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A model reduction approach based on Galerkin projection, proper orthogonal decomposition (POD), and the discrete empirical
interpolation method (DEIM) is developed for chemically reacting flow applications. Such applications are challenging for
model reduction due to the strong coupling between fluid dynamics and chemical kinetics, a wide range of temporal and
spatial scales, highly nonlinear chemical kinetics, and long simulation run-times. In our approach, the POD technique
combined with Galerkin projection reduces the dimension of the state (unknown chemical concentrations over the spatial
domain), while the DEIM approximates the nonlinear chemical source term. The combined method provides an efficient
offline–online solution strategy that enables rapid solution of the reduced-order models. Application of the approach to an
ignition model of a premixed H2/O2/Ar mixture with 19 reversible chemical reactions and 9 species leads to reduced-order
models with state dimension several orders of magnitude smaller than the original system. For example, a reduced-order
model with state dimension of 60 accurately approximates a full model with a dimension of 91,809. This accelerates the
simulation of the chemical kinetics by more than two orders of magnitude. When combined with the full-order flow solver,
this results in a reduction of the overall computational time by a factor of approximately 10. The reduced-order models are
used to analyse the sensitivity of outputs of interest with respect to uncertain input parameters describing the reaction kinetics.
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1. Introduction

Numerical simulation of reacting flows is important for
studying and improving combustion processes, but is a
computationally challenging task. The accurate modelling
of combustion processes using detailed reaction mecha-
nisms leads to stiff systems of differential equations with
multiscale dynamics that take place over a large range of
temporal and spatial scales, from very fast reactions that
occur in a fraction of a second to the longer times scales
present in the fluid dynamics. Therefore, fine spatial grids
and small time steps are usually needed. In addition, a de-
tailed chemistry model involves many chemical species and
many reactions, which means that these models can quickly
become large. Even with state-of-the-art simulation tech-
niques (specialised numerical discretisation schemes and
massively parallel implementations), design, control, and
optimisation of these systems remains intractable for real-
istic engineering applications. To address these challenges,
we develop a projection-based model reduction technique
for reacting flows that reduces computational cost while
maintaining accuracy.

Several methods have been developed over the past
years to reduce the computational cost of evaluating the
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chemical source term. These methods include, among
others, the quasi-steady-state approximation, the partial
equilibrium approximation (Ramshaw 1980; Peters and
Williams 1987), principal component analysis (Brown, Li,
and Koszykowski 1997), intrinsic low-dimensional mani-
fold (ILDM) (Maas and Pope 1992b, 1992a, 1994), and
computational singular perturbation (CSP) (Lam 1993;
Lam and Goussis 1994; Hadjinicolaou and Goussis 1999).
The CSP method describes the system of ordinary differen-
tial equations (ODEs) governing the reaction source term
at each grid point by a linear combination of CSP basis vec-
tors. These vectors decompose the equations governing the
chemistry into fast and slow modes. The species and reac-
tions corresponding to fast modes are eliminated from the
system in the following integration step. Thus, the system of
equations becomes smaller and, since the small (fast) time
scales have been removed, non-stiff. As a consequence, the
solution of the reduced reaction term requires less com-
putational effort at each time step. Furthermore, the CSP
provides an iterative refinement algorithm to compute au-
tomatically an approximation to the ideal basis vectors that
decouple the fast and slow subspaces. The algorithm is usu-
ally initialised using the eigenmodes of the Jacobian of the
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chemical source term. Similarly, the ILDM, a method based
on a dynamical systems approach, separates automatically
the slow and fast time scales. These scales are identified
by analysing the local eigenvectors of the Jacobian of the
reaction source term. The ILDM is usually applied in con-
junction with a tabulating procedure that allows its use
in CFD simulation codes. Although time-scale separation
methods have been applied successfully in numerical simu-
lations of reacting flows, their computational cost is usually
still high when the number of chemical species and/or re-
actions is high. The ILDM and CSP methods both require
for the identification of slow and fast spaces the analysis of
the local Jacobian and its eigenvectors, which need to be
updated many times. Moreover, these methods were devel-
oped for spatially homogeneous reactive systems described
by ODEs rather than partial differential equations (PDEs)
that model spatially inhomogeneous reacting flows.

