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Abstract. Model reduction via Galerkin projection fails to provide considerable computational
savings if applied to general nonlinear systems. This is because the reduced representation of the
state vector appears as an argument to the nonlinear function, whose evaluation remains as costly
as for the full model. Masked projection approaches, such as the missing point estimation and the
(discrete) empirical interpolation method, alleviate this effect by evaluating only a small subset of
the components of a given nonlinear term; however, the selection of the evaluated components is
a combinatorial problem and is computationally intractable even for systems of small size. This
has been addressed through greedy point selection algorithms, which minimize an error indicator
by sequentially looping over all components. While doable, this is suboptimal and still costly. This
paper introduces an approach to accelerate and improve the greedy search. The method is based
on the observation that the greedy algorithm requires solving a sequence of symmetric rank-one
modifications to an eigenvalue problem. For doing so, we develop fast approximations that sort
the set of candidate vectors that induce the rank-one modifications, without requiring solution of
the modified eigenvalue problem. Based on theoretical insights into symmetric rank-one eigenvalue
modifications, we derive a variation of the greedy method that is faster than the standard approach
and yields better results for the cases studied. The proposed approach is illustrated by numerical
experiments, where we observe a speed-up by two orders of magnitude when compared to the standard
greedy method while arriving at a better quality reduced model.
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1. Introduction. Consider a general spatio-temporal dynamical system in semi-
discretized form

(1.1)
∂

∂t
x(t, µ) = f(x(t, µ)), x(t0, µ) = x0,µ,

where x(t, µ) ∈ R
n is the spatially discretized state vector of dimension n, µ denotes

additional system parameters and f : R
n → R

n may be nonlinear. The goal of
model reduction is to replace the system (1.1) with a system with many fewer degrees
of freedom p ≪ n. Projection-based model reduction methods approach this goal by
projecting (1.1) onto a p-dimensional subspace U . This leads to a reduced system that
can be solved efficiently if the operator f can be represented by an affine combination
of linear operators, see, e.g., [3, §2.3]. Otherwise, evaluating the right-hand side of the
projected system requires a similar computational effort as for the original system.
Nonlinear model reduction methods, such as missing point estimation (MPE, [1]),
masked projection [8] and the discrete empirical interpolation method (DEIM) [6]
(based on the empirical interpolation method [2]) tackle this problem by employing
a so-called mask matrix that reduces the number of components of f that enter
the reduced model to a small fraction of the original model. Essentially, the same
mathematical principles apply to sensor placement via the method of gappy POD
[18, 14], though in a slightly different context.
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The definition of a mask matrix is as follows. Let ei ∈ R
n denote the ith canonical

unit vector, i = 1, . . . , n. Given a subset of indices J = {j1, . . . , js} ⊂ {1, . . . , n}, the
(column-orthogonal) matrix P = (ej1 , . . . , ejs) ∈ R

n×s is called the mask matrix
corresponding to the index set J . Left-multiplication of a vector with the transpose
of P realizes the projection onto the components in the same order as listed in J ,
i.e., PT y = (yj1 , . . . , yjs)

T ∈ R
s for all y ∈ R

n. For a rank-p matrix U ∈ R
n×p, we

will call a mask matrix P ∈ R
n×s overdetermining with respect to U , if s > p and

rank(PTU) = p. It will be called uniquely determining with respect to U , if s = p and
rank(PTU) = p. This reflects the fact that the masked least-squares system

min
α∈Rp

‖PTUα− PT b‖, U ∈ R
n×p, b ∈ R

n

is overdetermined if s > p, and uniquely determined if s = p. In the applications,
the indices collected in J usually correspond to points in a discretized spatial domain
and are therefore also referred to as point indices or sometimes simply as points.
In [6], they are called interpolation points, since only uniquely determining mask
matrices are considered there. We did not adopt this term, because our focus is on
overdetermining mask matrices, which are not associated with data interpolation but
with data regression.

In nonlinear model reduction, selecting the optimal set of point indices associ-
ated with a mask matrix (i.e., the optimal subset of components of f that are to
be evaluated) is a combinatorial problem that is prohibitively costly to solve exactly.
Therefore, [1, §V.A] introduces a greedy point selection algorithm, which minimizes
an error indicator by sequentially looping over the full grid. The associated costs of
this greedy algorithm are much lower than for the combinatorial problem, but are still
considerably high.

DEIM also comes with an algorithm for choosing the underlying point index set
that is based on a similar error indicator. In the DEIM algorithm [6, Alg. 1], the
number of selected points is directly linked to the dimension of the subspace U . This
means that it is not possible to select more point indices than there are basis vectors
spanning U . This is a limiting factor, since there are application scenarios where
oversampling is beneficial, see [1], or even explicitly required, see [13, 20].

In this work, we consider the problem of efficiently constructing mask matrices
that are based on point index sets of cardinality larger than the number of basis
vectors. To this end, we combine a generalized version of the error bound of [6, Lem.
3.2] with an accelerated version of the greedy point index search of [1, §V.A]. We show
that the greedy point selection boils down to selecting the one vector, out of a finite set
of candidates, that leads to the largest growth in the smallest eigenvalue of a modified
eigenvalue problem. In order to find this vector, we develop approximations that
sort the set of candidate vectors according to certain properties of their components
without the requirement to actually solve the modified eigenvalue problem.

Organization. Section 2 gives the required background on greedy MPE. Section 3
features known and new theoretical insights on symmetric rank-one eigenvalue mod-
ifications. In Section 4, we introduce the accelerated greedy surrogate and propose
variations for improving its performance. An engineering application is discussed in
Section 5. Section 6 summarizes the findings.

2. Problem statement. In this section, the basic principle of masked projec-
tion schemes is reviewed. We then introduce a minor generalization to the standard
DEIM error bound [6, Lemma 3.2] and state a new analogue for masked least-squares
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residuals. Finally, the greedy algorithm of [1, §V.A] is restated. This algorithm will
act as a benchmark reference for the new method developed in Section 3.

2.1. Masked projection. Let y ∈ R
n denote an arbitrary vector and let U ∈

R
n×p be a column-orthogonal matrix. We may think of y as a state solution or other

vector of interest computed using a given simulation code and of the columns of U
as a basis of a p-dimensional subspace U ⊂ R

n. In the introductory example (1.1),
y would be the vector obtained from the nonlinear right hand side evaluated at a
certain parameter condition y = f(x(ti, µi)) ∈ R

n. Let J = {j1, . . . , js} ⊂ {1, . . . , n}
be a subset of indices with corresponding mask matrix P = (ej1 , . . . , ejs) ∈ R

n×s.
Throughout, we assume that we have at least as many indices to start with, as there
are basis vectors in U , i.e., |J | = s ≥ p. This initial set of indices is needed so that
the underlying masked least-squares problem is not rank-deficient and consequently,
the masked projector is well-defined. In practice, it could be obtained, for example,
by applying the standard DEIM point selection algorithm [6, Alg. 1] or by the recent
variation [7].

The best approximation to y contained in U is the orthogonal projection ỹ =
UUT y, which corresponds to the solution to the least-squares problem minα∈Rp ‖y −
Uα‖2 with the optimal argument being α∗ = UT y. The best approximation to y con-
tained in U that is solely determined on the information at the point indices associated
with the mask matrix P is ŷ = U(UTPPTU)−1UTPPT y, which corresponds to the
solution to the masked least-squares problem minα∈Rp ‖PT y− PTUα‖2. Introducing
the oblique projector

(2.1) Π : y 7→ ŷ = U(UTPPTU)−1UTPPT y,

this solution can be expressed in concise form as ŷ = Π(y). We will call Π the masked
projection onto colspan(U). It is well-defined, whenever PTU features the (maximum
possible) rank p.

