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Abstract. We present a new scientific machine learning method that learns from data a com-
putationally inexpensive surrogate model for predicting the evolution of a system governed by a
time-dependent nonlinear partial differential equation (PDE), an enabling technology for many com-
putational algorithms used in engineering settings. Our formulation generalizes to the function space
PDE setting the Operator Inference method previously developed in [B. Peherstorfer and K. Will-
cox, Data-driven operator inference for non-intrusive projection-based model reduction, Computer
Methods in Applied Mechanics and Engineering, 306 (2016)] for systems governed by ordinary differ-
ential equations. The method brings together two main elements. First, ideas from projection-based
model reduction are used to explicitly parametrize the learned model by low-dimensional polynomial
operators which reflect the known form of the governing PDE. Second, supervised machine learning
tools are used to infer from data the reduced operators of this physics-informed parametrization. For
systems whose governing PDEs contain more general (non-polynomial) nonlinearities, the learned
model performance can be improved through the use of lifting variable transformations, which expose
polynomial structure in the PDE. The proposed method is demonstrated on two examples: a heat
equation model problem that demonstrates the benefits of the function space formulation in terms
of consistency with the underlying continuous truth, and a three-dimensional combustion simulation
with over 18 million degrees of freedom, for which the learned reduced models achieve accurate pre-
dictions with a dimension reduction of five orders of magnitude and model runtime reduction of up
to nine orders of magnitude.
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nonlinear partial differential equations, data-driven modeling

AMS subject classifications. 65Z05, 35Q30, 65M70, 65J15, 62J05, 62J07

1. Introduction. Systems governed by nonlinear PDEs are ubiquitous in en-
gineering and scientific application and traditional numerical solvers based on high-
dimensional spatial discretizations are computationally expensive even on powerful
supercomputers. The development of efficient reduced models for PDEs is therefore
an enabling technology for many-query applications such as optimization or uncer-
tainty quantification. Empirical successes in using machine learning to learn complex
nonlinear functions from data have motivated many works which use machine learning
tools to learn models for scientific problems governed by PDEs. The model learning
task in such settings is to learn a map that describes the state evolution within the
infinite-dimensional function space in which the spatially continuous PDE state lies.
In this work, we consider specifically the task of learning a map that describes the
state evolution within a low-dimensional subspace of the underlying infinite dimen-
sional function space, in an approach that combines elements from supervised learning
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and model reduction. Our method, Operator Inference for PDEs, generalizes to the
Hilbert space setting the method [42] previously developed in Euclidean space which
learns a reduced model that reflects the structure of the system governing equations
by drawing on ideas from projection-based model reduction.

In projection-based model reduction, a low-dimensional reduced model for the
evolution of a nonlinear PDE is derived by projecting the PDE operators onto a low-
dimensional subspace of the underlying infinite-dimensional Hilbert space. Several
approaches to defining this approximation subspace have been proposed (see [7] for
a review), but a common empirical choice is the proper orthogonal decomposition
(POD) subspace, which spans the leading principal components of an available set of
state data [8, 34, 49]. For PDEs with only linear and polynomial terms, the projection-
based reduced model admits an efficient low-dimensional numerical representation
that can be cheaply evaluated at a cost independent of the dimension of the original
model [6, 7, 9, 15, 21]. For PDEs with more general nonlinear terms, an additional level
of approximation, e.g., interpolation [2, 5, 10, 12, 13, 16, 40], is generally needed to
achieve computational efficiency. Alternatively, the works in [6, 15, 27, 28] transform
PDEs with general nonlinear terms to representations with only quadratic nonlinear-
ities via the use of structure-exposing lifting transformations, and then project the
quadratic operators of the resultant lifted PDE to obtain a reduced model.

Traditionally, projection-based model reduction is intrusive, because numerical
implementation of the reduced models requires access to codes that implement the
PDE operators. This is a limitation in settings where the code is inaccessible (e.g.,
legacy or commercial codes). Methods for non-intrusive reduced modeling use data
to learn reduced operators: one approach is to learn a map from an input (such
as a parameter or initial condition) to the coefficients of the PDE state in a re-
duced basis. This mapping can be parametrized by radial basis functions [3], a
neural network [35, 51, 55] or a nearest-neighbors regression [51]. However, these
works do not incorporate knowledge of the system governing equations into the learn-
ing parametrizations. The Operator Inference method proposed in [42] draws on
projection-based model reduction to use knowledge of a system’s governing ODEs to
explicitly learn the projection-based reduced operators for ODE systems containing
low-order polynomial nonlinear terms. The incorporation of knowledge of the govern-
ing equations allows Operator Inference to provably recover the true intrusive reduced
polynomial operators of the governing ODEs under certain conditions [42, 41]. The
work in [46] presents the Lift & Learn method, which applies Operator Inference
method to more general nonlinear ODEs by applying quadratic lifting transforma-
tions to ODE state data and then fitting reduced linear and quadratic operators to
the lifted data. In a different approach, the work in [32] learns sparse reduced models
using sparse regression.

While the aforementioned methods for model reduction are frequently applied to
scientific models for systems governed by PDEs, the methods are most often developed
for the ODE setting corresponding to models arising from spatial discretization of the
PDEs. In this work, we formulate the Operator Inference learning approach in the
spatially continuous function space setting for the first time. The function space
formulation has the following advantages over the Euclidean formulation: (i) The
function space formulation is mesh-independent and consistent with the underlying
infinite-dimensional system: e.g., it yields implementations that use inner products
that approximate the underlying infinite-dimensional inner product, whereas the ODE
formulation using the Euclidean inner product may yield approximations that are
inconsistent with the underlying infinite-dimensional system. (ii) The function space
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formulation allows the Lift & Learn approach to take advantage of more general
(in particular, nonlocal) structure-exposing lifting transformations between function
spaces, compared to previous work in the ODE setting [46] that considered only
pointwise transformations. (iii) The function space setting enables rigorous analysis
of error with respect to the underlying function space truth: for example, the reduced-
basis community has an extensive literature on function space error estimates for
intrusive reduced models [17, 19, 47, 54, 53].

We emphasize that Operator Inference is not intended to replace intrusive model
reduction approaches when intrusive approaches are feasible: rather, Operator Infer-
ence provides a path to obtaining a reduced model when intrusive approaches such as
POD-Galerkin are not feasible. The new function space formulation of Operator Infer-
ence that we present here makes clear that non-intrusive reduced modeling approaches
can and should be viewed in the context of recent works in supervised learning between
function spaces. For example, the work in [39] formulates a random feature model
for approximating input-output maps on function spaces. Another approach [33] si-
multaneously trains two neural networks, one which learns basis functions in which
to approximate a solution function, and another which learns the coefficients of the
learned basis functions. However, these architectures treat the data as arising from a
black box, and do not incorporate structure in system governing equations into their
learning architectures. The works in [1, 31] use knowledge of kernel operator struc-
ture to inspire a novel neural network architecture for approximating maps between
function spaces for PDEs. In this work, we use knowledge of the system governing
equations to explicitly parametrize the PDE evolution map by low-dimensional op-
erators which reflect the structure of the PDE, inspired by work in projection-based
model reduction.

Our emphasis on learning polynomial operators for possibly transformed system
states bears similarities to approaches that seek to learn the linear Koopman operator
for observables of nonlinear dynamical systems. Koopman operator theory states that
every nonlinear dynamical system can be exactly described by an infinite-dimensional
linear operator that acts on scalar observables of the system [26, 37, 38, 29]. DMD
learns a finite-dimensional approximation of the Koopman operator in a given set of
observables using a least-squares minimization [56, 48]. The success of this approach
is dependent on whether the chosen set of observables defines a space that is invariant
or close to invariant with respect to the Koopman operator. Previous works have used
dictionary-learning [30], neural networks [52], and kernel methods [25] to define the
space of observables. Another recent approach uses neural networks to define coordi-
nates in which terms of a governing equation are identified from a large dictionary of
possible terms using sparse regression [11]. In contrast, we propose a physics-informed
approach which chooses learning variables based on the known governing PDE.

The remainder of the paper is organized as follows. Section 2 formulates the pre-
diction problem for a system governed by a nonlinear PDE and provides background
on POD-Galerkin model reduction. Section 3 presents our Operator Inference formu-
lation for learning mappings between Hilbert spaces which approximate the dynamics
of a nonlinear PDE. Section 4 introduces Lift & Learn in the PDE setting, which uses
variable transformations to apply Operator Inference to learn quadratic models for
non-quadratic PDEs. Section 5 presents numerical results for two examples: (i) a heat
equation example which demonstrates that the ODE formulation can lead to results
that are inconsistent with the underlying truth, and (ii) a three-dimensional rocket
combustion simulation with over 18 million degrees of freedom that takes 45,000 CPU
hours to run, which demonstrates the potential of the model learning approach to



4 E. QIAN, I.-G. FARCAS, AND K. WILLCOX

yield computational gains for high-dimensional engineering simulations. Conclusions
are discussed in Section 6.

2. Setting and technical foundations. This section introduces the initial/
boundary-value problem for which we seek a reduced model (Subsection 2.1) and
presents the POD-Galerkin approach to model reduction (Subsection 2.2) on which
our method builds.

2.1. Problem formulation. Let Ω be a bounded physical domain in Rd with
Lipschitz continuous boundary ∂Ω, and let [0, Tfinal] ⊂ R be a time interval of interest.
Let s : Ω × [0, Tfinal] → Rd denote the d-dimensional physical state. We denote by
sj : Ω× [0, Tfinal]→ R the j-th element of the state s, so that

s(x, t) =


s1(x, t)
s2(x, t)

...
sd(x, t)

 .(2.1)

For j = 1, 2, . . . , d, let Xj be a separable Hilbert space of real-valued functions of Ω.
We denote by X = X1 × X2 × · · · × Xd the product of the spaces Xj and endow X
with the natural definition of inner product:

〈
s, s′

〉
X =

d∑
j=1

〈
sj , s

′
j

〉
Xj
.(2.2)

Let f : X → X denote a smooth nonlinear mapping between function spaces. We
then consider the (strong form of the) following partial differential equation, written
as an ordinary differential equation in the Hilbert space X :

∂s

∂t
= f(s), s(·, 0) = sinit.(2.3)

We remark that in our numerical examples in Section 5, the X -inner product is the
L2(Ω)-inner product; however, our formulation is not restricted to this choice. In
what follows, we therefore use 〈·, ·, 〉X to denote an abstract choice of inner product
for the Hilbert space X .