In this paper, we focus instead on projection-based
model reduction. In this context, the reduced models are ob-
tained by performing Galerkin projection of the large-scale
system of equations onto the space spanned by a small set
of basis vectors. Different methods exist to construct the
required basis vectors. Such methods include, for exam-
ple, Krylov subspace methods (Gallivan, Grimme, and Van
Dooren 1994, 1999; Feldmann and Freund 1995; Grimme
1997), balanced truncation (Gugercin and Antoulas 2004;
Sorensen and Antoulas 2002), and proper orthogonal de-
composition (POD) (Sirovich 1987; Holmes, Lumley, and
Berkooz 1998). Galerkin projection combined with the
POD technique has been successfully used in many ar-
eas such as fluid mechanics (Lucia, King, and Beran 2003;
Ma and Karniadakis 2002; Buffoni et al. 2006) and struc-
tural mechanics (Amabili, Sarkar, and Paı̈doussis 2006;
Kerschen et al. 2005). The method is able to obtain in many
cases orders-of-magnitude reduction in the order of the sys-
tem, since the dynamics of interest can often be represented
by a small number of POD modes. The computation of the
basis functions (POD modes) is straightforward; the POD
modes are constructed as the span of a set of state solutions
(snapshots). Such snapshots are computed by solving the
large-scale system for selected values of parameters and se-
lected inputs. However, in the case of nonlinear systems, the
POD–Galerkin method leads to inefficient reduced models
since the projected nonlinear term requires computations
that scale with the dimension of the original large-scale
problem.

Methods to approximate the projected nonlinear term in
a POD reduced model include the missing point estimation
technique (Astrid et al. 2008), which uses selected spatial
sampling based on the theory of the gappy POD (Everson
and Sirovich 1995). Another approach is the empirical
interpolation method (EIM) (Barrault et al. 2004; Grepl
et al. 2007), which uses a linear combination of empiri-
cal basis functions to approximate the projected nonlinear
term. The coefficients of this expansion are determined

Table 1. DEIM algorithm used to compute the desired
interpolation indices.

INPUT: [Uk]Lk=1 ⊂ R
M linearly independent

OUTPUT: �p = [p1, . . . , pL]T ∈ R
L

1: [|ρ| p1] = max (|U1|)
2: U = [U1], P = [ep1 , �p = [p1]]
3: for k = 2 to L do
4: Solve (PT U)c = PT Uk for c
5: r = Uk − Uc
6: [|ρ| pk] = max (|r|)
7: U ← [U Uk], P ← [P epk

], �p ← [�ppk]T

8: end for

Figure 1. Problem setup: (a) domain discretisation and boundary
conditions; (b) initial conditions.
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Figure 2. Average relative errors (2-norm) of the solution com-
puted using the POD–DEIM reduced-order models with a varying
number of POD basis vectors (K) and DEIM modes (L).

by interpolation. We use here the discrete empirical inter-
polation method (DEIM), a discrete variant of the EIM
(Chaturantabut and Sorensen 2010). We show that a POD–
DEIM reduced model can accurately represent chemical ki-
netics, while providing significant speedups in computation
times.

Section 2 of this paper introduces the reacting flow
model and numerical solution approach. Section 3 presents
the POD–DEIM model reduction approach. Section 4
presents an application of the model reduction method to a
premixed flame model and Section 5 concludes the paper.

2. Reacting flow model

The combustion process is modelled by a detailed chemical
kinetics model of Ns species and Nr elementary reactions.
All gas species are considered thermally perfect, and we
assume the equation of state (EOS) of perfect gases is ap-
plicable. We assume that there is no body force acting on the
chemical species and that there is no external heat source

Figure 3. Comparison of the average computational simula-
tion time between the POD–DEIM reduced-order model, the
POD model, and the full model for one time step of chemical
kinetics.