2.2. Error bounds for masked projection schemes. The next proposition
gives an estimate on the error introduced by the masked projection (2.1). It is a minor
generalization of [6, Lemma 3.2], to the case of overdetermining mask matrices.

Proposition 2.1. Let y ∈ R
n. The error between the orthogonal projection

ỹ = UUT y of y onto colspan(U) and the masked projection ŷ = Π(y) of y onto
colspan(U) is bounded by

‖ỹ − ŷ‖ ≤ ‖Π‖‖y − UUT y‖, where ‖Π‖ =
1

σmin(PTU)
.

The same bound holds for the error between y and its masked approximation,

(2.2) ‖y − ŷ‖ ≤ ‖Π‖‖y − UUT y‖.

Proof. The proof of [6, Lemma 3.2] transfers to this setting. Hence, we are
only left with computing the norm of the oblique projector Π associated with an
overdetermining mask matrix. For doing so, let WSRT = PTU be the thin SVD with
W ∈ R

s×p, R ∈ R
p×p orthogonal. Then

‖Π‖ = ‖U(UTPPTU)−1UTPPT ‖ = ‖URS−2RTRSWTPT ‖ = ‖URS−1WTPT ‖

=
√

λmax(RS−1WTPTPWS−1RT ) =
√

λmax(S−2) = 1/σmin(P
TU).
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Note that this is not an estimate but the exact value of the 2-norm of the projector
Π.

Remark 1.
1. Since σmin(P

TU) ≤ σmax(P
TU) = ‖PTU‖ ≤ ‖P‖‖UT ‖ = 1, the best possible

value for the bound ‖Π‖ is 1/σmin(P
TU) = 1 and is, e.g., achieved for P =

In×n. Because 1/σmin(P
TU) ≤ 1/σmin(P

TU)2 = ‖(UTPPTU)−1‖, a less
sharp but maybe more familiar estimate for the above expression is ‖ỹ− ŷ‖ ≤
‖(UTPPTU)−1‖‖y − UUT y‖.

2. A comparable result is [1, Thm. 5], which arrives at ‖(UTPPTU)−1 − I‖
as the key quantity for the so-called alias error introduced by the masked
projection. The main difference between this result and the approaches
pursued here (and in [6]) is that the derivation in [1] is with respect to
a different non-Euclidean inner product. Note, however, that the authors
of [1] eventually promote use of the condition number cond(UTPPTU) =
‖UTPPTU‖ · ‖(UTPPTU)−1‖ as the objective function for a greedy point-
selection strategy, which is related to the estimate given by Prop. 2.1. The
method proposed in this work transfers to the condition number objective.

Prop. 2.1 bounds the error between the orthogonal projection of a vector y ∈ R
n

onto a subspace U and the oblique masked projection ŷ = Πy onto U . We now state an
analogous error bound for a solution to a least squares system and its masked counter-
part, based on the associated residuals. Consider the problem minα∈Rp ‖AUα− b‖2
with A ∈ R

m×n, b ∈ R
m. The solution is Uα̃ with

(2.3) α̃ = argmin
α∈Rp

‖AUα− b‖2 = (UTATAU)−1UTAT b.

Given an index subset J := {j1, . . . , js} ⊂ {1, . . . ,m} with corresponding mask matrix
P = (ej1 , . . . , ejs) ∈ R

m×s, the masked least-squares problem induced by P is

(2.4) α̂ = argmin
α∈Rp

‖PTAUα− PT b‖2 = (UTATPPTAU)−1UTATPPT b.

The next proposition bounds the associated errors.
Proposition 2.2. Let α̃ ∈ R

p be the solution to minα∈Rp ‖AUα− b‖2 and let α̂ ∈
R

p be the solution to its masked counterpart minα∈Rp ‖PTAUα− PT b‖2. Moreover,

let QSV T SVD

= AU be the thin SVD of AU . The error between Uα̃ and Uα̂ is bounded
by

‖Uα̃− Uα̂‖ ≤ 1

σmin(AU)σmin(PTQ)
‖res(Uα̃)‖,

where ‖res(Uα̃)‖ = ‖AUα̃−b‖ is the value of the residual of the least-squares-optimal
solution in colspan(U). In terms of the residuals, the full and the masked least-squares
solution exhibit an error of

‖res(Uα̃)− res(Uα̂)‖ ≤ 1

σmin(PTQ)
‖res(Uα̃)‖.

Proof. Let α̃, α̂ be as introduced in (2.3) and (2.4), respectively. Using QSV T SVD

=
AU , we obtain

α̃ = V S−1QT b, α̂ = V S−1(QTPPTQ)−1QTPPT b.
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Hence,

‖Uα̃− Uα̂‖ = ‖α̃− α̂‖ = ‖V S−1
(

(QTPPTQ)−1QTPPT b−QT b
)

‖
≤ ‖S−1‖ · ‖(QTPPTQ)−1QTPPT

(

b−QQT b
)

‖
≤ ‖S−1‖ · ‖(QTPPTQ)−1QTPPT ‖ · ‖res(Uα̃)‖,

since res(Uα̃) = ‖AUα̃ − b‖ = ‖QQT b − b‖. The norm of the oblique projector
(QTPPTQ)−1QTPPT can be computed as in Prop. 2.1. For the error bound on
the residuals, the factor ‖S−1‖ = σmin(AU) drops out of the inequalities, because
AUα̃ = QQT b, AUα̂ = Q(QTPPTQ)−1QTPPT b.

2.3. Greedy point index selection strategies. The basic objective in masked
projection schemes is to minimize the distance between a vector and its masked pro-
jection onto a given subspace. A bound for this distance is given by Prop. 2.1. Since
the subspace is usually to be considered as fixed in the applications, the only way to
tune the bound is via the selection of the index set that defines the associated mask
matrix. This leads to the following combinatorial point selection strategy.

PSS1: min
J⊂{1,...,n},|J|=s

{

1

σmin(PTU)
| P = (ej1 , . . . , ejs)

}

.

In an analogous way, the residual-based error bound of Prop. 2.2 leads to the following
combinatorial point selection strategy.

PSS2: min
J⊂{1,...,m},|J|=s

{

1

σmin(PTQ)
| P = (ej1 , . . . , ejs)

}

,

where QSV T SVD

= AU and A ∈ R
m×n, U ∈ R

n×p are as in Prop. 2.2. In engineering
applications, the matrix A that defines the least-squares problem in Prop. 2.2 may
depend on a parameter vector µ (e.g., parameters that account for varying system
properties such as material constants or boundary conditions). Hence, A = A(µ) and
as a consequence Q = Q(µ). But this, in turn, makes the optimal mask matrix P that
is implicitly specified by PSS2 also parameter-dependent. Formally, this means that
for each change in µ, the combinatorial problem PSS2 has to be solved anew, which
can be a drawback. In practice, both point selection strategies may be executed via
the greedy algorithm proposed in [1, §V.A].

A single step in the greedy optimization works as follows: Let Js = (j1, . . . , js) ⊂
{1, . . . , n} be the point index set at iteration s with corresponding mask matrix Ps =
(ej1 , . . . , ejs). The next point index js+1 is chosen via Alg. 2.1.

The exhaustive greedy search is costly, since it loops over n−s ≈ n indices at each
iteration and thus requires solving about n SVD problems of size s × p. Assuming
that the latter task is performed in O(sp2), the total computational effort is of the
order O(nsp2) which is larger than O(np3). In order to cut these costs, two different
point screening criteria are proposed in [1, V.B], both of them working by an a priori
reduction of the full point index set to a smaller subset of candidate points that
exhibit the best values according to the chosen screening criterion. After this initial
reduction, the algorithm proceeds as described above.