2.2. POD-Galerkin model reduction. The POD-Galerkin approach to model
reduction defines a reduced model for an initial/boundary value problem by projecting
the operators of the governing PDE onto a low-dimensional subspace spanned by
the leading modes of a proper orthogonal decomposition of an available set of state
data. Let s(1), s(2), . . . , s(K) ∈ X denote a set of K snapshots of the solution to
(2.3), taken at different times (and more generally, possibly from multiple trajectories
corresponding to e.g., varying initial conditions). The POD subspace of dimension
r, denoted Xr, is the rank-r subspace of X that minimizes the mean square error
between the snapshots and their projections onto Xr. Let C : X → X denote the
empirical covariance operator of the snapshots, defined as

Cψ =

K∑
k=1

〈
ψ, s(k)

〉
X s

(k), ψ ∈ X .(2.4)

Because C is compact, non-negative, and self-adjoint on X , there exists a sequence
of eigenvalues λi and an associated complete orthonormal basis ψi ∈ X satisfying
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Cψi = λiψi, with λi → 0 as i→∞. The leading r eigenfunctions {ψi}ri=1 are a POD
basis of rank r. That is, {ψi}ri=1 satisfy 〈ψi, ψj〉X = δij , and are a solution to

min
{ψi}ri=1∈X

K∑
k=1

∥∥∥∥∥s(k) −
r∑
l=1

〈
s(k), ψl

〉
Xψl

∥∥∥∥∥
2

X

,(2.5)

with attained minimum sum-of-squares objective value
∑K
i=r+1 λi.

The POD-Galerkin approximation to (2.3) approximates the state, s(x, t), in the
span of the POD basis as follows:

spod(x, t) =

r∑
i=1

ŝi(t)ψi(x),(2.6)

and evolves the POD state spod(x, t) within the POD subspace Xr by enforcing
Galerkin orthogonality of the PDE residual to each function in the POD basis:〈

∂spod

∂t
, ψl

〉
X

=
〈
f(spod), ψl

〉
X , l = 1, 2, . . . , r.(2.7)

Substituting (2.6) into (2.7) yields the following system of r ordinary differential
equations (ODEs) for the evolution of ŝ1(t), ŝ2(t), . . . , ŝr(t), the coefficients of the
POD basis functions:

dŝl
dt

=

〈
f

(
r∑
i=1

ŝi(t)ψi(x)

)
, ψl(x)

〉
X

,(2.8a)

ŝl(0) =
〈
sinit(x), ψl(x)

〉
X ,(2.8b)

for l = 1, 2, . . . , r. The initial-value problem in (2.8) is referred to as the reduced
model . However, evaluating the r-dimensional projected dynamics in (2.8a) requires
evaluation of the map f in the infinite-dimensional Hilbert space X before projecting
back down to Xr.

In the special case where f contains only polynomial nonlinearities, the ODEs
which govern the evolution of the POD coefficients (2.8a) have structure that allows
rapid online solution of (2.8). For example, suppose f(s) = a(s) + h(s, s), where
a : X → X is linear and h : X × X → X bilinear. We note that this definition allows
h(s, s) to represent quadratic terms such as s2 or s ∂s∂x . Then, (2.8a) takes the form

dŝl
dt

=

r∑
i=1

ŝi(t)
〈
a
(
ψi(x)

)
, ψl(x)

〉
X +

r∑
i,j=1

ŝi(t)ŝj(t)
〈
h
(
ψi(x), ψj(x)

)
, ψl(x)

〉
X .(2.9)

If we define the reduced state ŝ(t) ∈ Rr by ŝ(t) =
(
ŝ1(t) ŝ2(t) · · · ŝr(t)

)>
, then

(2.9) can be equivalently expressed as

dŝ

dt
= Âŝ+ Ĥ(ŝ⊗ ŝ),(2.10)

where ⊗ denotes the Kronecker product, and Â ∈ Rr×r and Ĥ ∈ Rr×r2 are reduced
linear and quadratic operators. Denote by âl,i the i-th entry of the l-th row of Â

and denote by ĥl,ij the ((i − 1)r + j)-th entry of the l-th row of Ĥ. Then, the

entries of Â and Ĥ are given by âl,i = 〈ψl, a(ψi)〉X , and ĥl,ij = 〈ψl, h(ψi, ψj)〉X , for

l, i, j = 1, 2, . . . , r. Computing the reduced operators Â and Ĥ is considered intrusive
because it requires access to the PDE operators a and h. We propose a non-intrusive
method for learning the reduced operators from data in Section 3.



6 E. QIAN, I.-G. FARCAS, AND K. WILLCOX

3. Operator Inference for PDEs. This section presents our formulation of
the Operator Inference method for learning reduced models for nonlinear PDEs. Sub-
section 3.1 introduces the learning formulation as a linear least-squares problem. Sub-
section 3.2 discusses numerical properties of the method.

3.1. Formulation. Operator Inference non-intrusively learns a reduced model
for (2.3) from state snapshot and time derivative data. That is, suppose that for
each state snapshot s(k), for k = 1, 2, . . . ,K, the corresponding time derivative ṡ(k) =
f(s(k)) is available. We will approximate the PDE state in Xr, the POD subspace of
rank r:

sopinf(x, t) =

r∑
i=1

s̃i(t)ψi(x),(3.1)

where the basis functions ψi are defined as in Subsection 2.2. Then, informed by the
form of the POD-Galerkin reduced model, we fit to the available data a model for the
evolution of sopinf within Xr with the following form:

∂sopinf

∂t
= fr(sopinf(x, t); ãl,i, h̃l,ij)(3.2)

where fr(· ; ãl,i, h̃l,ij) : Xr → Xr has the explicit polynomial form

fr(sopinf(x, t); ãl,i, h̃l,ij) =

r∑
l=1

 r∑
i=1

ãl,is̃i(t) +

r∑
i,j=1

h̃l,ij s̃i(t)s̃j(t)

ψl(x),(3.3)

where s̃i(t) = 〈ψi(x), sopinf(x, t)〉. To learn the parameters ãl,i and h̃l,ij , the snapshot
and time derivative data are projected onto the POD subspace Xr as follows:

s
(k)
proj =

r∑
l=1

〈
s(k), ψl

〉
Xψl, ṡ

(k)
proj =

r∑
l=1

〈
ṡ(k), ψl

〉
Xψl.(3.4)

The parameters ãl,i and h̃l,ij , for l, i, j = 1, 2, . . . , r, are fit by minimizing the following
least-squares objective:

min
ãl,i∈R,h̃l,ij∈R

1

K

K∑
k=1

∥∥∥fr(s(k)
proj; ãl,i, h̃l,ij

)
− ṡ(k)

proj

∥∥∥2

X
.(3.5)

Since Xr is isomorphic to Rr, we can collect the POD coefficients of the state and
time derivative data as follows:

s̃(k) =


〈
s(k), ψ1

〉
X〈

s(k), ψ2

〉
X

...〈
s(k), ψr

〉
X

 , ˙̃s(k) =


〈
ṡ(k), ψ1

〉
X〈

ṡ(k), ψ2

〉
X

...〈
ṡ(k), ψr

〉
X

 ,(3.6)

for k = 1, 2, . . . ,K. Then, (3.5) can be equivalently expressed as

arg min
Ã∈Rr×r,H̃∈Rr×r2

1

K

K∑
k=1

∥∥∥Ãs̃(k) + H̃
(
s̃(k) ⊗ s̃(k)

)
− ˙̃s(k)

∥∥∥2

Rr
,(3.7)
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where ãl,i is the i-th entry of the l-th row of Ã and h̃l,ij is the ((i− 1)r+ j)-th entry

of the l-th row of H̃. The inferred matrix operators Ã and H̃ define a reduced model
of the form

∂s̃

∂t
= Ãs̃+ H̃(s̃⊗ s̃).(3.8)

Due to the inherent symmetry in the quadratic terms h̃l,ij s̃i(t)s̃j(t) and h̃l,jis̃j(t)s̃i(t)
in (3.3) the solution to (3.5) (and therefore to (3.7)) is not unique. We therefore spec-
ify that we seek the solution to (3.5) (equivalently, to (3.7)) that minimizes the sum
of the operator Frobenius norms:∥∥∥Ã∥∥∥2

F
+
∥∥∥H̃∥∥∥2

F
=

r∑
l,i,j=1

∣∣∣h̃l,ij∣∣∣2 +

r∑
l,i=1

|ãl,i|2 .(3.9)

The solution to (3.5)/(3.7) that minimizes (3.9) will yield a symmetric quadratic
operator H̃ in the sense that h̃l,ij = h̃l,ji.

3.2. Numerical considerations. The formulation of Operator Inference as a
linear least-squares problem has several numerical advantages. First, note that the
least-squares problem has the following matrix algebraic formulation:

D

[
Ã>

H̃>

]
= ˙̃S>,(3.10)

where the least-squares data matrix D ∈ Rr×(r+r2) and right-hand side ˙̃S ∈ Rr×K
are given by

D =


(s̃(1))>

(
s̃(1) ⊗ s̃(1)

)>
(s̃(2))>

(
s̃(2) ⊗ s̃(2)

)>
...

...

(s̃(K))>
(
s̃(K) ⊗ s̃(K)

)>

 , ˙̃S> =


( ˙̃s(1))>

( ˙̃s(2))>

...

( ˙̃s(K))>

 .(3.11)

Note that (3.10) in fact defines r independent least-squares problems, one for each
row of the inferred operators Ã and H̃. The rows of the inferred operators are inde-

pendently fit to the r columns of ˙̃S>, containing data for the evolution of each of the
r components of the reduced state s̃. Equation (3.10) can be scalably solved for all r
right-hand sides by standard linear algebra routines, and additionally, standard QR
methods inherently find the norm-minimizing least-squares solution which defines a
symmetric quadratic operator H̃.

Second, since the norm-minimizing solution to (3.10) satisfies h̃l,ij = h̃l,ji, each of
the r independent least-squares problems defined by (3.10) has in fact only r+

(
r
2

)
=

r+ r(r+1)
2 degrees of freedom. Thus, the number K of state and time derivative pairs

in the data set need only satisfy K > r+
(
r
2

)
for (3.10) to admit a unique solution with

symmetric H̃ (assuming linear independence of the K data pairs). Since r is typically
chosen to be small in the context of projection-based model reduction, this data
requirement is small relative to the requirements of many black box machine learning
methods which assume the availability of ‘big data’. Limiting the data requirements
of the method is also our motivation for focusing on the inference of quadratic reduced
operators: while the method can in principle be extended to infer matrix operators
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corresponding to higher-order polynomial terms, the number of degrees of freedom in
the least-squares problem grows exponentially as the polynomial order is increased.