(sparks, etc.). With these assumptions, the governing equa-
tions for the evolution of a perfect gas mixture involving Ns

species and Nr reversible chemical reactions can be written,
in Cartesian coordinates, in the form

∂U

∂t
+∂F(U)

∂x
+∂G(U)

∂y
= 1

Re
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∂H(U)
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where ρ is the density of the mixture, u and v are the velocity
components, E is the total energy, Y1, . . . , YNs

are the mass
fractions of the species, p is the pressure of the mixture, T
is the temperature of the mixture, ω̇ is the mass production
rate of species, Sck = μ/(ρDk) is the Schmidt number, Re is
the Reynolds number, M is the Mach number, Pr = cpμ/λ
is the Prandtl number, Ns is the total number of species, and
τ ij is the viscous stress tensor expressed as

τij = μ

[
∂ui

∂xj

+ ∂uj

∂xi

− 2

3

∂uk

∂xk

δij

]
. (4)

The enthalpies hk, the specific heat capacity at constant
pressure cp, the Gibbs free energy, the dynamic viscosity
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Figure 4. Comparison of solutions of the pressure evolution at three sensor locations between the POD–DEIM reduced model of size
K = 40, L = 60 and the full model of size M = 91, 809.

μ, thermal conductivity λ, and diffusion coefficients Dk for
species k and for the mixture are computed using polyno-
mial fits and transport databases from CEA (McBride and
Sanford 1994, 1996) and JANAF (Stull and Prophet 1971;
Chase 1998), and classical kinetics theory.

The mass production rate, ω̇, of species k in the source
term of Equation (2f) is computed by

ω̇k = Wk

Nr∑
i=1

(
ν ′′

ki − ν ′
ki

)(
αki

[
Xk

])

×
{

Kf,i

Ns∏
k=1

[
Xk

]ν ′
ki − Kb,i

Ns∏
k=1

[
Xk

]ν ′′
ki

}
, (5)

where ν ′
ki and ν ′′

ki are the chemical stoichiometric coef-
ficients of the reactant and the product for species k in
reaction i, respectively. Kf, i and Kb, i are the forward and
backward coefficients of the reaction computed through the
Arrhenius law for the state value of pressure, temperature,
and mole fraction, Wk is the molecular weight of species k,
and [Xk] is the molar concentration of species k in reaction i.
This molar concentration of species k is defined by [Xk] =
ρYk/Wk, and αki are the third-body coefficient factors of
species k in reaction i.

We use an operator-splitting scheme to separate the
governing equations (1) into a fluid dynamics part:

∂U

∂t
+ ∂F(U)

∂x
+ ∂G(U)

∂y
= 1

Re

(
∂H(U)

∂x
+ ∂T(U)

∂y

)
,

(6)

and a chemical kinetics part:

∂U

∂t
= S(U). (7)

This splitting allows us to use a specific numerical scheme
developed for the fluid dynamic part in conjunction with
a numerical method especially developed to deal with
stiff systems of ODEs for the chemical kinetics part. For
Equation (6), we use the fifth-order weighted essentially
non-oscillatory (WENO) scheme (Shu and Osher 1988,
1989; Jiang and Shu 1996) for the inviscid flux terms
and the fourth-order central difference scheme (Shen, Zha,
and Chen 2009; Shen, Wang, and Zha 2010) for the vis-
cous flux terms. The third-order Runge–Kutta method is
used to evolve the solution in time. The chemical kinetics
part, Equation (7), is solved using CHEMEQ, a solver of
stiff nonlinear ODEs, developed by Young et al. (Young
and Boris 1977; Young 1980). For the boundaries we use
Navier–Stokes characteristic boundary conditions (Poinsot
and Lelef 1992; Poinsot and Veynate 2005).

3. Model reduction methodology

Projection-based methods derive a reduced-order model
by projecting the governing equations onto a subspace
spanned by a set of basis vectors (Antoulas, Sorensen, and
Gugercin 2001). In this section, we describe the projection-
based model reduction idea, the POD technique, and the
DEIM employed in the approximation of the nonlinear
source term.
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Figure 5. Comparison of solutions of the temperature evolution at three sensor locations between the POD–DEIM reduced model of size
K = 40, L = 60 and the full model of size M = 91, 809.

3.1. Projection framework

Consider the following nonlinear system of ODEs resulting
from spatial discretisation of Equation (7):

dY

dt
= g(Y, T , p) (8)

with initial conditions Y(t = 0) = Y0. Here, Y =[
Y 1

1 , . . . , YN
1 , . . . , Y 1

Ns
, . . . , YN

Ns

]T ∈ R
M is the vector of

species mass fractions discretised over the computational
domain, which has N grid points, T is the temperature
of the mixture, and p is the pressure of the mixture.