In contrast, we propose in this work a screening criterion that determines the next
point index at each step of the greedy optimization loop based on an approximation
that uses information obtained at the previous iteration. Therefore, our method does
not replace but may be combined with the a priori approach of [1, V.B].
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Algorithm 2.1 Exhaustive greedy MPE for maximizing σmin(P
T
s+1U)

Input: U ∈ R
n×p, Js = {j1, . . . , js} ⊂ {1, . . . , n}, Ps = (ej1 , . . . , ejs) ∈ R

n×s, where
s ≥ p.

1: σopt = 0, J̄s = {1, . . . , n} \ Js
2: for j ∈ J̄s do

3: P̃ = (Ps, ej) ∈ R
n×(s+1)

4: Compute σj = σmin(P̃
TU)

5: if σj > σopt then

6: σopt = σj

7: jopt = j
8: end if

9: end for

Output: Js+1 = Js ∪ {jopt}, Ps+1 = [P, ejopt ], J̄s+1 = J̄s \ {jopt}

3. Theoretical grounds for accelerated missing point estimation. In this
section, we develop the theoretical grounds for a new point selection criterion.

3.1. Greedy point selection formulated as rank-one SVD updates. First,
we observe that step 4 of Alg. 2.1 in fact requires solving a series of rank-one SVD

update problems. Indeed, if ΨsΣsΦ
T
s

SVD

= PT
s U is the thin SVD with Ψs ∈ R

s×p,
Σs = diag(σs,1, . . . , σs,p), Φs ∈ R

p×p, then for any index js+1 ∈ {1, . . . , n} \ Js, we
have

PT
s+1U =

(

PT
s U

eTjs+1
U

)

=

(

ΨsΣsΦ
T
s

(ujs+1,1, . . . , ujs+1,p)

)

=

(

Ψs 0
0 1

)(

Σs

u[js+1,:]Φs

)

ΦT
s ,(3.1)

where we have used the MATLAB-inspired notation u[js+1,:] to denote the js+1th row
of U . The task is therefore to recompute the singular values after adding a row to the
previous-step singular value matrix Σs. This corresponds to the following symmetric
rank-one eigenvalue modification:

(3.2) UTPs+1P
T
s+1U = Φs

(

Σ2
s + vvT

)

ΦT
s , where v = ΦT

s u
T
[js+1,:]

.

The candidate vectors v that arise during the greedy point selection procedure at
iteration s are precisely the rows of the matrix (UΦs) corresponding to the point
indices in J̄s := {1, . . . , n} \ Js. Hence, we may recast the greedy point selection
objective in the following way.

At iteration s, out of the row vectors vj , j ∈ J̄s := {1, . . . , n} \ Js
of UΦs, determine the one that leads to the largest growth in the
smallest eigenvalue of

(3.3) M := Σ2
s + vj(vj)T ∈ R

p×p.

Much is known about symmetric rank-one modifications of the form (3.3), see [17,
9, 15, 4, 5, 10]. Of particular importance for our purposes is the following theorem,
which follows from the considerations [17, §38 – §41] and can also be found in [5,
Thm. 1].
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Theorem 3.1 (Wilkinson, 1965). Let D ∈ R
p×p be diagonal and let v ∈ R

p.
Suppose that the eigenvalues of D are in descending order d1 ≥ . . . ≥ dp. Let λ1 ≥
. . . ≥ λp be the eigenvalues of M := D + vvT and let ρ := ‖v‖2. Then

λi = di + ρµi, where 0 ≤ µi ≤ 1 and

p
∑

i=1

µi = 1.

Moreover, λ1 ≥ d1 ≥ λ2 ≥ . . . ≥ dn−1 ≥ λn ≥ dn.
If the di are distinct and all entries of v are non-zero, the above inequalities hold in
the strict sense.

By computing the characteristic polynomial of M = D + vvT , see [17, eq. 39.7],
[9, §5], one can show that the shifted eigenvalues λi of M are the zeros of

(3.4) f(λ) = 1 +

p
∑

i=1

v2i
di − λ

.

Given the modified λi, the associated eigenvectors are [5, §4]

(3.5) qi =
q̃i
‖q̃i‖

, where q̃i =

(

v1
d1 − λi

, . . . ,
vp

dp − λi

)T

.

3.2. On the growth behavior of the rank-one modified eigenvalues. At
iteration s of the greedy point selection Alg. 2.1, our goal is to select the next point
index jopt by analyzing properties of the candidate row vectors vj of UΦs that induce
the rank-one modifications (3.2), rather than actually solving the modified eigen-
value/singular value decomposition problem. To this end, we investigate in this sub-
section the growth behavior of the modified eigenvalues depending on the components
of the rank-one update vector.

Lemma 3.2. Let D ∈ R
p×p be diagonal, strictly positive definite with mutually

distinct eigenvalues. For v ∈ R
p, let M = D + vvT and let λk, k = 1, . . . , p be the

eigenvalues of M . Then the partial derivative of λk by vi is

(3.6) ∂iλk(v) =
−2

‖q̃k‖2
vi

di − λk(v)
,

where q̃k is the kth (non-normalized) eigenvector of M according to (3.5).
Proof. We will make use of the implicit function theorem: Consider the charac-

teristic function f from (3.4) as a function depending both on v ∈ R
p and λ ∈ R, i. e.,

consider f̃ : Rp×R → R, (v, λ) 7→ 1+
∑p

i=1
v2
i

di−λ
. Let v0 ∈ R

p be arbitrary and let λk,0

be the kth eigenvalue of the rank-one modification D+ v0v
T
0 , so that f̃(v0, λk,0) = 0.

Since ∂λf̃(v0, λk,0) =
∑p

i=1

v2
0,i

(di−λk,0)2
> 0, the implicit function theorem applies and

gives rise to a function λk : v 7→ λk(v) defined in a small neighborhood of (v0, λk,0),

such that f̃(v, λk(v)) = 0. Hence, λk(v) parametrizes the kth eigenvalue depending
on v. Implicit differentiation gives

Dvλk(v) =
−1

∂λf̃(v, λk(v))
Dv f̃(v, λk(v))

=
−2

∑p
i=1

v2
i

(di−λk(v))2

(

v1
d1 − λk(v)

, . . . ,
vp

dp − λk(v)

)

.
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Since differentiation is a local concept, the above argument gives the derivative of the
kth eigenvalue λk(v) for any v ∈ R

p 6= 0. After observing that the denominator of
the prefactor is precisely the squared norm of the modified eigenvector q̃k as stated
in (3.5), the claim follows.

Lemma 3.2 allows us to determine the growth characteristics of the smallest eigen-
value λp(v) of the modified matrix M = D+ vvT depending on the components of v.

Theorem 3.3. Let i ∈ {1, . . . , p− 1}. Consider the behavior of λp along the ith
coordinate, vi 7→ λp

(

(v1, . . . , vi, . . . , vp)
)

. This function is
{

strictly monotonically decreasing for vi > 0,
strictly monotonically increasing for vi < 0.

For the last component i = p, the growth behavior is reversed: The function vp 7→
λp

(

(v1, . . . , vp−1, vp)
)

is
{

strictly monotonically increasing for vp > 0,
strictly monotonically decreasing for vp < 0.

The smallest eigenvalue λp(v) features local extrema at vi = 0 along all of the above
coordinate-line functions. The point v = 0 is a saddle point of v 7→ λp(v).

Proof. The growth behavior of λp(v) along the coordinates is determined by the
signs of the corresponding partial derivatives. The signs are readily determined by
combining Lemma 3.2 and Theorem 3.1.