Finally, the sensitivity of the linear least-squares problem to perturbations in
the data is well-understood and can be ameliorated through standard regularization
methods, for example, by adding weights to the Frobenius norm penalty described
in (3.9), as in in the Frobenius norm of the reduced operators:

arg min
Ã∈Rr×r,

H̃∈Rr×r2

(
1

K

K∑
k=1

∥∥∥Ãs̃(k) + H̃
(
s̃(k) ⊗ s̃(k)

)
− ˙̃s(k)

∥∥∥2

Rr
+ γ1

∥∥∥Ã∥∥∥2

F
+ γ2

∥∥∥H̃∥∥∥2

F

)
.

(3.12)

This is equivalent to adding a weighted Euclidean norm penalty for each of the r inde-
pendent least-squares problems whose solutions define rows of Ã and H̃, and yields a
symmetric operator H̃ as described earlier. However, by increasing the regularization
weights, the coefficients in the operators can be driven closer to zero. Explicit reg-
ularization also has the effect of making the Operator Inference problem well-posed
in the case where even our modest data requirement cannot be met. Operator Infer-
ence is therefore especially amenable to the task of learning surrogate models for the
high-dimensional simulations that typically arise in scientific settings, where data are
often limited due to the expense of the high-dimensional simulations.

4. Lift & Learn for PDEs with non-quadratic nonlinearities. The Oper-
ator Inference approach of Section 3, which learns linear and quadratic reduced opera-
tors, can be made applicable to PDEs with more general nonlinear terms through the
use of lifting variable transformations which expose quadratic structure in the PDE.
This section formulates in the PDE setting the Lift & Learn method introduced in [46]
for ODEs. Subsection 4.1 motivates our consideration of quadratic structure-exposing
transformations. Lifting is defined in Subsection 4.2, and the Lift & Learn approach
is presented in Subsection 4.3.

4.1. Motivation. While the Operator Inference method fits linear and qua-
dratic reduced operators to data, the method itself makes no assumption of linear
or quadratic structure in the governing PDE. Operator Inference can, in principle,
be applied to fit a quadratic reduced model to systems governed by PDEs with arbi-
trary nonlinearities. However, when the Operator Inference parametrization reflects
the form of the governing PDE, the Operator Inference model will have the same
form as the POD-Galerkin reduced model. This fact is used in [46] to bound in the
ODE setting the mean square error of the reduced model over the data by the er-
ror due to projection onto the POD subspace. Additionally, the work in [42] uses
this fact to show in the ODE setting that Operator Inference non-intrusively recovers
the intrusive POD-Galerkin reduced model operators asymptotically, while the work
in [41] proves pre-asymptotic recovery guarantees in the ODE setting under certain
conditions. Similar analysis applies to the PDE setting considered here [44]. These
theoretical analyses motivate our consideration of lifting maps which expose quadratic
structure in general nonlinear PDEs.

4.2. Lifting maps. We seek to expose quadratic structure in a general nonlinear
PDE through the use of lifting maps which transform and/or augment the PDE state
with auxiliary variables.

4.2.1. Definition of quadratic lifting. Let Y = Y1 × Y2 × · · · × Yd′ denote a
separable Hilbert space with d′ ≥ d, and inner product 〈·, ·〉Y . Let T : X → Y denote
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a continuous and differentiable nonlinear map. Then, let w(·, t) = T (s(·, t)), and let
J denote the Jacobian of T .

Definition 4.1. Consider the nonlinear PDE given by

∂s

∂t
= f(s).(4.1)

The tuple (T , a, h) is called a quadratic lifting of (4.1), and the d′-dimensional field
w(x, t) is the called the lifted state, if w satisfies

∂w

∂t
=
∂T (s)

∂t
= J (s)

∂s

∂t
= J (s)f(s) = a(T (s)) + h(T (s)) = a(w) + h(w).(4.2)

The map T is called the lifting map.

4.2.2. Lifted initial/boundary-value problem. We can use Definition 4.1 to
reformulate the original nonlinear initial/boundary value problem (2.3). We seek a
lifted solution w : [0, Tfinal]→ Y satisfying:

∂w

∂t
= a(w) + h(w), w(0) = T (sinit).(4.3)

Proposition 4.2. Suppose the tuple (T , a, h) is a quadratic lifting as defined in
Definition 4.1. Then, if s(x, t) solves (2.3), w(x, t) = T (s(x, t)) is a solution of (4.3).

Proof. It is trivial to verify that if s satisfies the original initial condition, then
T (s) satisfies the lifted initial condition. Then, note that because s satisfies (2.3),
∂
∂t T (s) = J (s)f(s). By Definition 4.1, J (s)f(s) = a(T (s)) + h(T (s)), so w satisfies
(4.3).

4.2.3. An example quadratic lifting. Consider the nonlinear reaction-diffusion
equation with cubic reaction term:

∂s

∂t
= f(s) =

∂2s

∂x2
− s3.(4.4)

Let T be defined as

T : s 7→
(
s
s2

)
≡
(
w1

w2

)
= w.(4.5)

Then, the evolution of w satisfies ∂w
∂t = a(w) + h(w,w), where a and h are defined as

a(w) =

(
∂2w1

∂x2

0

)
, h(w,w′) =

(
−w1w

′
2

2w1
∂2w′1
∂x2 − 2w2w

′
2

)
.(4.6)

Proposition 4.3. The tuple (T , a, h) given by (4.5) and (4.6) is a quadratic
lifting of (4.4).

Proof. Note that the Jacobian of T is given by J (s) =

(
1
2s

)
. Thus,

∂w

∂t
= J (s)f(s) =

(
1
2s

)(
∂2s

∂x2
− s3

)
=

(
∂2s
∂x2 − s3

2s ∂
2s
∂x2 − 2s4

)

=

(
∂2w1

∂x2 − w1w2

2w1
∂2w1

∂x2 − 2(w2)2

)
= a(w) + h(w,w),

(4.7)

for a, h defined in (4.6), so the tuple (T , a, h) satisfies Definition 4.1.
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4.2.4. Discussion. Lifting maps allow many systems with general nonlinearities
to be reformulated with only polynomial nonlinearities, and systems with higher-order
polynomial nonlinearities to be reformulated with only quadratic nonlinearities [18].
While there are no universal guarantees of the existence of a lifting, liftings have
been derived for many nonlinear PDEs. For example, the lifting of the cubic reaction-
diffusion PDE in Subsection 4.2.3 can be extended to lift reaction-diffusion PDEs with
higher-order polynomial source terms to quadratic form with additional auxiliary
variables [44]. For fluids problems, both the compressible Euler equations and the
Navier-Stokes equations admit a quadratic formulation based on the specific volume
representation of the fluid state variables [4, 46]. Quadratic liftings have also been
derived for the FitzHugh-Nagumo neuron activation model [27] and the Chafee-Infante
equation [6]. In the numerical experiments in Section 5, we will consider a partial
lifting (in which most—but not all—terms of the lifted PDEs are quadratic in the
lifted state) of the PDEs governing a three-dimensional rocket combustion simulation.
While we wish to emphasize that the non-intrusive nature of the Operator Inference
method allows the flexibility to learn models for PDEs with arbitrary non-quadratic
nonlinearities, the identification of even a partial quadratic lifting of the governing
PDE can improve the ability of the inferred quadratic operators to model the system
dynamics in the lifted variables.

4.3. Lift & Learn for PDEs. Once a lifting map has been identified for a
nonlinear PDE, the Lift & Learn approach takes state snapshot {sk}Kk=1 and time
derivative data {ṡk}Kk=1 in the original nonlinear variable representation and applies
the lifting map to each snapshot and time derivative:

wk = T (sk), ẇk = J (sk)ṡk, k = 1, 2, . . . ,K.(4.8)

The lifted snapshots {wk}Kk=1 are used to define a POD basis of rank r in the lifted
variables. We then apply the Operator Inference approach of Section 3 to the lifted
data to obtain a lifted reduced model.

We emphasize that it is the non-intrusive nature of the Operator Inference method
that enables the practical development of reduced models in lifted variables. While
our knowledge of the lifted governing equations enables us to write down expressions
for the projection-based reduced lifted operators, computing these reduced operators
in practice requires numerical evaluation of the a(·) and h(·, ·) forms, which are gen-
erally not available: even in settings where code for the original governing equations
is accessible, code for the lifted operators is generally not available. The Operator In-
ference approach allows us to learn reduced lifted operators in such practical settings.

5. Numerical examples. We now present numerical experiments from two ex-
amples: the first example, presented in Subsection 5.1, is a one-dimensional heat
equation, which demonstrates that choosing an inner product for implementation that
is inconsistent with the underlying truth leads to POD basis functions inconsistent
with the underlying function space as well as learned operators that are sub-optimal
with respect to the underlying function space norm. The second example is a three-
dimensional simulation of a model rocket combustor that demonstrates the potential
of our learning approach to scale to complex high-dimensional engineering problems.
Subsection 5.2 presents the nonlinear governing equations of the combustion model,
and Subsection 5.3 presents the transformation of the governing equations to approx-
imately quadratic form. In Subsection 5.4, we introduce the specific test problem we
consider and the learning task. Subsection 5.5 details the reduced model learning for-
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mulation. Finally, Subsection 5.6 presents and discusses the prediction performance
of our learned models.

5.1. One-dimensional heat equation. We consider the heat equation,

∂u

∂t
=
∂2u

∂x2
,(5.1)

on the unit spatial domain x ∈ (0, 1) with homogeneous Dirichlet boundary condi-
tions and random Gaussian initial conditions as described below. The heat equation
is discretized using a first-order explicit scheme in time and a second-order central
difference scheme in space. The spatial discretization uses a non-uniform mesh: the
grid spacing in (0, 0.3) is ∆x1 = 0.05, the spacing in (0.3, 0.7) is ∆x2 = 0.01, and the
spacing in (0.7, 1) is ∆x3 = 0.1. This non-uniform spatial discretization was chosen
to illustrate the effect of using different norms (Euclidean vs. L2(Ω)) in the Operator
Inference formulation. Initial conditions u0(x) are drawn randomly as follows: let
L > 1 and let {ξl}Ll=1 be independently and identically distributed according to a unit
normal distribution. Then, a single random initial condition is given by:

u0(x) =
√

2

L∑
l=1

ξl(lπ)−
3
2 sin(lπx).(5.2)

Initial conditions drawn randomly according to the above correspond to random draws
from the Gaussian random fieldN (0, CL), where CL is the projection of the covariance

kernel C =
(
∂2

∂x2

)− 3
2

onto its L leading principal components. The true principal com-

ponents of this covariance kernel are the sin functions
√

2 sin(lπx), for l = 1, 2, . . . , L.
Example initial conditions on our non-uniform mesh are shown in Figure 1.