Figure 6. Comparison of solutions of the flame (HO2) evolution at three sensor locations between the POD–DEIM reduced model of
size K = 40, L = 60 and the full model of size M = 91, 809.
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Figure 7. Correlation coefficients for the POD–DEIM reduced
model of size K = 40, L = 60.

The vector g(Y, T , p) = [
g1

1(Y, T , p), . . . , gN
1 (Y, T , p),

. . . , g1
Ns

(Y, T , p), . . . , gN
Ns

(Y, T , p)
]T ∈ R

M contains the
reaction rates over the computational domain. The total
number of unknowns in (8) is M = NsN, which becomes
large as the number of chemical species and/or grid points
is increased.

A reduced-order model for the system of equations (8)
is derived by assuming that the state vector Y can be
represented as a linear combination of K basis vectors,

Y ≈ VYr , (9)

where Yr ∈ R
K is the reduced-state vector with K 
 M and

the matrix V ∈ R
M×K contains as columns orthonormal

basis vectors vi, i = 1, . . . , K. Using Equation (9), the
reduced-order model is obtained by performing Galerkin
projection of the system of ODEs (8) onto the subspace
spanned by the column basis vectors vi,

dYr (t)

dt
= VT g(VYr (t), T , p), (10)

Figure 8. Comparison of the contours of pressure at time t =
15 μs. (a) Full model of dimension M = 91, 809. (b) POD–DEIM
reduced model of dimension K = 40, L = 40.

Table 2. Average relative error and online computational time for different numbers of POD basis vectors (K). Computational times are
normalised by the time of a full model chemistry time step.

POD POD–DEIM

K Average relative error Online time K L Average relative error Online time

1 1.33 × 10−1 4.61 × 10−1 1 40 2.36 × 10−1 2.32 × 10−3

5 3.27 × 10−2 4.65 × 10−1 5 40 6.11 × 10−2 2.55 × 10−3

10 5.01 × 10−3 4.71 × 10−1 10 40 2.47 × 10−2 2.71 × 10−3

20 1.16 × 10−3 4.73 × 10−1 20 40 1.39 × 10−3 2.97 × 10−3

40 3.18 × 10−4 5.02 × 10−1 40 40 8.65 × 10−4 3.35 × 10−3

60 1.11 × 10−4 5.31 × 10−1 60 40 5.95 × 10−4 3.87 × 10−3

80 4.59 × 10−5 6.46 × 10−1 80 40 4.78 × 10−4 4.23 × 10−3

100 8.47 × 10−6 5.74 × 10−1 100 40 4.28 × 10−4 4.71 × 10−3
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Figure 9. Comparison of the contours of temperature at time t =
15 μs. (a) Full model of dimension M = 91, 809. (b) POD–DEIM
reduced model of dimension K = 40, L = 40.

with the initial condition Y0
r = VT Y0. The choice of the

basis vectors clearly affects the accuracy of the approxi-
mation. The K basis vectors can be obtained by many dif-
ferent methods. In this study, the basis vectors are con-
structed using the POD method of snapshots (Sirovich
1987).

Although the reduced-order model obtained after ap-
plying the projection technique is low in dimension, as can
be observed in Equation (10), the evaluation of the nonlin-
ear reaction source term at each time step still depends on
the dimension M. This makes the solution of the obtained
reduced-order model as expensive as the solution of the
original system. An effective way to overcome this diffi-
culty is to approximate the nonlinear function by projection
and interpolation. This is the idea behind the DEIM (Chat-
urantabut and Sorensen 2010), which is a discrete version

of the EIM proposed by Barrault et al. (2004), described in
more detail later.

3.2. Proper orthogonal decomposition

The POD technique, also known as the Karhunen–Loève
decomposition (Loève 1977), is a method for constructing
basis vectors with global support that capture the dominant
characteristics of a dynamical system. In the method of
snapshots, such basis vectors (POD modes) are computed
from an ensemble of solutions (snapshots) obtained by solv-
ing the large-scale system for selected values of parameters
and inputs. The POD modes are computed as follows.

