area of future work is to integrate the
uncertainty budgeting methodology with a multi-level design formulation, such as ATC. This would enable
consideration of more complex systems, as well as greater insight into the role of cascading uncertainties
between subsystem levels. Another area of future work is to develop more sophisticated budget models, such
as those that include correlation between cost and uncertainty budgets, and to use sensitivity results from
the optimization solution to determine the relative gains of increasing or decreasing budget limits.
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