The statement of Theorem 3.3 is illustrated by Fig. 1, where we consider a positive
definite (p = 10)-dimensional random diagonal matrix D = diag(d1, . . . , dp) and a
random vector v ∈ R

p, with 0 < |vi| < 1 for all i = 1, . . . , p, see Appendix A.
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Fig. 1. Graphical illustration of Theorem 3.3. Left: The graphs of the functions [−5, 5] →
R, vi 7→ λp

(

(v1, . . . , vi, . . . , vp)
)

, i = 1, 4, 7, p−1 for a random vector v ∈ Rp, p = 10, with all compo-

nents vl, l 6= i kept fixed. Right: The graph of the function [−5, 5] → R, vp 7→ λp

(

(v1, . . . , vp−1, vp)
)

for the same random vector v with all components v1, . . . , vp−1 kept fixed. (in this case: dp−1 =
4.112 · 10−2, dp = 2.879 · 10−4)

Given a fixed diagonal matrix D and a finite set of candidate vectors vj , j ∈
{1, . . . , ñ}, Theorem 3.3 gives us important information on how to select a subset of
vectors {vjopt , jopt ∈ Jopt} that is most promising in inducing a large growth in the
smallest eigenvalue of the rank-one modification M = D + vj(vj)T .
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Select the vectors vjopt that feature the largest absolute values in
the ultimate component while all other components are comparably
small.

A more precise analysis of the growth behavior of the smallest modified eigenvalue λp

is given in the next lemma.
Lemma 3.4. Let v ∈ R

p with vi 6= 0 ∀i and let D be a positive definite diagonal
matrix with diagonal entries in descending order d1 > . . . > dp > 0. Let cup(v) =

1 +
∑p−2

l=1
v2
l

dl−dp−1
and clo(v) = 1 +

∑p−2
l=1

v2
l

dl−dp
. Then

0 < dp−1 − λp < dp−1 − λp,0(cup) =

γp
2

− 1

2cup

(

v2p−1 + v2p −
√

(βp − v2p)
2 + (βp + v2p−1)

2 + 2v2p−1v
2
p − β2

p

)

,(3.7)

where λp is the smallest eigenvalue of the rank-one modification M = D + vvT ,
γp = dp−1 − dp > 0 is the gap between the second to last and the last eigenvalue of D,

βp = cup(dp−1 − dp) and λp,0(c) =
α1(c)

2 −
√

α1(c)2

4 − α2(c), with

α1(c) := dp−1 + dp +
v2p−1 + v2p

c
, α2(c) := dp−1dp +

v2p−1dp + v2pdp−1

c
.

The term λp,0(cup) approximates the exact modified λp up to an error of

|λp,0(cup)− λp| < λp,0(clo)− λp,0(cup).

If the component vp is large enough, we can simplify the estimate (3.7). To this end,
suppose further that the ultimate component vp is such that v2p > cup(dp−1−dp). Then

(3.8) 0 < dp−1 − λp <
v2p−1(dp−1 − dp)

v2p − cup(dp−1 − dp)
.

Before we proof the lemma, some remarks are due.
Remark 2.
1. The radicand in (3.7) is always strictly positive. By (3.7), one can show again

that a small vp−1 and a large vp lead to the largest growth in the smallest eigenvalue.
It is the alternation of signs in the binomial terms in the radicand that causes this
behavior. The simplification (3.8) is given in order to emphasize this fact.

2. In the limit case vp = 0, the estimate (3.7) reduces to the trivial estimate
dp−1 − λp ≤ dp−1 − dp, i.e., λp ≥ dp. This is in line with the theory, because the
smallest eigenvalue of the original diagonal matrix D remains unperturbed for vp = 0.

3. In the limit case vp−1 = 0, the estimate (3.7) reduces to

dp−1 − λp ≤
{

dp−1 − (dp +
v2
p

cup
), if v2p < cup(dp−1 − dp),

0, if v2p ≥ cup(dp−1 − dp).

This reflects that λp cannot grow larger than dp−1 in accordance with Theorem 3.1.
4. Since the eigenvalues of a Hermitian matrix are real and are given by the

roots of the real-valued characteristic function f(λ) = 1 +
∑p

i=1
|vi|

2

di−λ
corresponding

to (3.4), the above estimates transfer to the Hermitian case after replacing v2i with
|vi|2, throughout.
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Proof. [Lemma 3.4] Let ϕ(v, λ) =
∑p−2

l=1
v2
l

dl−λ
. By the characteristic equation,

(3.4), it holds that

v2p−1

dp−1 − λp

=
v2p

λp − dp
− 1− ϕ(v, λp).

Because dp < λp < dp−1, it follows that

1 < clo(v) := 1 +

p−2
∑

l=1

v2l
dl − dp

< 1 + ϕ(v, λp) < 1 +

p−2
∑

l=1

v2l
dl − dp−1

=: cup(v).

Therefore,

(3.9)
v2p−1

dp−1 − λp

−
v2p

λp − dp
+ cup > 0 >

v2p−1

dp−1 − λp

−
v2p

λp − dp
+ clo.

Both the expression on the left hand side and the expression on the right hand side
increase monotonically in λp ∈ [dp, dp−1]. Since both are negative for λp sufficiently
close to dp and positive for λp sufficiently close to dp−1, both feature exactly one
zero in the interval [dp, dp−1]. The respective zeros can be determined via solving the
quadratic equations that are obtained by multiplying (3.9) with (dp−1−λp)(λp−dp) >

0. They are given by λp,0(c) =
α1(c)

2 −
√

α1(c)2

4 − α2(c), where

α1(c) = dp−1 + dp +
v2p−1 + v2p

c
, α2(c) = dp−1dp +

v2p−1dp + v2pdp−1

c

for c = cup and c = clo, respectively. (The second solution to each of the quadratic
equations is dispensed with by showing that it is actually larger than dp−1.) Because
of the monotonic growth, we know from (3.9) that

dp−1 > λp,0(clo) > λp > λp,0(cup) > dp,

where λp is the exact eigenvalue of the rank-one modified matrix. In particular,
dp−1−λp < dp−1−λp,0(cup). Substituting the expression for λp,0(cup) and rearranging
terms gives (3.7).

If v2p > cup(dp−1 − dp), we have the simplified estimate

v2p−1

dp−1 − λp

>
v2p

λp − dp
− cup >

v2p
dp−1 − dp

− cup > 0,

which leads to (3.8) as claimed.
The next corollary allows us to understand how λp may be pushed towards the

upper boundary dp−1.
Corollary 3.5. Let v ∈ R

p with vi 6= 0 ∀i. Consider the entries vi, i =

1, . . . , p−2 as fixed. Let v2p > (dp−1−dp)cup, where cup = cup(v) = 1+
∑p−2

l=1
v2
l

dl−dp−1
.

Then

λp(v) → dp−1 for

{

vp−1 → 0 or
vp → ∞.

The corollary follows from the estimate (3.8). Note that none of the limit processes
vi → 0, i = 1, . . . , p− 2 necessarily enforce that λp(v) → dp−1.
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The proof of Lemma 3.4 suggests that we may approximate the unique zero of
the characteristic function (3.4) in [dp, dp−1] by computing the unique zero of

(3.10)
v2p−1

dp−1 − λp

−
v2p

λp − dp
+ c = 0

in the same interval. Reasonable choices for the additive constant are c = c(v, δ) =

1 +
∑p−2

l=1
v2
l

dl−δ
. The choices of δ = dp and δ = dp−1 lead to the lower and upper

bounds clo and cup, respectively. If the growth in λp is comparably moderate, a
better approximation may be achieved by using the interval center δ = 1

2 (dp−1 + dp).
However, this choice does not provide a bound. Fig. 2 displays the graph of the

0 0.01 0.02 0.03 0.04
λ

-500

-300

-100

0

100

300

500

f(
λ

)

f(λ)
f
appr

(λ)

f
low

(λ)

f
up

(λ)

0.0238 0.0239 0.024 0.0241 0.0242
λ

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
f(
λ

)
f(λ)
f
appr

(λ)

f
low

(λ)

f
up

(λ)

λ
p

d
p-1d

p

Fig. 2. Graphs of the characteristic function f(λ) defined in (3.4) and its approximations
implicitly defined by (3.10) for the choices of c = c(v, δ), δ ∈ {dp,

1
2
(dp−1+dp), dp−1} corresponding

to flow, fappr and fup, respectively, in the interval (dp, dp−1). The underlying data set is listed in
Appendix A. Left: On this scale the plots virtually coincide. Right: Detailed view close to the zero
locations. This figure illustrates the error bound given in Lemma 3.4.

function f(λ) defined in (3.4) and the graphs of the functions implied by the right
hand side of (3.10) for the choices of c = c(v, δ), δ ∈ {dp, 1

2 (dp−1 + dp), dp−1}.
4. Accelerated missing point selection. In this section, we introduce a fast

surrogate for the exhaustive greedy point index selection of Alg. 2.1 based on the
theoretical findings of the previous section. We give preliminary illustrations of the
new approach’s performance. After this, we point out an inherent limitation of the
exhaustive greedy approach that is also shared by the new surrogate and we propose
a suitable remedy.