0 0.2 0.4 0.6 0.8 1
-0.2

-0.1

0

0.1

0.2

0.3

0.4

Fig. 1. Example initial conditions drawn randomly according to (5.2). Line markers show
non-uniform grid spacing.

We draw 1,000 initial conditions randomly as described with L = 60 and evolve
the discretized heat equation from t = 0 to t = 0.01 with time step ∆t = 10−4.
The discretized state is saved at every tenth time step. Trajectories from the first
500 initial conditions are used as training data for Operator Inference and the latter
500 trajectories are reserved for testing. We compare results from the function space
formulation presented in this work with results from the ODE formulation in earlier
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works. For the function space formulation, we use a discrete inner product that
approximates the L2([0, 1]) inner product using the trapezoidal rule, whereas the
ODE formulation uses the Euclidean inner product.

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

Fig. 2. Leading POD basis functions of the heat equation data. Left: analytical principal
components. Middle: empirical POD modes in the Euclidean inner product. Right: empirical POD
modes in the L2([0, 1]) inner product.

Figure 2 compares the empirical POD modes of the data using the L2([0, 1])-inner
product and the Euclidean inner product with the analytical principal components of
the underlying covariance kernel. We note that the use of the L2([0, 1])-inner product
in the function space formulation leads to empirical POD modes that are consistent
with the underlying infinite-dimensional truth, whereas the Euclidean inner product
used in the ODE setting leads to empirical POD modes that are inconsistent with the
underlying distribution.

0 5 10

10-2

10-1

100

0 5 10

10-2

10-1

100

Fig. 3. Training and test errors for Operator Inference learned models using function space
formulation and Euclidean formulation.

We use both the function space Operator Inference method and the Euclidean
space Operator Inference method to learn reduced models of sizes r = 1, 2, . . . , 10 (the
original size of the non-uniform mesh is n = 50). These learned reduced models are
then used to integrate from the reduced initial conditions in time. Figure 3 compares
the mean relative L2([0, 1])-norm errors of the predictions from each learned model.
For this heat equation example, there is a clear improvement in prediction accuracy
with respect to the underlying function space norm when the function space norm is
used in Operator Inference.

Code for this example is available at https://github.com/elizqian/operator-
inference, which also contains examples of Operator Inference applied to other
problems. Demonstration code for the Lift & Learn approach can be found at
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https://github.com/elizqian/transform-and-learn.

5.2. Combustion problem: original governing PDEs. We now demon-
strate the Operator Inference approach on a large-scale problem by learning a re-
duced model for a three-dimensional simulation of the Continuously Variable Reso-
nance Combustor (CVRC), an experiment at Purdue University that has been ex-
tensively studied experimentally and computationally. In particular, several recent
works consider learning surrogate models for quasi-one dimensional [55, 45] and two-
dimensional [50, 36] versions of its governing equations. The governing PDEs for
the CVRC test problem that we consider are the three-dimensional compressible
Navier-Stokes equations in conservative form with a flamelet/progress variable chem-
ical model [23, 43]. In this chemical model, the chemistry is parametrized by two
variables, the mixture mean, denoted Zm, and the reaction progress variable, denoted
C. Thus, there are d = 7 nonlinear state variables:

s =
(
ρ ρu1 ρu2 ρu3 ρe ρZm ρC

)>
,(5.3)

where ρ is the density, u1, u2, and u3 are the velocities in the three spatial directions,
and e is the specific energy. Together, the variables Zm and C specify a flamelet
manifold for the chemical species concentrations and reaction source term based on
looking up values from a pre-computed table. The governing PDE is given by

∂s

∂t
+∇ ·

(
F (s)− Fv(s)

)
= g(s),(5.4)

where ∇ =
(

∂
∂x1

∂
∂x2

∂
∂x3

)>
, F (s) is the inviscid flux, given by

F (s) =



ρu1

ρu2
1 + p

ρu1u2

ρu1u3

ρu1h
0

ρu1Zm
ρu1C


x̂1 +



ρu2

ρu1u2

ρu2
2 + p

ρu2u3

ρu2h
0

ρu2Zm
ρu2C


x̂2 +



ρu3

ρu1u3

ρu2u3

ρu2
3 + p

ρu3h
0

ρu3Zm
ρu3C


x̂3,(5.5)

Fv(s) is the viscous flux, given by

Fv(s) =



0
τ11

τ21

τ31

β1

ρD ∂Zm

∂x1

ρD ∂C
∂x1


x̂1 +



0
τ12

τ22

τ32

β2

ρD ∂Zm

∂x2

ρD ∂C
∂x2


x̂2 +



0
τ13

τ23

τ33

β3

ρD ∂Zm

∂x3

ρD ∂C
∂x3


x̂3,(5.6)

where βi =
∑3
j=1 ujτji + κ ∂T∂xi

− ρ
∑nsp

l=1D
∂Yl

∂xi
hl, for i = 1, 2, 3, and g is the chemical

source term, given by g(s) =
(
0 0 0 0 0 0 ω̇C

)>
. The total enthalpy h0 satis-

fies ρe = ρh0−p. The viscous shear stresses are given by τij = µ
(
∂ui

∂xi
+

∂uj

∂xj
− 2

3
∂um

∂xm
δij

)
,

where the three directions are summed over in the term indexed by m.
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The temperature T is computed under the ideal gas assumption, T = p
Rρ , where

R = R
Wmol

is the gas constant, R = 8.314 kJ
K·kmol is the universal gas constant, and

Wmol =
(∑nsp

l=1
Yl

Wl

)
is the molecular weight of the species mixture, where Yl are

species mass fractions of the nsp individual chemical species andWl are their molecular
weights. The mass diffusivity D is assumed to be equal to thermal diffusivity α under
the unit Lewis number assumption, D = α = κ

ρcp
, where κ is the thermal conductivity,

and cp = ∂h
∂T is the specific heat capacity, defined to be the derivative of the enthalpy h

with respect to the temperature T . The enthalpy h =
∑
l hlYl is a convex combination

of the species enthalpies, weighted by the species mass fractions, where hl denotes the
enthalpy of the l-th chemical species. The enthalpy of the l-th species has the following
dependence on temperature:

hl(T )

R/Wl
=



−al,1,1
T

+ al,1,2 lnT + al,1,3T +
al,1,4

2
T 2

+
al,1,5

3
T 3 +

al,1,6
4

T 4 +
al,1,7

5
T 5 + al,1,8

, 200K ≤ T ≤ 1000K,

−al,2,1
T

+ al,2,2 lnT + al,2,3T +
al,2,4

2
T 2

+
al,2,5

3
T 3 +

al,2,6
4

T 4 +
al,2,7

5
T 5 + al,2,8

, 1000K ≤ T ≤ 6000K,

(5.7)

where the coefficients al,i,j are given for each species l. The species mass fractions
are a function of the flamelet variables, Yl = Yl(Zm, C), where the exact relationship
is defined by interpolating between values in a pre-computed table. The source term
for the progress variable equation is also defined by a pre-computed table based on
the flamelet variables, ω̇C = ω̇C(Zm, C).

Previous work on reduced modeling for a different, two-dimensional model of the
CVRC has shown that reduced models in the conservative state variables can suffer
from a lack of robustness and stability [22]. In order to apply the Lift & Learn
formulation of Section 4 to this problem, we seek a partially lifted state variable
representation, which we describe in the next section.

5.3. Combustion problem: lifted governing PDEs. Due to the many non-
linearities in the governing equations that are non-quadratic in the conservative state
variables, we seek a variable transformation that exposes quadratic structure in these
nonlinearities in order to learn quadratic reduced operators. For this complex prob-
lem, we use a partial lifting, i.e., a variable transformation that transforms many—
but not all—of the nonlinearities in governing PDEs into quadratic nonlinearities.
Inspired by the quadratic representation of the compressible Euler equations in the
specific volume variables [46], we transform the flow variables in the CVRC governing
equations from their conservative representation to their specific volume representa-
tion, and retain the flamelet variables in their conservative form. Additionally, we
add the fluid temperature T to the lifted state because it is a key quantity of interest
and we wish to model it directly without recourse to look-up tables. Thus, the lifted
variable representation with d′ = 8 is given by

w =
(
ζ u1 u2 u3 p ρZm ρC T

)>
,(5.8)

where ζ = 1
ρ . When the specific heat capacity cp is a constant, the governing equations

in the lifted variables (5.8) contain mostly quadratic nonlinear terms. These governing
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equations are derived in Section SM2 and are given by:

∂ζ

∂t
= −∇ζ · u+ ζ(∇ · u),(5.9a)

∂u1

∂t
= −ζ ∂p

∂x1

− u · ∇u1 + ζ

(
∂τ11

∂x1

+
∂τ12

∂x2

+
∂τ13

∂x3

)
,(5.9b)

∂u2

∂t
= −ζ ∂p

∂x2

− u · ∇u2 + ζ

(
∂τ21

∂x1

+
∂τ22

∂x2

+
∂τ23

∂x3

)
,(5.9c)

∂u3

∂t
= −ζ ∂p

∂x3

− u · ∇u3 + ζ

(
∂τ31

∂x1

+
∂τ32

∂x2

+
∂τ33

∂x3

)
,(5.9d)

∂p

∂t
= −γp(∇ · u)− (u · ∇p)− u1

(
∂τ11

∂x1

+
∂τ12

∂x2

+
∂τ13

∂x3

)
· · ·(5.9e)

− u2

(
∂τ12

∂x1

+
∂τ22

∂x2

+
∂τ23

∂x3

)
− u3

(
∂τ13

∂x1

+
∂τ23

∂x2

+
∂τ33

∂x3

)
· · ·

+
∂

∂x1

(u1τ11 + u2τ12 + u3τ13) +
∂

∂x2

(u1τ21 + u2τ22 + u3τ23) · · ·

+
∂

∂x3

(u1τ31 + u2τ32 + u3τ33) +
∂q1

∂x1

+
∂q2

∂x2

+
∂q3

∂x3

,

∂ρZm
∂t

= −∂u1(ρZm)