Given a set of Q snapshots {Yj }Qj=1, where Yj ∈ R
M ,

the POD computes the set of K ≤ Q basis vectors {vi}Ki=1,
where vi ∈ R

M is the ith basis vector, as the set that solves
the minimisation problem

min
{v}Ki=1

Q∑
j=1

‖ Yj −
K∑

i=1

(
YT

j vi

)
vi ‖2

2,

s.t. vT
i vj = δij , 1 ≤ i, j ≤ K. (11)

The solution of Equation (11) can be obtained by
finding the singular vectors of the snapshot matrix Y =
[Y1, . . . , YQ] ∈ R

M×Q. In particular, supposing that the
singular value decomposition of Y is

Y = V�WT , (12)

where V = [v1, . . . , vQ] ∈ R
M×Q and W = [w1, . . . , wQ]

∈ R
M×Q are orthogonal and the singular values are � =

diag(σ1, . . . , σQ) ∈ R
Q×Q with σ 1 ≥ σ 2 ≥ ··· ≥ σ Q >

0, then the POD basis is {v}Ki=1 ⊂ V ∈ R
M×Q. The POD

gives the optimal representation, in the least-squares sense,
of the set of snapshots Q. The error in approximating the
snapshots using K POD modes is given by

Q∑
j=1

‖ Yj −
K∑

i=1

(
YT

j vi

)
vi ‖2

2=
Q∑

i=K+1

σ 2
i . (13)

3.3. Discrete empirical interpolation method

The DEIM provides an efficient approach to build reduced-
order models whose computational cost is independent of
the dimension of the original large-scale system. To con-
struct the POD–DEIM reduced-order model, two sets of
basis vectors are used: the POD modes V obtained from
the solution snapshots and the DEIM modes U obtained
from snapshots of the nonlinear source term. Computation
of U proceeds as described above for V, but replacing state
snapshots Yj ≡ Y(tj , T , p) with snapshots of the nonlin-
ear terms gj ≡ g(Yj , T , p). The nonlinear source term is
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Figure 10. Comparison of the contours of u-velocity component at time t=15 μs. (a) Full model of dimension M = 91, 809. (b)
POD–DEIM reduced model of dimension K = 40, L = 40.

then approximated by a linear combination of L basis vec-
tors U ∈ R

M×L with corresponding expansion coefficients
c ∈ R

L as

g(Y, T , p, t) ≈ Uc(t). (14)

From the DEIM basis vectors U, the DEIM finds a set
of interpolation indices that allow the determination of the
coefficients c in (14). This involves the evaluation of the
nonlinear source term at only a subset of points L 
 M,
hence eliminating the dependence on M of the reduced-
order model. The POD–DEIM reduced-order model then

becomes

dYr (t)

dt
= VT U(PT U)−1g(PT VYr (t), T , p), (15)

where P ∈ R
M×L is a matrix defining the interpolation in-

dices (defined in more detail below).
In this study, we use the DEIM algorithm proposed in

Chaturantabut and Sorensen (2010) since it provides an
efficient methodology to compute the desired interpolation
indices for determining the coefficients c(t). The algorithm
is shown in Table 1.

Figure 11. Comparison of the contours of concentration of species HO2 at time t = 15 μs. (a) Full model of dimension M = 91, 809. (b)
POD–DEIM reduced model of dimension K = 40, L = 40.
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Figure 12. Input parameters: (a) 16 sample points. (b) Gaussian distribution of temperature for a typical case (T0 = 2000 K and
a = 0.2 mm).

In the algorithm, max{| · |} implies finding the in-
dex of the maximum absolute value of ·, and {p1, . . . , pL}
are the desired L interpolation indices, P = [ep1 , . . . , epL

],
where epi

= [0, . . . , 0, 1, 0, . . . , 0]T ∈ R
M is column pi of

the identity matrix I ∈ R
M×M for i = 1, . . . , L.