4.1. Greedy point selection using eigenvalue bound estimates. Given a
positive definite diagonal matrix D and a finite set of vectors {vj , j ∈ J̄}, where J̄
denotes the set of indices that have not yet been considered in the MPE, the greedy
objective to pick the one vector vjopt that leads to the largest growth in the smallest
eigenvalue of D+vvT can be reasonably tackled by sorting the set of candidate vectors
according to the estimate (3.7). This gives the following surrogate for the exhaustive
greedy search:

Minimize the right hand side of (3.7) over vj , j ∈ J̄ . Add the unit
vector ejopt corresponding to the optimal index jopt as a new column
to the mask matrix.
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A vectorized pseudo code is listed in Appendix B. The associated computational costs
per iteration are O(np2), the dominating operation being the matrix product in step
3 of Alg. B.1. The performance of this surrogate is visualized for random data in
Fig. 3. Out of a number of 2, 000 random experiments, the (3.7)-criterion picked the
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Fig. 3. Results of 2, 000 random experiments, each featuring a random positive definite diagonal
matrix D ∈ R10 and set of 1, 000 candidate shift vectors {vj , j ∈ 1, . . . , 1, 000} ⊂ R10. The graphs
on the left display the eigenvalues associated with the optimal rank-one modification determined by
exhaustively solving the modified eigenvalue problem for each of the 1, 000 candidate vectors compared
to the eigenvalues achieved by using the best shift vector determined by the (3.7)-criterion. For better
readability, the experiments are sorted by the size. In 1, 788 out of the 2, 000 cases, both criteria
coincided, see left graph. Right: Detailed view of the region where the maximum error occurred.

same vector as the exhaustive minimization in 90% of the cases. In the remaining
cases it picked a vector that induced a rank-one modification that is very close to the
optimal one. The maximum absolute error is 2.39 · 10−4. The errors summed over all
experiments divided by the number of conducted experiments total 5.8 · 10−6.

As explained in Section 3.2, by using (3.7), we replace the modified eigenvalue
problem with computing the zero λp,0(cup) of (3.9) rather than the zero of the char-
acteristic function (3.4). This gives a lower bound on the exact eigenvalue λp.
Fig. 4 displays the surfaces of the approximate eigenvalue λp,0(cup)(vp−1, vp) and
the exact eigenvalue λp(vp−1, vp) for a shift vector v ∈ R

p with fixed components
v1, . . . , vp−2 6= 0 on the square (vp−1, vp) ∈ [0, 0.5] × [0, 0.5]. On the right edge of
the figure, the truncated parabola of Remark 2, (3.) is observable. Both surfaces
agree up to a maximum absolute error of 1.508 · 10−6 and a maximum relative error
of 8.112 · 10−5. Both surfaces have z-values bounded from below by the smallest
eigenvalue dp and from above by the second-to-smallest eigenvalue dp−1 of the unper-
turbed diagonal matrix D. In the case considered in the figure, these read dp = 0.0130
and dp−1 = 0.0241. Note that the closer we push λp towards dp−1, the better the
approximation via (3.10) with c = cup.

At this point, we have established the estimate (3.7) as a fast and accurate surro-
gate for the exact modified rank-one eigenvalue problem and thus for the exhaustive
greedy method Alg. 2.1. Surprisingly, Section 3 even implies ways of improving the
exhaustive algorithm. This will be explained in the next section.

4.2. A cumulative limitation of the exhaustive greedy search. The the-
oretical investigations from Section 3 show that at each iteration of the greedy point
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Fig. 4. Left: surface (vp−1, vp) 7→ λp,0(vp−1, vp) of the approximation of the smallest eigen-
value introduced in the proof of Lemma 3.4. Right: surface of the exact rank-one modification
(vp−1, vp) 7→ λp(vp−1, vp), where λp is computed by solving the eigenvalue problem D + vvT . In
both cases, the components (v1, . . . , vp−2) of v are kept fixed.

selection method, the penultimate singular value bounds the growth of the smallest
singular value. Moreover, the greedy selection comes closest to the objective of mini-
mizing the error bound if it picks a shift vector with a small penultimate component
and a large last entry, see Fig. 4. While this leads to the largest leap in the small-
est singular value, as a side effect, it also minimizes the impact on the penultimate
singular value. (In the extreme case of a zero second-to-last entry, the penultimate
singular value stays fixed.) This means that at the following iteration, it is almost
the same bound that limits the growth of the smallest singular value. In this way, the
greedy optimum at one iteration narrows the possible growth at the next iteration. By
Theorem 3.3, the exhaustive greedy method will exhibit this behavior to the highest
possible extent. Due to the high accuracy of the (3.7)-criterion, this approximation
will suffer from the same effect.

4.3. Towards an improved greedy search. The considerations in the pre-
vious subsection provide guidance on how to improve the greedy approach for the
underlying combinatorial problem: Given a candidate set of shift vectors, we should
find a balance between determining the shift vector that has the strongest impact on
the smallest eigenvalue—which corresponds to greedily decreasing the error bound—
and selecting shift vectors that have strong impact on the remaining eigenvalues.
From Theorem 3.3, it is clear that these objectives oppose each other.

Note that the methodology introduced in Lemma 3.4 transfers to the other eigen-
values. If D = diag(d1, . . . , dp), the dominating terms in the sum expression of
the characteristic equation (3.4) that steer the behavior of the modified eigenvalue
λp−l ∈ (dp−l, dp−l−1) are the summands with indices p− l − 1 and p− l. From (3.4)
we obtain the estimate

v2p−l−1

dp−l−1 − λp−l

−
v2p−l

λp−l − dp−l

+cup,l > 0, where cup,l = 1+
∑

k 6=p−l−1,p−l

v2k
dk − dp−l−1

.

In a fashion analogous to Lemma 3.4, this leads to a certified approximation of λp−l.
Denoting the gap between the (p − l − 1)th and the (p − l)th eigenvalue of D by
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γp−l = (dp−l−1 − dp−l), and setting βp−l = cup,lγp−l, the eigenvalue error bound
corresponding to the exact λp−l is

dp−l−1 − λp−l <
γp−l

2
− 1

2cup,l

(

v2p−l−1 + v2p−l −(4.1)

sgn(cup,l)

√

(

βp−l − v2p−l

)2
+
(

βp−l + v2p−l−1

)2
+ 2v2p−l−1v

2
p−l − β2

p−l

)

.

With inequality (4.1), we have an efficient tool at hand to compute fast approximations
to any eigenvalue of the rank-one modified eigenproblems that result from step 4 of
Alg. 2.1. However, there is one subtlety that has to be considered. For l ≥ 1, the
constant cup,l may take negative values. One can show that if cup,l < 0, then the
solution to the underlying quadratic equation with the positive sign in front of the
square root term gives the sought-after unique zero in the interval (dp−l, dp−l−1).