∂x1

− ∂u2(ρZm)

∂x2

− ∂u3(ρZm)

∂x3

+
κ

cp
∇2Zm(5.9f)

∂ρC

∂t
= −∂u1(ρC)

∂x1

− ∂u2(ρC)

∂x2

− ∂u3(ρC)

∂x3

+
κ

cp
∇2C + ω̇C(5.9g)

∂T

∂t
= p

∂ζ

∂t
+ ζ

∂p

∂t
.(5.9h)

Note that (5.9a)–(5.9d) contain only quadratic dependencies in the lifted variables
since the stresses τij are linear in the velocity components. In (5.9e), only the last
three terms contain non-quadratic linearities, due to the dependence of the heat fluxes
on the unmodeled species mass fractions: qi = − κ

R
∂pζ
∂xi

+ κ
cp

∑nsp

l=1
∂Yl

∂xi
. In (5.9f), the

first three terms are quadratic in the velocity components and the variable ρZm, while
we note for the last three terms that the product rule gives ∂ρZm

∂x = ρ∂Zm

∂x + Zm
∂ρ
∂x ,

which gives the following identity for the x-derivative of Zm (and similar identities
for y and z):

∂Zm
∂x

= ζ
∂ρZm
∂x

− Zmζ
∂ρ

∂x
= ζ

∂ρZm
∂x

+ ρZm
∂ζ

∂x
.(5.10)

Since the first spatial derivatives of Zm are quadratic in the variable ρZm and the
specific volume ζ, the second spatial derivatives must also be quadratic in these vari-
ables (due to linearity of the derivative operator), so (5.9f) is quadratic in the lifted
variables. A similar argument shows that (5.9g) is quadratic in the velocity compo-
nents, ζ, and ρC, except for the reaction source term ω̇C , which is non-quadratic due
its dependence on the flamelet look-up table. Finally, (5.9h) is approximately cubic in
the specific volume variables because ∂p

∂t and ∂ζ
∂t are approximately quadratic in the

specific volume variables. Because the dynamics in the lifted variables are not exactly
quadratic, we will employ in our numerical experiments a regularization penalty to
combat errors due to the misspecification of the learned model.
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5.4. CVRC test problem and learning task. The CVRC geometry and op-
erating conditions are described in Subsection 5.4.1, and the learning task is described
in Subsection 5.4.2.

5.4.1. Geometry and operating conditions. The CVRC geometry for our
problem is a truncated segment of the full combustor studied in [20], and we seek to
model the dynamics of the truncated domain under the same inlet operating conditions
as in that work. The combustor is depicted in Figure 4 and is cylindrically symmetric
around the x1-axis. The length of the entire combustor is approximately 28 cm in
the axial x1-direction. The dynamics are driven by forcing in the form of a 10%
fluctuation in the back pressure pb(t) at the combustor outlet at the right boundary
of the domain:

pb(t) = pb,0 + 0.1 pb,0 sin(2πν t),(5.11)

where the forcing frequency is ν = 2000 Hz and the baseline back pressure is pb,0 =
1.1 MPa.

Fig. 4. CVRC geometry viewed from negative y-axis and locations of pressure probes. Probe 1
has coordinates (0, 0, zmax) and Probe 2 (xmax, 0, 0).

5.4.2. Learning task and available data. Simulation data from solving the
original nonlinear equations (5.4) on a mesh with n = 2, 637, 771 cells is available
at 5000 simulation timesteps spaced ∆t = 10−6 seconds apart, corresponding to 5
milliseconds of simulation time between t = 15 ms and t = 20 ms. Although the
conservative formulation (5.4) is used to discretize the governing equations, yielding

n · d = 2, 637, 771 · 7 = 18, 464, 397

degrees of freedom in the simulation, snapshots are saved for each of the following
variables: ρ, u1, u2, u3, p, Zm, C, T , and enthalpy h. The runtime to compute all 5
milliseconds of simulation time was over 45,000 CPU hours.

The learning task is to use data from the first K = 3,000 simulation time steps,
from t = 15 ms to t = 17.999 ms to compute the POD basis and to train a Lift
& Learn model. Loading these 3,000 snapshots requires 471 GB of RAM, which
makes the processing of this data set memory intensive. For this example, the PDE
formulation leads us to use the cell volumes of the simulation to approximate POD
basis functions in the L2(Ω)-norm. We will then use the resultant learned model to
predict from t = 15 ms to t = 20 ms: the prediction task is thus to reconstruct the
dynamics of the training period and to predict dynamics two milliseconds beyond the
training period. We will then assess the accuracy of the learned model predictions in
pressure, temperature, and the flamelet manifold parameters.
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We use the available simulation data to compute the learning variables in (5.8) for
each of the first 3,000 time steps. Because the lifted variables have magnitudes that
differ by up to seven orders of the magnitude—pressure has values in MPa (O(106))
and ρC and ρZm are generally O(10−1)−O(1), we center and scale the data in each
lifted variable before computing a POD basis. The snapshots in each lifted variable
are first centered around the mean field (over the 3,000 training timesteps) in that
variable, and then scaled by the maximum absolute value of that variable so that the
values for each lifted variable do not exceed the range [−1, 1].

The POD basis is computed in the L2(Ω) norm by weighting the discrete norm
by the cell volumes of the simulation data. Singular values of the weighted data are
shown in the left half of Figure 5. Let ηr denote the relative fraction of energy retained
by the r-dimensional POD basis,

ηr = 1−
3,000∑
i=r+1

σ2
i

/ 3,000∑
i=1

σ2
i ,(5.12)

where σi is the i-th singular value of the data matrix. This retained energy is shown
on the right in Figure 5.

Fig. 5. Left: Singular values of scaled and centered lifted data, normalized by the sum of all
singular values. Right: Energy retained by POD bases for the lifted CVRC data.

Figure 5 highlights the retained energy at r = 50, r = 75, and r = 100, which are
the basis sizes for which we will fit a reduced model: we discuss the choice of these basis
sizes in Subsection 5.5.2. Due to the complexity of the dynamics of this transport-
dominated reacting flow, the decay of the singular values of the data is relatively
slow: even with 100 basis functions, only 95% of the POD energy is retained. This is
lower than what is considered ideal for traditional projection-based reduced modeling
(usually 99.9% or above). However, for our 3,000 available snapshots, the size of
the model that can be uniquely specified by the available data limits the sizes of the
models we learn.

5.5. Lift & Learn Operator Inference formulation. We now present the
regularized operator inference problem used to learn a reduced model for prediction
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of the CVRC dynamics. Subsection 5.5.1 describes the form of the model we learn.
Subsection 5.5.2 describes the regularization strategy employed. For this problem,
tuning of the regularization parameters is critical to the performance of the method,
leading to similar results when the L2(Ω) and Euclidean norms are used. The principal
purpose of this example is to demonstrate the scalability of our method, so we present
results solely for the L2(Ω)-norm approach that is the focus of this work.

5.5.1. Parametrization of the learned model. Because most of the terms
of the governing equations in the learning variables are linear or quadratic in the
learning variables, constant, or linear in the forcing, we will prescribe the following
model form for the reduced model to be learned:

∂w̃

∂t
= Ãw̃ + H̃(w̃ ⊗ w̃) + G̃+ B̃pν(t),(5.13)

where the reduced lifted state w̃ has dimension r, and the reduced operator dimensions
are given by Ã ∈ Rr×r, H̃ ∈ Rr×r2 , G̃ ∈ Rr, and B̃ ∈ Rr, and the input is defined by
pν(t) = pb(t)− pb,0.

5.5.2. Regularized operator inference minimization. As discussed in Sub-
section 5.3, the true governing equations in the learning variables contain non-quadratic
terms that are not reflected in (5.13). To reduce the tendency to overfit to the un-
modeled dynamics, we regularize the Operator Inference problem as follows:

arg min
Ã,H̃,B̃,G̃

(
1

K

K∑
k=1

∥∥∥Ãw̃k + H̃(w̃k ⊗ w̃k) + G̃+ B̃pν(tk)− ˙̃wk

∥∥∥2

2
· · ·

+ γ1

(
‖Ã‖2F + ‖B̃‖2F + ‖G̃‖2F

)
+ γ2‖H̃‖2F

)
,

(5.14)

where γ1 is the weighting of the regularization penalty on the linear, constant, and
input operators, and γ2 is the regularization penalty on the quadratic operator. We
weight the quadratic operator separately because the quadratic terms have a different
scaling than the linear terms. The regularization weights γ1 and γ2 are tuned using a
procedure that minimizes the model prediction error over the training period subject
to a growth constraint (see Section SM1 for additional information) [36].

Note that even after adding regularization to the minimization in (5.14), the
minimization still decomposes into r independent least-squares problems, one for each
row of the reduced operators. Once the structural redundancy of the Kronecker
product w̃ ⊗ w̃ is accounted for, each of these r independent least-squares problems

has r + r(r+1)
2 + 2 degrees of freedom. The number of degrees of freedom of each of

the independent least-squares problems for each of the model sizes we learn, and the
regularization weights chosen by our tuning procedure, are tabulated in Table 1.

Table 1 shows that the three model sizes that we learn represent three different
regimes of the least squares Operator Inference problem. Recall that we have K =
3,000 training snapshots available to us. The r = 50 model with 1,327 degrees of
freedom represents the overdetermined regime, where there are many more data than
degrees of freedom. The r = 100 model with 5,152 degrees of freedom represents the
underdetermined regime, where there are many more degrees of freedom than data.
Finally, the r = 75 model with 2,927 degrees of freedom is the largest model of the
form (5.13) that can be fully specified by the 3,000 data. In our numerical results,
we will compare the performance of the three learned models representing these three
regimes.
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Model size r operator inference degrees of freedom γ1 γ2

50 1327 6.95e4 1.62e12
75 2927 3.36e4 3.79e11
100 5152 2.07e2 1.83e11

Table 1
Operator inference specifications for CVRC numerical experiments. The number of degrees

of freedom in operator inference is the size of each of the r independent least-squares problems,

r+
r(r+1)

2
+ 2. Note that the available data set can only fully specify up to 3,000 degrees of freedom

without regularization. The tabulated γ1 and γ2 values are those chosen by the regularization tuning
procedure described in Subsection 5.5.