Once the indices are determined and the matrix P is
built, the expansion coefficients are computed as

c(t) = (PT U)−1PT g(Y, T , p, t). (16)

By substituting (16) in Equation (14), we obtain

g(Y, T , p, t) ≈ U(PT U)−1g(PT Y, T , p, t). (17)

Since in our case the nonlinear reaction source term can be
evaluated componentwise at its input vector, Equation (17)
becomes

g(Yr , T , p, t) ≈ VT U(PT U)−1g(PT VYr , T , p, t), (18)

Figure 13. Comparison of histograms of average concentration of species HO2 between the full model and reduced-order model. MCS
results are shown for 500 randomly sampled values of the peak temperature of the initial condition. The dashed line shows the sample
mean. (a) Full model. (b) Reduced model.
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where the temperature and pressure are evaluated at inter-
polation points. Equation (18) is the DEIM approximation
of the nonlinear source term. The terms VT U(PT U)−1 ∈
R

K×L and PT V ∈ R
L can be precomputed in an offline

stage. Therefore, the online computation of the reduced-
order model requires only the solution of a system of K
nonlinear equations with just L evaluations of g(., T , p)
and the temperature and pressure also evaluated at the L
interpolation points.

4. A POD–DEIM reduced-order model for a
Gaussian premixed flame

In this section, we present the result of POD–DEIM model
reduction for a multistep chemical reacting flow problem
of a Gaussian premixed flame.

4.1. Problem setup

The evolution of the Gaussian flame is modelled by the
system of coupled nonlinear PDEs introduced in Section
2. The gas mixture is composed of 9 chemical species (O2,
H2, O, H, OH, HO2, H2O2, H2O, Ar) participating in 19
reversible elementary reactions corresponding to the chem-
ical kinetics model employed in Wilson and MacCormack
(1990). The transport properties of the mixture and the
species are computed using classical kinetic theory and the
mixture-average approach, and employing the GRI-Mech
3.1 database (Smith et al., n.d.). Whenever third-body
reactions appear in the kinetic mechanism, the third-body
factors are αki = 2.5 for H2, αki = 16.0 for H2O, and αki =
1.0 otherwise. The POD–DEIM model reduction technique
is applied to the nonlinear source term (7), since, as in
typical reacting flow applications, the solution of this term
drives the computational cost of the numerical simulation.

For all simulations, a two-dimensional square domain of
1.0 mm × 1.0 mm is discretised using a uniform mesh grid
with 101 grid points in each direction. Figure 1(a) shows
the computational grid. The dimension of the full-model
unknowns Y is M = 91, 809. Initial conditions specify a
pressure of 101,325.0 Pa and velocity components of 0 m/s.
A premixed mixture of H2/O2/Ar with mole fractions 0.333:
0.167: 0.5 is imposed at each grid point of the computational
domain. To start the reaction (the flame), we use a two-
dimensional Gaussian distribution located at the centre of
the domain (see Figure 1(b)),

T (x, y) = T0e

−
⎛
⎝ (x − x0)2

2a2
+ (y − y0)2

2a2

⎞
⎠
, (19)

where T0 is the temperature amplitude, a is the width of
the temperature distribution, and (x0, y0) are the coordi-
nates of the centre point. Outlet subsonic flow characteris-
tic boundary conditions (Lodato, Domingo, and Vervisch

2008) are applied to the four boundaries of the domain (see
Figure 1(a)).

4.2. Fixed parameters and inputs

We first test the capabilities of the reduced-order model
in terms of the approximation errors and computational
time savings. To this end, several models of different sizes
(values of K and L) are constructed for fixed simulation
parameters and inputs. All the models are built using 400
snapshots of state solution Y and 400 corresponding snap-
shots of nonlinear term g(Y, T , p). For each model, the
snapshots are collected from simulations of the full-order
model lasting 200 flow time steps. To assess the perfor-
mance of the reduced-order models, a simulation of 200
flow time steps is carried out for each reduced model and the
average relative error at the final time step and the average
simulation time of one chemistry time step are calculated.

Figure 2 shows the average relative error of the solutions
obtained using the reduced models of different sizes. The
results indicate that both the number of POD modes and the
number of interpolation points drive the average relative
error when the number of POD modes is smaller than 40.
For reduced-order models with state dimensions greater
than 40, the average relative error is driven by the number
of interpolation points, indicating that the approximation of
the nonlinear term is the most significant source of error.