In order to improve on the exhaustive greedy search, we propose two algorithms
Alg. 4.1 and Alg. 4.2 that alternate between directly addressing the smallest eigenvalue
and targeting the larger eigenvalues. Alg. 4.1 simply switches in every third step of the
greedy loop from targeting the largest growth for λp to targeting the largest growth
for λp−1.

1 Hence, we make use of (4.1) for l = lt, where either lt = 0 or lt = 1.

Algorithm 4.1 Fast greedy MPE with ‘modulo-three’ target switching

1: J̄s = {1, . . . , n} \ Js
2: while |Js| ≤ maxpoints do
3: if mod(s, 3) ≤ 1 then

4: lt = 0
5: else

6: lt = 1
7: end if

8: determine jopt by sorting {vj , j ∈ J̄s} according to (4.1) for l = lt.
9: update: Js+1 = Js ∪ {jopt}, J̄s+1 = J̄s \ {jopt}

10: s = s +1
11: end while

The idea behind the next Alg. 4.2 is the following. When the relative distance
between dp−1 and dp is comparably large, we interpret the situation as offering enough
room for directly improving the error bound. Hence, we directly target the smallest
eigenvalue by minimizing (4.1) for lt = 0, which is the same as (3.7). Otherwise, we
consider the upper bound dp−1 as too constraining for the future growth of λp and
we address the penultimate eigenvalue λp−1 via minimizing the error bound (4.1) for
lt = 1. If the interval (dp−2, dp−1) also happens to be comparably small, we target the
next biggest eigenvalue λp−2 via lt = 2, and so forth. The threshold above which an
interval (dp−k+1, dp−k) is considered as ‘large’ is set by a parameter τ ∈ (0, 1). If the
length of none of the bounding intervals (dp−k+1, dp−k), k = 1, ..., p − 1 exceeds the
threshold, the algorithms remains at lt = 0, i.e., targeting the smallest λp. Therefore,
choosing τ close to one means that the if-statement in Alg. 4.2 will typically return
‘false’; a very small value of τ means that the if-statement will typically return ‘true’.
In both cases, Alg. 4.2 is designed to essentially fall back to the standard greedy choice
of always targeting the smallest index.

1Switching the target every third step represents a best-practice choice. The higher the modulo-
number is chosen, the closer the performance of Alg. 4.1 will resemble the standard greedy approach.
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Algorithm 4.2 Fast greedy MPE with target switching based on the growth potential

1: J̄s = {1, . . . , n} \ Js
2: while |Js| ≤ maxpoints do
3: lt = 0
4: for k = 1 : p− 1 do

5: if (dp−k − dp−k+1)/dp−k > τ then

6: lt = k − 1
7: break

8: end if

9: end for

10: determine jopt by sorting {vj , j ∈ J̄s} according to (4.1) for l = lt.
11: update: Js+1 = Js ∪ {jopt}, J̄s+1 = J̄s \ {jopt}
12: s = s +1
13: end while

5. Numerical experiments. The illustrations given in Section 4 consider the
scenario that we encounter in a single iteration of the greedy point selection. In this
section, we assess the performance of the proposed approximation to the rank-one
eigenvalue problem given by (3.7), when applied sequentially in the greedy loop.
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Fig. 5. Missing point index selection for a basis matrix U ∈ Rn×p with n = 10, 727, p = 23.
The initial p points are determined by the DEIM point selection [6, Alg. 1]. An additional 477
points are selected based on the exhaustive greedy method Alg. 2.1 (left), based on Alg. 4.1 (middle)
and Alg. 4.2 (right), respectively. The graphs show the growth behavior of the five smallest singular
values of PTU ∈ {0, 1}s×p when adding columns to P . The final values of σp are 0.2736 (left),
0.3074 (middle), 0.3315 (right).

5.1. Basic performance test. First, we conduct an experiment for assessing
the computational efficiency of the proposed approach. To this end, we consider a
column-orthogonal basis matrix U ∈ R

n×p with n = 10, 727, p = 23.2 The objective
is to compute a subset of indices out of the set {1, . . . , n} such that the norm of
the corresponding masked projector ‖U(UTPPTU)−1UTPPT ‖ = 1/σmin(P

TU) is

2In this example, the matrix U stems from a proper orthogonal decomposition (POD) of aero-
dynamic flow snapshots.
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Fig. 6. Missing point index selection for a basis matrix U ∈ Rn×p with n = 10, 727, p = 23.
The initial p points are determined by the DEIM point selection [6, Alg. 1]. An additional amount
of 477 points is selected based on the exhaustive greedy method Alg. 2.1, based on the (3.7)-criterion
and based on Algs. 4.1 and 4.2, respectively. Left: Decrease of the error bound after adding the first
30 additional points.

minimized. We determine p = 23 initial points via the DEIM point selection [6, Alg.
1]. Starting from this set of points, we add another 477 points to the index set and the
corresponding unit vector columns to the mask matrix P by using four approaches:
(i) the exhaustive greedy search Alg. 2.1, (ii) the greedy method based on the estimate
(3.7), (iii) the enhanced greedy scheme Alg. 4.1, and (iv) the enhanced greedy scheme
Alg. 4.2 with the user parameter τ set to τ = 0.05. This choice means that when
the lower bound dp−k+1 for the modified eigenvalue λp−k+1 is larger than 95% of the
associated upper bound dp−k, then the growth potential is rated as poor and the next
index is targeted.

The associated computation times are 1173.5s for the exhaustive greedy method
and 2.5s for the various surrogates.3

Fig. 5 shows the growth of the smallest five singular values of PT
s U ∈ R

s×p

when iteratively adding new unit-vector columns to the mask matrix Ps ∈ {0, 1}n×s,
s = 6, . . . , 477. The non-zero entry of the added unit column appears at the optimal
point index determined either via the exhaustive greedy search Alg. 2.1 (Fig. 5, left)
or the enhanced greedy schemes Alg. 4.1, 4.2 (Fig. 5, middle and right, resp.). As
explained in Section 4.2 the standard greedy method suffers from its inherent growth
restriction. This is confirmed by left-most image of the figure. The lines associated
with the modified singular values σp−1 and σp almost coincide. The plot in the middle
of Fig. 5 is associated with Alg. 4.1, which switches between targeting the smallest
and second-to-smallest singular value at every third step of the greedy iteration. The
figure shows that the algorithm uses the full growth potential of the two smallest
singular values. However, the third-smallest singular value now acts as a constraint.
Finally, the right plot in Fig. 5 shows the performance of Alg. 4.2 for τ = 0.05. In the
case at hand, Alg. 4.2 has targeted 330 times the growth of σp, 112 times σp−1, 20
times σp−2, 8 times σp−3, six times σp−4, and one time σp−5, while selecting the 477

3All computations were carried out on a 64bit DELL laptop computer endowed with four IntelR©

CoreTM i7-2637M CPU @ 1.70GHz processors and 3.2 GiB memory.
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additional indices for the mask matrix. The growth lines of the last five eigenvalues
remain close to each other but are well separated. The largest end value of σp is
achieved by this approach.

Fig. 6 shows the decrease of the error bound 1/σmin(P
TU) versus the number

points of added to the index set J , respectively, columns added to the mask matrix. As
expected from the results of Section 4, the (3.7)-criterion closely mimics the behavior
of the exhaustive search, yet it is about 470 times faster. The enhanced methods
Algs. 4.1 and 4.2 are just as fast, but achieve an even lower error bound. The left plot
in Fig. 6 shows the behavior when adding the first 30 points/columns. The points
selected by the exhaustive greedy method and the (3.7)-approximation are exactly
the same. Moreover, in this detailed view, the 3-cycle of Alg. 4.1 is clearly visible.
The more sophisticated target selection of Alg. 4.2 pays off in the longer run.