5.6. Lift & Learn model performance. We now examine the prediction per-
formance of the learned reduced models of sizes r ∈ {50, 75, 100} in the key quantities
of interest — the pressure, temperature, and flamelet manifold parameters. Subsec-
tion 5.6.1 describes the metrics we use to assess predictions in the quantites of interest
and Subsection 5.6.2 presents and discusses our results.

5.6.1. Performance metrics. The pressure, temperature, and flamelet mani-
fold parameters are the primary quantities of interest, due to the role of pressure in
combustion instability, the temperature limits of materials, and the full specification
of the chemical model by the flamelet manifold parameters. To evaluate the Lift &
Learn pressure predictions, we will measure the predicted pressure at two point probes,
whose locations are shown in Figure 4. Because acoustics are global, these pointwise
error measures are accurate reflections of the overall error in pressure prediction.

In contrast, the dynamics in the temperature and flamelet manifold parameters
are transport-dominated, so pointwise error measures can be misleading. To assess
the performance of the learned model in these variables, we instead consider the
cross-correlation between the reference predicted field and the field predicted by the
learned model at time t. This measure is informed by the use of cross-correlation in
particle image velocimetry analysis of fluid flows, where the cross-correlation is used
as a measure of similarity between image frames at different times [24]. Here, we will
use the cross-correlation between the fields predicted by different models at the same
time as a measure of the similarity between predictions.

That is, let Tref(t) ∈ Rn and TL&L(t) ∈ Rn denote the reference and learned
model discrete temperature predictions, respectively, and define

RT (t) =

∑n
i=1(Tref

i (t)− µref
T (t))(TL&L

i (t)− µL&L
T (t))

σref
T σL&L

T

,(5.15)

where µref
T (t) ∈ R and µL&L

T (t) ∈ R are the mean values, respectively, and σref
T (t) ∈ R

and σL&L
T (t) ∈ R are the standard deviations, respectively, of Tref(t) ∈ Rn and

TL&L(t) ∈ Rn, respectively. This measure RT (t) is the Pearson correlation coefficient
between the reference and learned model predictions of temperature at time t. We
define the correlation measures RZm

(t) and RC(t) in a similar way. By definition,
the correlations R∗(t) take on values in the range [−1, 1], where R∗(t) = 1 indicates
perfect correlation and R∗(t) = −1 perfect anti-correlation, with R∗(t) = 0 indicating
no correlation.

5.6.2. Results and discussion. The regularized operator inference minimiza-
tion in (5.14) is solved for r = 50, r = 75, and r = 100, with the regularization
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weights given in Table 1. The inferred reduced operators define a model of the form
(5.13). This inferred model is then numerically integrated using a second-order ex-
plicit Runge-Kutta time-stepping scheme to predict the combustor dynamics from the
initial condition at t = 15 ms.

Figures 6 to 9 give an overview of the learned model prediction performance
for the primary quantities of interest. Figure 6 shows the pressure measured at the
two probes, while Table 2 reports L2(Ω)-errors in the predicted pressure fields. Fig-
ures 7 to 9 show cross-sections of the temperature, flamelet mixture mean, and reac-
tion progress fields taken at the x2 = 0 plane of the combustor at each millisecond
mark. Field reconstruction is done by multiplying the POD basis vectors by their
reduced state coefficients and post-processing the reconstructed states to eliminate
non-physical values, i.e., temperatures below 0 were set to 0 and flamelet model
parameters outside the range [0, 1] were set to the nearest value in the range. Non-
physical predictions are not unusual in projection-based reduced modeling, since the
reduced models evolve coefficients of basis functions rather than the physical state
variables themselves. Formulations that embed variable range constraints within the
Operator Inference framework are a possible direction of future work, following the
ideas proposed in [22].

Fig. 6. Pressure predictions at probe locations. Probe 1 has coordinates (0, 0, x3,max) and Probe
2 has coordinates (x1,max, 0, 0). Training period ends at t = 18 ms.

Pressure error
Model size r Reconstruction Prediction

50 0.015 0.032
75 0.007 0.018
100 0.008 0.017

Table 2
Mean relative L2(Ω)-errors in pressure predictions of the Operator Inference learned models

during the t ∈ [15, 18) reconstruction period and the t ∈ [18, 20] prediction period.

The predicted pressure fields of all three learned reduced models demonstrate
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Fig. 7. Temperature (Kelvin) field predictions at x2 = 0 plane

Fig. 8. Flamelet mixture mean (Zm) field predictions at x2 = 0 plane

good agreement with the reference data of the original high-dimensional simulation,
with reconstruction errors around 1-2% and generalization errors around 2-3% in the
prediction phase (Table 2). In the pressure traces in Figure 6, we observe excellent
agreement between the learned reduced models and the original simulation in the dom-
inant frequency and amplitude of the pressure oscillations during the reconstruction
phase, with agreement in amplitude deteriorating slightly in the prediction beyond
18ms.

The cross sections of the temperature and combustion parameter fields in Fig-
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Fig. 9. Reaction progress variable (C) field predictions at x2 = 0 plane

ures 7 to 9 qualitatively illustrate the tradeoff inherent in choosing a basis size r for
learned a reduced model. The largest r = 100 case is the most expressive, which can
be seen by comparing the initial t = 15 ms snapshots which simply project the full
reference data onto the basis. The t = 15 ms snapshots for the r = 100 case capture
the most structure of the fields, including smaller-scale structures. The r = 75 case
captures fewer smaller-scale structure and the r = 50 case smears out all but the
coarser flow features. However, due to the limited available data, the r = 100 model
cannot be fully specified by the data, and the dynamics of the learned model that
results from regularization lead to snapshots at later times that exhibit poorer agree-
ment with the reference simulation (compare for example the t = 16 ms temperature
snapshots between r = 100 and r = 75). Another drawback of the underspecified
r = 100 learning problem is that the resulting model predicts several regions where
the temperature and flamelet model parameters reach their extremal values, espe-
cially at the final t = 20 ms (note regions of temperature at 0 K and 3,000 K, well
outside the range of the reference). These extreme predictions in the r = 100 case
illustrate the pitfalls of attempting to fit a model to less data than there are degrees
of freedom in the model. While the r = 50 and r = 75 models exhibit some extreme
predictions, these extreme regions are more limited, illustrating the importance of
choosing a model size r for which the data allow the learning problem to be fully
specified. Building multiple localized Operator Inference reduced models instead of
one global reduced model is one way to address this issue, since the dimension of each
local reduced model can be kept small [14].

The trade-off between the expressivity of larger r and ability at smaller r to
learn accurate dynamics from limited data is illustrated quantitatively in Figure 10,
which plots the cross-correlation metric defined in Subsection 5.6.1 for temperature
and the flamelet model parameters. These correlation measures show that while all
three learned reduced models yield field predictions that are well-correlated with the
reference simulation data during the t < 18 ms reconstruction regime, correlation
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deteriorates sharply for the t > 18 ms prediction phase for the larger two model sizes,
r = 75 and r = 100. This quantitative measure illustrates clearly that the r = 50
model achieves the best generalization performance in the sense that its reconstruction
and prediction correlations are similar, avoiding the sharp decline at the transition to
prediction of the other models. The poorer generalization performance of the larger
two models is likely the result of the both limited data and model misspecification –
as described in Subsection 5.5.1, the lifted governing equations of the CVRC contain
mostly linear and quadratic terms that are reflected in the form of the reduced model,
but not all terms have this form. The Operator Inference learning problem for r =
{75, 100} may be more sensitive to non-quadratic dynamics reflected in the data,
leading to poor generalization performance. In contrast, in the r = 50 case there is
sufficient data to avoid overfitting in the more limited number of degrees of freedom.

Fig. 10. Cross-correlation between learned model prediction and reference data for temperature,
flamelet mixture mean, and reaction progress variable. Training data ends at t = 18 ms.

Overall, while the learned reduced models fail to capture some aspects of the
CVRC dynamics, including some of the high-frequency pressure oscillations and smaller-
scale structures of the flow fields, when there is sufficient data for the model size, the
learned model can accurately predict large-scale structures (as measured by correla-
tion coefficients above 0.8) and the dominant amplitude and frequency of the pressure
oscillations. Our learned models achieve this prediction ability with a dimension re-
duction of five orders of magnitude relative to that of the reference simulation. This
allows the learned reduced model to simulate 5 milliseconds of simulation time in a
matter of a few seconds of run time, while the high-dimensional simulation that gener-
ated the data set required approximately 45,000 CPU hours to generate. This dimen-
sion reduction is made possible by our physics-informed model learning framework,
which transforms the governing equations to mostly-quadratic form, fits a quadratic
reduced model, and regularizes against the model’s misspecification of the remaining
non-quadratic terms.

6. Conclusions. We have presented Operator Inference for PDEs, a new formu-
lation for scientific machine learning which learns reduced models for systems governed
by nonlinear PDEs by parametrizing the model learning problem by low-dimensional
polynomial operators which reflect the known polynomial structure of the govern-
ing PDE. Operator Inference can be applied to systems governed by more general
nonlinear PDEs through Lift & Learn, which uses lifting transformations to expose
quadratic structure in the governing PDE. By building this structure due to the gov-
erning physics into the learned model representation, our scientific machine learning
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method reduces the need for massive training data sets when compared to generic
representations such as neural networks.

Our Operator Inference formulation generalizes the Operator Inference method
previously developed in [42] for systems of ODEs, allowing the learned model pa-
rametrization to be determined based solely on the form of the underlying governing
physics rather than on the form of the discretization of the PDE. The formulation in
the PDE setting learns a mapping between low-dimensional subspaces of the underly-
ing infinite-dimensional Hilbert space, allowing more general variable transformations
between Hilbert spaces to be considered, in contrast to [46] which restricts the class
of acceptable variable transformations to pointwise transformations. A numerical
demonstration for a heat equation problem on a non-uniform grid illustrates that the
formulation in the PDE setting yields an algorithm that finds basis functions con-
sistent with the underlying continuous truth and can lead to a lower error than an
ODE-based formulation.