Figure 3 shows comparisons of the average computa-
tional time for one chemistry time step between the full
model, classical POD reduced-order models, and POD–
DEIM reduced-order models, again for different choices
of K and L. Figure 3 shows that the computational time is
driven by both K and L. It also shows that POD–DEIM mod-
els are on average two orders of magnitude faster than POD
models. However, if we consider models of similar size (for
example, a POD model of size K = 40 and a POD–DEIM
model of size K = 40, L = 60), the POD model is more ac-
curate (as shown in Figure 2). We also note that despite the
good speedup factors obtained by the POD–DEIM models
(of order 100) in the solution of the nonlinear source term,
the speedup factor for the coupled flow-chemistry simula-
tion is of the order of a factor of 10. The reason for this is
that the fluid dynamics part in the operator-splitting scheme
is still solved in full dimension. POD–DEIM reduced-order
models for the Navier–Stokes equations could also be de-
rived (Stefanescu and Navon 2013; Xiao et al. 2014) and
used, which would lead to overall greater speed-up.

Figures 4–6 compare the time evolution of the outputs
of interest – pressure, temperature, and HO2 concentra-
tion – at three sensor locations: (x; y) = (0.15; 0.15), (0.5;
0.25), and (0.5; 0.5), between the full model of size M =
91, 809 and POD–DEIM reduced-order model of size K
= 40, L = 60. The results show that the reduced model
can accurately approximate the solution of the full model
even for the most sensitive quantity in this simulation,
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Figure 14. Comparison of histograms of total heat released between the full model and reduced-order model. MCS results are shown for
500 randomly sampled values of the peak temperature of the initial condition. The dashed line shows the sample mean. (a) Full model. (b)
Reduced model.

concentration of species HO2, as shown in Figure 6. We
further verify the quality of the reduced models by calcu-
lating the Pearson correlation coefficients between the full
and the POD–DEIM reduced-order models for each state
quantity, following Stefanescu and Navon (2013). Figure 7
shows the Pearson correlation coefficient for some relevant
state variables for the POD–DEIM reduced model of size
K = 40, L = 60. The coefficients vary between 0.99999
and 0.999, showing that the reduced model is highly cor-
related with the full model throughout the entire simulated
time.

4.3. Varying Prandtl number: Pr ∈ [0.5, 1.0]

In combustion processes, the Prandtl number, Pr, plays
an important role in heat convection and diffusion. In this
section, we test the ability of a POD–DEIM reduced-order
model to estimate solutions of the full model for values
of Pr in the range [0.5, 1.0]. The reduced-order model is
constructed using 400 snapshots, which are taken from two
simulations of the full system at Pr = 0.5 and Pr = 1.0.
Two hundred snapshots, one at every flow time step, are
taken for each value of Pr. To demonstrate the prediction
capability of our reduced-order model, we select a value of
Pr = 0.8 and simulate the full model, POD reduced-order
models of varying dimension, and POD–DEIM reduced-
order models of varying dimension K and fixed L = 40.
Table 2 summarises the results obtained in terms of average
relative error and relative computational simulation time,
with respect to the full model, of one chemistry time step.
It can be seen from the table that the POD models are,
in general, more accurate but they are again about two
orders of magnitude slower than the models constructed

Table 3. Comparison between the full model and reduced-order
model. MCS results are shown for the average value of species
HO2 and total heat released for 500 randomly sampled values of
the peak temperature of the initial conditions.

Name Full model Reduced model

Model size 91809 60
Offline cost – 16.65 h
Online cost 464.87 h 45.83 h
Mean of total heat released 3.02 × 10−2 3.02 × 10−2

Variance of total heat released 8.51 × 10−7 8.85 × 10−7

Mean of species HO2 2.10 × 10−6 2.10 × 10−6

Variance of species HO2 3.34 × 10−14 3.53 × 10−14

using POD–DEIM. In addition, the table shows that for a
satisfactory level of accuracy, say, the average relative error
of about 5.0 × 10−4, the computation of the nonlinear
source term using the POD–DEIM model is more than 200
times faster than the full model calculation. Figures 8–11
compare the solutions between the full model of dimension
M = 91, 809 and the POD–DEIM reduced-order model of
dimension K = 40, L = 40 at t = 15 μs. The figures show
that the model is able to predict accurately the solution for
Pr = 0.8.