5.2. Comparison with the true combinatorial optimum. We compare the
various greedy MPE methods to the true combinatorial optimum for a sufficiently
small academic test case. We consider a random orthogonal matrix U ∈ R

n×p with
n = 60, p = 5, and we use DEIM to construct an initial set of p = 5 point indices.
We then use the various greedy MPE methods to add another five point indices to
the DEIM point selection, which yields in each case a mask matrix P ∈ R

n×(p+5) and
an associated masked projector Π = U(UTPPTU)−1UTPPT . Subsequently, we form

a random vector y ∈ R
n and compare the exact relative distance ‖y−Π(y)‖2

‖y−UUT y‖2
to the

error bound ‖Π‖2 from (2.2). Moreover, we compute the actual best five additional
points by a brute force trial of all possible combinations and compute the quantities
‖y−Π(y)‖2

‖y−UUT y‖2
, ‖Π‖2 for the resulting missing point index set.

We repeat the exercise for n = 100, p = 20. In this case, the exhaustive combina-
torial optimization takes more than two days of computation time, even though this
academic test case is smaller than the dimensions to be expected in realistic problems.
Table 5.2 displays the results.

U ∈ R60×5 E
[

‖y −Π(y)‖2/‖y − UUT y‖2
]

‖Π‖2 comp. time
MPE greedy 1.181 3.068 ≈ 0.01s
MPE greedy (3.7) 1.181 3.068 < 0.005s
MPE greedy Alg. 4.1 1.175 2.914 < 0.005s
MPE greedy Alg. 4.2 1.157 2.919 < 0.005s
combinatorial optimum 1.139 2.346 2.26h

U ∈ R100×20 E
[

‖y −Π(y)‖2/‖y − UUT y‖2
]

‖Π‖2 comp. time
MPE greedy 1.626 5.674 ≈ 0.05s
MPE greedy (3.7) 1.626 5.674 < 0.01s
MPE greedy Alg. 4.1 1.556 4.362 < 0.01s
MPE greedy Alg. 4.2 1.556 4.362 < 0.01s
combinatorial optimum 1.507 3.981 2days, 3.32h

Table 1
Comparison of the error bound (2.2) with the exact value after adding five point indices to an

initial index set of p ∈ {5, 20} DEIM points. Here, E
[

‖y−Π(y)‖2
‖y−UUT y‖2

]

denotes the mean averaged over

100,000 random vectors y.

For the n = 100, p = 20 test case the DEIM point selection is

JDEIM = {3, 6, 7, 20, 22, 23, 28, 30, 33, 34, 36, 37, 40, 41, 50, 58, 65, 72, 79, 99}.
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The five additional indices determined by the various MPE options are

JMPEgreedy = {90, 16, 26, 76, 97} = JMPE(3.7),

JMPE(Alg.4.1) = {90, 16, 2, 66, 8} = JMPE(Alg.4.2),

Jcomb.opt. = {9, 14, 77, 24, 43}.
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Fig. 7. Missing point index selection for a complex basis matrix Q ∈ Cn×p with n = 53, 635,
p = 5. The initial p points are determined by the DEIM point selection [6, Alg. 1]. An additional
495 points are selected based on the exhaustive greedy method Alg. 2.1, based on the (3.7)-criterion,
and based on Algs. 4.1 and 4.2. Left: Decrease of the error bound after adding the first 45 additional
points.

5.3. An engineering example. This section features an application of the
accelerated missing point selection to a computational fluid dynamics (CFD) model
reduction problem. More precisely, the accelerated MPE is applied within the context
of the linear frequency domain (LFD) approach to unsteady fluid dynamics.

The LFD approach applies to time-accurate flows governed by the Navier–Stokes
equations under small, approximately periodic perturbations, the key feature being a
transition to the frequency domain via a Fourier transformation. The resulting equa-
tions are linearized in the frequency domain by a truncation after the first harmonic
terms. Even briefly sketching the LFD method is beyond the scope of this paper
and the interested reader is referred to [16] and [19] for details. For our purpose, it
is sufficient to note that the LFD approach leads to the problem of solving a large-
scale sparse complex-valued parametric linear equation system associated with the
unstructured spatial discretization of a set of partial differential equations:

(5.1) A(M,κ)W = b(M,κ), A(M,κ) ∈ C
N×N , b(M,κ) ∈ C

N .

The parameters of interest are the free-stream Mach number, M , which is the far field
flow velocity divided by the speed of sound, and the reduced frequency, κ, which is the
frequency of the periodic perturbations normalized by a reference length and the free-
stream velocity. The state vector W = W (M,κ) ∈ C

N contains the discretized flow
variables transformed to the frequency-domain, i.e., the Fourier transformations of the
density, the velocity components, the total energy, and the turbulent viscosity. Hence,
the dimension of the discretized state vector for the flow around a two-dimensional
airfoil associated with a computational grid of degree n is N = 5n.
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Following [19], we replace the full model (5.1) by a weighted least-squares problem
restricted to a low-dimensional POD subspace. The reduced model is based on the
ansatz of decoupling the Mach number and the reduced frequency dependency via
Wr(M,κ) = UMα(κ), where UM ∈ C

N×p, UH
MUM = Ip, represents a suitable unitary

basis that spans the space of approximate solutions at a certain Mach number M .
Given UM , the coefficient vector α(κ) ∈ C

p is determined by the minimum residual
condition in the so-called non-descriptor L2-metric

(5.2) min
α(κ)∈Cp

‖A(M,κ)UMα(κ)− b(M,κ)‖2S .

Here, S ∈ R
N×N is a diagonal matrix of positive weights inducing the inner product

〈v, w〉S := vHSw on C
N associated with the spatial discretization. The proper weights

are the reciprocal values of the volumes of the corresponding grid cells Sjj = Ω−1
j ,

see [19] for details. Computation-wise, the dominant operation is the (sparse) matrix
product A(M,κ)UM , which has an O(Nrp)-FLOP count, where r is the average
number of nonzero entries per row in A(M,κ). This product has to be recomputed
for each value of κ.4 Note that usually N ≫ p, so that the system (5.2) is massively
overdetermined.

MPE-reduced least-squares system. As explained in Section 2, we use a mask
matrix P ∈ {0, 1}n×s to reduce the costs associated with the least-squares system
(5.3). In this way, the full matrix product A(M,κ)UM is omitted. The non-Euclidean
norm is transferred to the complex 2-norm via ‖v‖S = ‖

√
Sv‖2. The resulting masked,

weighted least-squares problem restricted to UM reads

(5.3) min
α(κ)∈Cp

‖PT
√
SA(M,κ)UMα(κ)− PT

√
Sb‖22.

The matrix products are evaluated as follows: the product PT
√
SA(M,κ) is per-

formed by picking the rows out of the matrix A(M,κ) that are indicated by the mask
matrix and by multiplying each selected row with the associated weight in

√
S. This

results in a sparse (s × N)-matrix. Hence, neither P nor S need to be formed as
actual matrices. Then, the right-multiplication with UM is performed. Due to the
sparsity of the rows of A(M,κ), the FLOP count is O(rsp) and is thus completely
independent of the scale N of the spatial discretization. After having constructed the
reduced operator, the remaining operations for solving (5.3) are also independent of
N . (For dense matrices, we arrive at a FLOP count of O(Nsp) vs. O(N2p) for the
original system (5.2).)

We refer to the flow approximations Wr(M,κ) = UMα(κ) obtained by solving
(5.3) for α ∈ C

p as MPE-ROM solutions. The flow approximations Wr(M,κ) =
UMα(κ) obtained by solving the full least-squares system (5.2) for α ∈ C

p will be
called minres-ROM solutions.