We demonstrate the potential of the proposed method to scale to problems of
high-dimension by learning reduced operators for a three-dimensional combustion
simulation with over 18 million degrees of freedom that requires 45,000 CPU hours
to simulate five milliseconds of simulation time. The resulting reduced models accu-
rately predict the amplitude and frequency of pressure oscillations, a key factor in the
development of combustion instabilities, with just 50 reduced states, a five order of
magnitude dimension reduction. The reduced model can simulate five milliseconds of
simulation time in just a few seconds, a speed-up which makes the learned reduced
model suitable for use in the many-query computations which support engineering
decision making.
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[38] I. Mezić, Analysis of fluid flows via spectral properties of the Koopman operator,
Annual Review of Fluid Mechanics, 45 (2013), pp. 357–378.

[39] N. H. Nelsen and A. M. Stuart, The random feature model for input-output
maps between Banach spaces, SIAM Journal on Scientific Computing, to appear,
(2021).

[40] N. Nguyen, A. Patera, and J. Peraire, A best points interpolation method
for efficient approximation of parametrized functions, International Journal for
Numerical Methods in Engineering, 73 (2008), pp. 521–543.

[41] B. Peherstorfer, Sampling low-dimensional Markovian dynamics for pre-
asymptotically recovering reduced models from data with operator inference, SIAM
Journal on Scientific Computing, (To appear, 2021).

[42] B. Peherstorfer and K. Willcox, Data-driven operator inference for non-
intrusive projection-based model reduction, Computer Methods in Applied Me-
chanics and Engineering, 306 (2016), pp. 196–215.

[43] C. D. Pierce, Progress-variable approach for large-eddy simulation of turbulent
combustion, PhD thesis, Stanford University, 2001.

[44] E. Qian, A scientific machine learning approach to learning reduced models for
nonlinear partial differential equations, PhD thesis, Massachusetts Institute of
Technology, 2 2021.

[45] E. Qian, B. Kramer, A. N. Marques, and K. Willcox, Transform &
Learn: A data-driven approach to nonlinear model reduction, in AIAA Aviation
2019 Forum, 2019, p. 3707.

[46] E. Qian, B. Kramer, B. Peherstorfer, and K. Willcox, Lift & learn:
Physics-informed machine learning for large-scale nonlinear dynamical systems,
Physica D: Nonlinear Phenomena, Volume 406 (2020).

[47] G. Rozza, D. B. P. Huynh, and A. T. Patera, Reduced basis approximation
and a posteriori error estimation for affinely parametrized elliptic coercive partial
differential equations, Archives of Computational Methods in Engineering, 15
(2008), pp. 229–275.

[48] P. J. Schmid, Dynamic mode decomposition of numerical and experimental data,
Journal of Fluid Mechanics, 656 (2010), pp. 5–28.

[49] L. Sirovich, Turbulence and the dynamics of coherent structures. I-coherent
structures., Quarterly of Applied Mathematics, 45 (1987), pp. 561–571.

[50] R. Swischuk, B. Kramer, C. Huang, and K. Willcox, Learning physics-
based reduced-order models for a single-injector combustion process, AIAA Jour-
nal, 58 (2020), pp. 2658–2672.

[51] R. Swischuk, L. Mainini, B. Peherstorfer, and K. Willcox, Projection-
based model reduction: Formulations for physics-based machine learning, Com-
puters and Fluids, 179 (2019), pp. 704–717.

[52] N. Takeishi, Y. Kawahara, and T. Yairi, Learning Koopman invariant sub-
spaces for dynamic mode decomposition, in Advances in Neural Information Pro-
cessing Systems, 2017, pp. 1130–1140.

[53] K. Veroy and A. T. Patera, Certified real-time solution of the parametrized
steady incompressible Navier–Stokes equations: rigorous reduced-basis a poste-
riori error bounds, International Journal for Numerical Methods in Fluids, 47
(2005), pp. 773–788.

[54] K. Veroy, D. V. Rovas, and A. T. Patera, A posteriori error estimation for
reduced-basis approximation of parametrized elliptic coercive partial differential
equations: “convex inverse” bound conditioners, ESAIM: Control, Optimisation
and Calculus of Variations, 8 (2002), pp. 1007–1028.



28 E. QIAN, I.-G. FARCAS, AND K. WILLCOX

[55] Q. Wang, J. S. Hesthaven, and D. Ray, Non-intrusive reduced order model-
ing of unsteady flows using artificial neural networks with application to a com-
bustion problem, Journal of Computational Physics, 384 (2019), pp. 289–307.

[56] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, A data–driven ap-
proximation of the Koopman operator: Extending dynamic mode decomposition,
Journal of Nonlinear Science, 25 (2015), pp. 1307–1346.



SUPPLEMENTARY MATERIALS: REDUCED OPERATOR
INFERENCE FOR NONLINEAR PARTIAL DIFFERENTIAL

EQUATIONS∗

ELIZABETH QIAN† , IONUT, -GABRIEL FARCAS, ‡ , AND KAREN WILLCOX‡

SM1. Regularization tuning strategy. To choose the regularization weights
γ1 and γ2, we employ a variant of the regularization tuning procedure of [SM1]. That
is, we use the regularization weights that minimize (on a two-dimensional grid) the
training error, subject to a constraint that the resultant reduced model have bounded
growth within a trial integration period. In more detail, we solve the minimization
(5.14) on a 40 × 40 grid of values spaced log-uniformly in (γ1, γ2) ∈ [102, 108] ×
[109, 1014]. The resultant reduced model is then integrated from t = 15 ms to t = 22
ms (two milliseconds beyond the desired prediction time), and the final regularization
parameters are chosen to be the regularization parameters that minimize the error in
the predicted reduced coefficients over the training period, subject to the following
growth constraint:

max
i≤r

k≤7000

∣∣ŵtrial
i (tk)− w̄i

∣∣ ≤ 1.2 max
i≤r

k≤3000

∣∣∣ŵtraining
i (tk)− w̄i

∣∣∣ ,(SM1.1)

where w̄i is the mean of the i-th reduced coefficient over the 3000 training time steps,
ŵtrial
i (tk) is the value of the i-th reduced coefficient predicted by the inferred model

at time tk, and ŵtraining
i (tk) is the value of the i-th reduced coefficient in the training

data at time tk. In words, (SM1.1) requires that when the reduced model is integrated
for the full 7 ms period, no single reduced coefficient deviates more from its training
mean more than 20% more than the maximum deviation from the training mean
during the training period. We seek models that satisfy this constraint to avoid the
selection of regularization parameters that may predict the dynamics of the training
period well but become unstable beyond the training period.

We note that all computations in this tuning strategy—the regularized minimiza-
tion in (5.14), the integration of the resulting reduced model, and the computation of
the error and growth in the reduced coefficients—are dependent only on r-dimensional
quantities. This strategy for tuning the regularization parameters is therefore com-
putationally inexpensive. The regularization weights chosen by this tuning strategy
for the three model sizes we test are tabulated in Table 1.

SM2. Derivation of lifted CVRC governing PDEs .
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SM2.1. Derivation of specific volume equation. Recall that

∂ρ

∂t
= −∇ · (ρu) = −∂ρux

∂x
− ∂ρuy

∂y
− ∂ρuz

∂z
.(SM2.1)

Since ζ = 1
ρ , applying the chain rule yields

∂ζ

∂t
=

∂

∂t

1

ρ
= − 1

ρ2
∂ρ

∂t
=

1

ρ2

(
∂ρux
∂x

+
∂ρuy
∂y

+
∂ρuz
∂z

)
=

1

ρ2

(
∂ρ

∂x
ux + ρ

∂ux
∂x

+
∂ρ

∂y
uy + ρ

∂uy
∂y

+
∂ρ

∂z
uz + ρ

∂uz
∂z

)
= − 1

ρ2
∂ρ

∂x
(−ux)− 1

ρ2
∂ρ

∂y
(−uy)− 1

ρ2
∂ρ

∂z
(−uz) +

1

ρ

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
= −∂ζ

∂x
ux −

∂ζ

∂y
uy −

∂ζ

∂z
uz + ζ(∇ · u) = −∇ζ · u+ ζ(∇ · u).(SM2.2)

SM2.2. Derivation of velocity equations. We derive the equation for the
evolution of the x-velocity ux from the equations for the x-momentum ρux and for
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the density:

∂ux
∂t

=
1

ρ

(
∂ρux
∂t
− ∂ρ

∂t
ux

)
=

1

ρ

(
− ∂ρu2x + p

∂x
− ∂ρuxuy

∂y
− ∂ρuxuz

∂z
+
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z
· · ·

+ ux
∂ρux
∂x

+ ux
∂ρuy
∂y

+ ux
∂ρuz
∂z

)
=

1

ρ

(
− ∂p

∂x
− u2x

∂ρ

∂x
− ρ∂u

2
x

∂x
− uxuy

∂ρ

∂y
− ρ∂uxuy

∂y
− uxuz

∂ρ

∂z
− ρ∂uxuz

∂z
· · ·

+ u2x
∂ρ

∂x
+ ρux

∂ux
∂x

+ uxuy
∂ρ

∂y
+ ρux

∂uy
∂y

+ uxuz
∂ρ

∂z
+ ρux

∂uz
∂z
· · ·

+
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)
=

1

ρ

(
− ∂p

∂x
− ρ∂u

2
x

∂x
− ρ∂uxuy

∂y
− ρ∂uxuz

∂z
+ ρux

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
· · ·

+
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)
= −ζ ∂p

∂x
− ∂u2x

∂x
− ∂uxuy

∂y
− ∂uxuz

∂z
+ ux

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
· · ·

+ ζ

(
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)
= −ζ ∂p

∂x
− 2ux

∂ux
∂x
− ux

∂uy
∂y
− uy

∂ux
∂y
− ux

∂uz
∂z
− uz

∂ux
∂z
· · ·

+ ux

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
+ ζ

(
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)
= −ζ ∂p

∂x
− ux

∂ux
∂x
− uy

∂ux
∂y
− uz

∂ux
∂z

+ ζ

(
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)

= −ζ ∂p
∂x
− u · ∇ux + ζ

(
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)
.