4.4. Analysis of the impact of parameter
variability on the total heat release and
average concentration of HO2

The POD–DEIM reduced-order model is now used to anal-
yse the impact on outputs of interest of variability in the pa-
rameters describing the initial Gaussian temperature profile
given by Equation (19). To this end, a POD–DEIM model is
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Figure 15. Comparison of histograms of average concentration of species HO2 between the full model and reduced-order model. MCS
results are shown for 500 randomly sampled values of the initial condition width. The dashed line shows the sample mean. (a) Full model.
(b) Reduced model.

constructed using 4000 snapshots. The snapshots are com-
puted from 16 simulations corresponding to the combina-
tion of four different values of the temperature amplitude
T0 with four different values of the width a of the Gaus-
sian temperature profile (see Figure 12(a)). For each of the
simulations, 250 snapshots are taken corresponding to 250
flow time steps. The range of amplitude of temperature is
chosen so that the chemical reactions occur slowly at the
minimum value of the amplitude and quickly at its max-
imum value. For the width, the range is chosen to ensure
that the boundary conditions are satisfied for its maximum

value. A particular case of the initial condition is shown in
Figure 12(b).

Monte Carlo simulations (MCSs) are then performed
for two cases in order to analyse the impact of variability in
amplitude and width on the total heat release and on the av-
erage concentration of species HO2 over the computational
domain. In the first case, the width is kept constant at a =
0.183. The amplitude T0 is modelled as a Gaussian random
variable with a mean of 1550 K and standard deviation of
26 K. 500 samples are drawn randomly from this normal
distribution. In the second case, the width is modelled as

Figure 16. Comparison of histograms of total heat released between the full model and reduced-order model. MCS results are shown for
500 randomly sampled values of the initial condition width. The dashed line shows the sample mean. (a) Full model. (b) Reduced model.
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Table 4. Comparison between the full model and reduced-order
model. MCS results are shown for the average value of species
HO2 and total heat released for 500 randomly sampled values of
the initial condition width.

Name Full model Reduced model

Model size 91, 809 60
Offline cost – 16.65 h
Online cost 442.37 h 45.83 h
Mean of total heat released 3.00 × 10−2 3.00 × 10−2

Variance of total heat released 2.12 × 10−6 2.11 × 10−6

Mean of species HO2 2.18 × 10−6 2.18 × 10−6

Variance of species HO2 2.00 × 10−14 2.02 × 10−14

a Gaussian random variable with a mean of 0.175 mm and
standard deviation of 4.5 × 10−3 mm. The amplitude is
kept constant at T0 = 1700 K. Again, 500 random samples
are used in the MCS. In both cases, the samples are evalu-
ated using the full model and a POD–DEIM reduced model
of order K = 60, L = 60.

Figures 13 and 14 show the comparison between the
full and reduced model histograms for the average concen-
tration of species HO2 and the total heat release, for the
first case with varying T0. Table 3 summarises estimated
statistics and computation times. The results show that the
reduced model is able to estimate the mean and the variance
of the total heat release and of the average concentration of
HO2 with small errors. In fact, the mean estimates of the
reduced-order model agree with those of the full model to
within two decimal places.

Figures 15 and 16 show the comparison between the
full and reduced model histograms for the average concen-
tration of species HO2 and the total heat release, for the
second case with varying width a. Table 4 summarises esti-
mated statistics and computation times. The reduced model
again estimates the mean and the variance of the total heat
released and species HO2 accurately.

5. Conclusions

The contribution of this paper is to show how projection-
based reduced modelling using the POD method combined
with the DEIM is an effective strategy for reducing the cost
of chemical kinetics evaluations in reacting flow simula-
tions. The reduced-order models can be parameterised and
then used for design space studies as well as quantification
of the effects of parameter uncertainties on output quantities
of interest. The methodology was demonstrated here using
a premixed H2/O2/Ar mixture problem, but is applicable
to general reaction models. Here we focused on applica-
tion of the POD–DEIM approach to the chemical kinetics
model only; however, the POD method can also be applied
to obtain a reduced model of the fluid dynamics model
to gain additional reduction in overall simulation time of

the coupled system. An important area of future research
is to extend the POD–DEIM approach to optimisation of
systems governed by PDEs. While more challenging than
the parameterised forward simulation problem considered
here, PDE-constrained optimisation problems could benefit
significantly in computational gains from efficient reduced
modelling strategies.
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