For the numerical experiments, we conduct reduced predictions at a fixed tran-
sonic Mach number of M0 = 0.802 for the flow around the NACA 64A010 airfoil on
a grid of degree n = 10, 727, so that N = 53, 635. A POD of p = 5 state vector
snapshots {W (M0, κ) ∈ C

N , κ = 0.1, 0.3, 0.5, 0.7, 0.9} is used as the reduced space of
approximate solutions, i.e.,

UM0

POD
= (W (M0, κ1),W (M0, κ2),W (M0, κ3),W (M0, κ4),W (M0, κ5)) ∈ C

N×p.

4In the special case at hand, A(M,κ) actually exhibits an affine dependency in κ that alleviates
this [19, §4.2]. Yet, for a proof of concept, here, we treat the parametric dependency as completely
arbitrary.
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The state snapshots are computed with DLR’s TAU-LFD solver [16].
To begin with, we repeat the performance test of Subsection 5.1. As before, the

first p point indices are determined via [6, Alg. 1]. In this case, this algorithm is

applied to the matrix Q ∈ C
N×p obtained from an SVD of A(M,κ)UM

SVD

= QSV T .
Starting from this set of points, we add 495 columns to the mask matrix P by using
the exhaustive greedy search Alg. 2.1, and the greedy methods based on the (3.7)-
criterion and Algs. 4.1 and 4.2 with the user parameter τ set to τ = 0.05. The
computation time for the former is 2434.0s, while the latter ones take 7.0s each.

Fig. 7 shows the decrease of the error bound 1/σmin(P
TQ) versus the number of

points added to the missing point index set. The essential observations of Section 5.1
are confirmed by this figure. The accelerated point selection procedures now exhibit a
speed-up factor larger than 347 when compared with the exhaustive greedy method.
This is slightly less than the speed-up factor observed in the example of Section 5.1,
because in this case, the modified eigenvalue problem to be solved within the the
exhaustive greedy loop is only p = 5-dimensional and thus quite small. The difference
in computational time between the exhaustive greedy method and the (3.7)-criterion
will become larger when the number of columns of the input matrix, and thus also
the dimension of the modified eigenvalue problem, increases. As anticipated from
Section 4.3, Algs. 4.1 and 4.2 outperform the standard approach.

Next, we compare the accuracy of the minres-ROM solutions with the accuracy
of MPE-ROM solutions based on the fast approximations. Approximate flow solu-
tions are computed at intermediate reduced frequencies κ ∈ {0.2, 0.4, 0.6, 0.8}. Fig. 8
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Fig. 8. Relative errors for the flow approximations associated with the full minimum residual
model (5.2) and the MPE model (5.3) based on using only 50 rows out of the complete set of
N = 53, 656 rows. The mask matrix is computed via the exhaustive greedy method following PSS1,
PSS2, and the enhanced greedy algorithms Algs. 4.1 and 4.2. In addition, we show the error bars
corresponding to the PSS2–MPE model, which uses the mask matrix computed for κ = 0.4 with
Alg. 4.2 throughout at the remaining parameter locations.

displays the relative errors of the minres-ROM solutions, as well as the MPE-ROM
solutions following the projection-based point selection scheme PSS1 and the residual-
based point selection scheme PSS2. For each scheme, the first five columns of the
mask matrix P are computed via [6, Alg. 1] using U and Q as input matrix, respec-
tively. Afterwards, an additional 45 columns are added to the mask matrix P . For
the exhaustive greedy method, this takes 74s. Conducting the accelerated enhanced
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greedy selections takes 0.7s, each. As was mentioned in Section 2.3, the error bound
associated with the residual-based point selection strategy PSS2 formally only ap-
plies to a certain parameter condition. Yet, the figure shows that reusing the set of
filter points obtained via Alg. 4.2 at, say, κ = 0.4 for the predictions at the other
reduced frequencies leads to comparable results and outperforms in all but one cases
the projection-based point-selection strategy PSS1. (Recycling the mask matrix from
κ = 0.4 is an arbitrary choice, the point filters specific to κ = 0.2, 0.4, 0.8 do equally
well.)
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Fig. 9. Distributions of the frequency-domain energy at the surface of the NACA 64A010
airfoil computed with the full minres-ROM, the exhaustive greedy MPE-ROM, and the Alg.4.2-based
MPE-ROM, in comparison to the reference LFD solution of DLR’s TAU code. Left: Real part of
frequency-domain energy. Right: Imaginary part of frequency-domain energy.

Fig. 9 shows the surface distributions of the frequency-domain energy of the full
minres-ROM approximation, the exhaustive greedy MPE-ROM approximation, and
the MPE-ROM based on PSS2 combined with Alg.4.2 compared with the reference
TAU-LFD solution. At this Mach number, the flow field exhibits sonic shocks which
produce the peaks of the plots. The figure also displays the shape of the NACA
64A010 airfoil in order to relate the shock location to the airfoil. For more details on
the engineering aspects of this example, see [16].

6. Conclusion. We have exposed that each iteration of the exhaustive greedy
missing point estimation necessitates solving a series of rank-one modified eigenvalue
problems, where the objective is to find the rank-one modification that leads to the
largest growth in the smallest eigenvalue of the reference matrix. The number of vec-
tors considered for inducing the rank-one modifications depends on the dimension n of
the underlying (discretized) full model. By theoretical analysis, we identified the dom-
inating factors that control the growth behavior of the modified eigenvalues. Based
on this information, we introduced a fast surrogate that sorts the set of candidate
vectors according to an approximate solution of the associated eigenvalue problem. If
p denotes the dimension of the subspace associated with the reduced model, then the
computational costs per iteration for the surrogate are O(np2), compared to > O(np3)
for the exhaustive greedy search. For the examples considered, the surrogate is highly
accurate in the sense that it selects in most cases the same vector as the exhaustive
greedy search, which is of higher priority than the actual accuracy of the eigenvalue
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approximation. Moreover, we have exposed a limitation that is inherent to the greedy
approach, and introduced a variation that alleviates this problem.

The method works only for adding more columns to the mask matrix than there
are basis vectors in the subspace associated with the reduced model, and thus may be
used as a complement to the DEIM algorithm, which provides just as many selected
point indices (and, consequently, columns in P ), as there are basis vectors. In our
numerical experiments, the accelerated improved greedy search was two orders of
magnitude faster than its standard counterpart. In addition, it arrived at a lower
objective function value in all cases considered.
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Appendix A. Data used for producing Figs. 1 and 2. We have employed
M = D + vvT ∈ R

10, where D = diag(d1, . . . , d10) and
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Appendix B. Efficient evaluation of the eigenvalue approximation. It is
a well-known fact that high-level scripting languages like SciPy [11] and MATLAB [12]
are slow when it comes to entry-wise matrix operations within larger loops. A pseudo-
code that avoids such operations is given in Alg. B.1, where we orientate ourselves by
the MATLAB syntax. The code solves all quadratic equations required for evaluating
the (3.7)-criterion efficiently in a block-wise way. In Alg. B.1, the symbol 1 denotes
the vector with all entries equal to one of suitable dimension. The symbol U [J̄s, :]
means to take all rows corresponding to the index set J̄s. Likewise, Vsq[:, p] means to
take the pth column of the matrix Vsq.

Note that Alg. B.1 describes a single greedy iteration for adding a new index jopt
to the previous-stage index set Js. By Alg. B.1, step 2, every such iteration requires
the SVD of an s × p matrix. According to (3.1), this is in fact an update problem
where a new row is added to an existing SVD. There are methods that achieve this
more efficiently than recomputing the SVD from scratch [4] and it is exactly one such
method that is utilized in approximate form within the greedy loop in our accelerated
algorithm. Yet, because the subspace dimension p and the maximum number of
missing point indices allowed in practical applications are expected to be comparably
small, the savings of employing such an SVD update technique once more after the
new index has been determined might be negligible.
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