(SM2.3)

Since the stresses τij are linear in the velocities, (SM2.3) contains only quadratic terms
in the specific volume, pressure, and velocity components. By a similar derivation, we
obtain analogous quadratic expressions for the velocities in the y- and z-directions:

∂uy
∂t

= −ζ ∂p
∂y
− u · ∇uy + ζ

(
∂τyx
∂x

+
∂τyy
∂y

+
∂τyz
∂z

)
,(SM2.4)

∂uz
∂t

= −ζ ∂p
∂z
− u · ∇uz + ζ

(
∂τzx
∂x

+
∂τzy
∂y

+
∂τzz
∂z

)
.(SM2.5)

SM2.3. Derivation of pressure equation. To derive an evolution equation
for the pressure p, we use the simplified state equation (which assumes constant cp):

e = cpT +
1

2

(
u2x + u2y + u2z

)
− p

ρ
,(SM2.6)
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or, equivalently, using the relationship R = γ−1
γ cp and the ideal gas law,

p = (γ − 1)ρe− γ − 1

2
ρ
(
u2x + u2y + u2z

)
,(SM2.7)

where γ is the heat capacity ratio (normally a function of T and the species mass
fractions Yl, but assumed constant here). Then,

∂p

∂t
= (γ − 1)

(
∂ρe

∂t
− 1

2

∂

∂t

(
ρ
(
u2x + u2y + u2z

)))
(SM2.8)

We consider ∂ρe
∂t term first, using the simplified state equation to express the energy

in terms of the pressure, density, and velocities:

∂ρe

∂t
= − ∂

∂x
(ux(ρe+ p))− ∂

∂y
(uy(ρe+ p))− ∂

∂z
(uz(ρe+ p)) + f(τ, j)

= − ∂

∂x

(
ux

(
γ

γ − 1
p+

1

2
ρ|u|2

))
− ∂

∂y

(
uy

(
γ

γ − 1
p+

1

2
ρ|u|2

))
· · ·

− ∂

∂z

(
uz

(
γ

γ − 1
p+

1

2
ρ|u|2

))
+ f(τ, j)

= − γ

γ − 1

(
∂uxp

∂x
+
∂uyp

∂y
+
∂uzp

∂z

)
− 1

2

(
∂uxρ(u2x + u2y + u2z)

∂x
· · ·

+
∂uyρ(u2x + u2y + u2z)

∂y
+
∂ρuz(u

2
x + u2y + u2z)

∂z

)
+ f(τ, j),(SM2.9)

where f(τ, j) contains the viscous and diffusive heat flux terms, given by:

f(τ, j) =
∂

∂x
(uxτxx + uyτxy + uzτxz) +

∂

∂y
(uxτxy + uyτyy + uzτyz) · · ·

+
∂

∂z
(uxτxz + uyτyz + uzτzz) +

∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

.

(SM2.10)

We now consider the kinetic energy contribution from the x-velocity in (SM2.8):

∂

∂t

(
1

2
ρu2x

)
=

1

2
u2x
∂ρ

∂t
+

1

2
ρ
∂u2x
∂t

=
1

2
u2x

(
−∂ρux

∂x
− ∂ρuy

∂y
− ∂ρuz

∂z

)
+ ρux

∂ux
∂t

= −1

2
u2x

(
∂ρux
∂x

+
∂ρuy
∂y

+
∂ρuz
∂z

)
+ ρux

(
− ξ ∂p

∂x
− ux

∂ux
∂x
− uy

∂ux
∂y
· · ·

− uz
∂ux
∂z

+ ξ

(
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

))
= −1

2
u2x

(
∂ρux
∂x

+
∂ρuy
∂y

+
∂ρuz
∂z

)
− ux

∂p

∂x
− uxρux

∂ux
∂x
− uxρuy

∂ux
∂y
· · ·

− uxρuz
∂ux
∂z

+ ux

(
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)
= −1

2
u2x

(
∂ρux
∂x

+
∂ρuy
∂y

+
∂ρuz
∂z

)
− ux

∂p

∂x
− 1

2
ρux

∂u2x
∂x
− 1

2
ρuy

∂u2x
∂y
· · ·

− 1

2
ρuz

∂u2x
∂z

+ ux

(
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)

= −1

2

∂ρu3x
∂x

− 1

2

∂ρuyu
2
x

∂y
− 1

2

∂ρuzu
2
x

∂z
− ux

∂p

∂x
+ ux

(
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)
.

(SM2.11)
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We get similar expressions for the ∂
∂t

1
2ρu

2
y and ∂

∂t
1
2ρu

2
z terms:

∂

∂t

1

2
ρu2y = −1

2

∂ρuxu
2
y

∂x
− 1

2

∂ρu3y
∂y

− 1

2

∂ρuzu
2
y

∂z
− uy

∂p

∂y
+ uy

(
∂τxy
∂x

+
∂τyy
∂y

+
∂τyz
∂z

)
,

(SM2.12)

∂

∂t

1

2
ρu2z = −1

2

∂ρuxu
2
z

∂x
− 1

2

∂ρuyu
3
z

∂y
− 1

2

∂ρu3z
∂z

− uz
∂p

∂z
+ uz

(
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

)
.

(SM2.13)

Subtracting (SM2.11)–(SM2.13) from (SM2.9) we get

∂ρe

∂t
− 1

2

∂

∂t
(ρ(u2x + u2y + u2z))

= − γ

γ − 1

(
∂uxp

∂x
+
∂uyp

∂y
+
∂uzp

∂z

)
+ ux

∂p

∂x
+ uy

∂p

∂y
+ uz

∂p

∂z
+ f(τ, j) · · ·

− ux
(
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)
− uy

(
∂τxy
∂x

+
∂τyy
∂y

+
∂τyz
∂z

)
· · ·

− uz
(
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

)
= − γ

γ − 1
p

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
− 1

γ − 1

(
ux
∂p

∂x
+ uy

∂p

∂y
+ uz

∂p

∂z

)
· · ·

+ f(τ, j)− ux
(
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)
· · ·

− uy
(
∂τxy
∂x

+
∂τyy
∂y

+
∂τyz
∂z

)
− uz

(
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

)
= − γ

γ − 1
p(∇ · u)− 1

γ − 1
u · ∇p+ f(τ, j)− ux

(
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)
· · ·

− uy
(
∂τxy
∂x

+
∂τyy
∂y

+
∂τyz
∂z

)
− uz

(
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

)
.

(SM2.14)

This gives the following expression for ∂p
∂t :

∂p

∂t
= −γp(∇ · u)− (u · ∇p)− ux

(
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)
· · ·

− uy
(
∂τxy
∂x

+
∂τyy
∂y

+
∂τyz
∂z

)
− uz

(
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

)
· · ·

+
∂

∂x
(uxτxx + uyτxy + uzτxz) +

∂

∂y
(uxτyx + uyτyy + uzτyz) · · ·

+
∂

∂z
(uxτzx + uyτzy + uzτzz) +

∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

.

(SM2.15)

Most of the terms of (SM2.15) are quadratic in p and the velocity components. The

exception are the diffusive heat flux terms ∂qx
∂x ,

∂qy
∂y , and ∂qz

∂z . Under the constant cp
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assumption, these terms are simplified from their original definition:

qx = − κ
R

∂pζ

∂x
+
κ

cp

nsp∑
l=1

∂Yl
∂x

,

qy = − κ
R

∂pζ

∂y
+
κ

cp

nsp∑
l=1

∂Yl
∂y

,

qz = − κ
R

∂pζ

∂z
+
κ

cp

nsp∑
l=1

∂Yl
∂z

(SM2.16)

which makes (SM2.15) quadratic in p, ζ, ux, uy, uz, and the species variables. Since
the species variables are not directly modeled as part of the lifted state, these heat
flux terms are not quadratic in the lifted state.

SM2.4. Derivation of ρZm equation. The evolution of the variable ρZm is
given by the conservative representation as

∂ρZm
∂t

= −∂ρuxZm
∂x

− ∂ρuyZm
∂y

− ∂ρuzZm
∂z

+
∂

∂x

(
ρD

∂Zm
∂x

)
· · ·

+
∂

∂y

(
ρD

∂Zm
∂y

)
+

∂

∂y

(
ρD

∂Zm
∂y

)
.(SM2.17)

Note that ρD = ρα = κ
cp

(under our unit Lewis number assumption), so under the

constant cp assumption, (SM2.17) becomes

∂ρZm
∂t

= −∂ux(ρZm)

∂x
− ∂uy(ρZm)

∂y
− ∂uz(ρZm)

∂z
+
κ

cp

(
∂2Zm
∂x2

+
∂2Zm
∂y2

+
∂2Zm
∂z2

)
.

(SM2.18)

The first three terms are quadratic in the velocity components and the variable ρZm.
For the last three terms, note that the product rule gives ∂ρZm

∂x = ρ∂Zm

∂x + Zm
∂ρ
∂x ,

which gives the following identity for the x-derivative of Zm (and similar identities
exist for y and z):

∂Zm
∂x

= ζ
∂ρZm
∂x

− Zmζ
∂ρ

∂x
= ζ

∂ρZm
∂x

+ ρZm
∂ζ

∂x
.(SM2.19)

Since the first spatial derivatives of Zm are quadratic in the variable ρZm and the spe-
cific volume ζ, the second spatial derivatives must also be quadratic in these variables,
since the derivative operator is linear.

SM2.5. Derivation of ρC equation. The derivation of the ρC-evolution equa-
tion under the assumption of constant cp is analogous to that of the ρZm-equation.
The evolution equation in the conservative representation is given by

∂ρC

∂t
= −∂ρuxC

∂x
−∂ρuyC

∂y
− ∂ρuzC

∂z
+

∂

∂x

(
ρD

∂C

∂x

)
· · ·

+
∂

∂y

(
ρD

∂C

∂y

)
+

∂

∂z

(
ρD

∂C

∂z

)
+ ω̇C .(SM2.20)



SUPPLEMENTARY MATERIALS: OPERATOR INFERENCE FOR NONLINEAR PDESSM7

As in the derivation of (SM2.18), we group the variable ρC together in the first three
terms and we use the fact that ρD = κ

cp
is a constant to arrive at

∂ρC

∂t
= −∂ux(ρC)

∂x
−∂uy(ρC)

∂y
− ∂uz(ρC)

∂z
+
κ

cp

(
∂2C

∂x2
+
∂2C

∂y2
+
∂2C

∂z2

)
+ ω̇C .

(SM2.21)

We have a similar expression for the spatial derivatives of C as we did for those of
Zm in (SM2.19):

∂C

∂x
= ζ

∂C

∂x
− Cζ ∂ρ

∂x
= ζ

∂ρC

∂x
+ ρC

∂ζ

∂x
,(SM2.22)

which is quadratic in ζ and ρC. Thus, (SM2.21) is almost fully quadratic in the
velocity components, the variable ρC, and ζ, with the sole non-quadratic term being
the reaction source term ω̇C .
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