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Fixed point iteration is a common strategy to handle interdisciplinary coupling within a
feedback-coupled multidisciplinary analysis. For each coupled analysis, this requires a large
number of disciplinary high-fidelity simulations to resolve the interactions between different
disciplines. When embedded within an uncertainty analysis loop (e.g., with Monte Carlo
sampling over uncertain parameters) the number of high-fidelity disciplinary simulations
quickly becomes prohibitive, since each sample requires a fixed point iteration and the
uncertainty analysis typically involves thousands or even millions of samples. This paper
develops a method for uncertainty quantification in feedback-coupled systems that leverages
adaptive surrogates to reduce the number of cases for which fixed point iteration is needed.
The multifidelity coupled uncertainty propagation method is an iterative process that uses
surrogates for approximating the coupling variables and adaptive sampling strategies to
refine the surrogates. The adaptive sampling strategies explored in this work are residual
error, information gain, and weighted information gain. The surrogate models are adapted
in a way that does not compromise accuracy of the uncertainty analysis relative to the
original coupled high-fidelity problem as shown through a rigorous convergence analysis.

I. Introduction

This work proposes a new multifidelity uncertainty propagation method for feedback-coupled multidisci-
plinary systems. Multidisciplinary analysis and optimization is an extensive area of research focused on

methods that take into account the interactions between multiple disciplines, working towards building an
efficient engineering system.1,2, 3, 4 Optimization of such complex systems often pushes the designs close to
failure limits, which makes accounting for inherent system uncertainties paramount. Historically, uncertain-
ties are accounted for by using safety factors; however, the drive to enhance system efficiency and robustness
requires more rigorous uncertainty characterization methods. To be practically applicable, these methods
must also be computationally efficient. The new method proposed in this paper balances these dual goals of
computational efficiency and rigor.

A review of existing methods in uncertainty analysis for multidisciplinary optimization can be found in
Yao et al.5 The task of uncertainty analysis—forward propagation of uncertainty from inputs to outputs
through a system—is particularly challenging for a multidisciplinary system due to coupling between different
disciplines. This coupling could be feed-forward (one-directional) or feedback (bidirectional). Feed-forward
coupling is usually easier to deal with; it has been tackled using approximations such as surrogates6 and
decomposition combined with recomposition through importance sampling.7 Here, we focus on the more
challenging case of uncertainty analysis of feedback-coupled systems. Such systems arise in many aerospace
engineering applications, such as aero-structural-thermal coupling in hypersonic flights,8 turbine engine cycle
analysis,9 satellite performance analysis,10,11 topology optimization,12 and many more. Our approach is non-
intrusive (i.e., it treats all disciplinary analyses as black-boxes that are viewed in terms of their inputs and
outputs without requiring knowledge of the internal model mechanisms) and thus it is broadly applicable to
this class of problems.

One of the major challenges in feedback-coupled systems is to obtain multidisciplinary feasible solutions.13

A common method to do this is through fixed point iteration (FPI).13,14,15 In FPI, the outputs from one
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discipline are fed as inputs to the coupled discipline and this process iterates until a multidisciplinary feasible
solution is reached. Each iteration within the FPI requires disciplinary high-fidelity solves, thus the method
becomes computationally intensive as the number of iterations for FPI convergence increases. When FPI is
embedded within Monte Carlo simulation for uncertainty propagation, the number of high-fidelity simulations
can quickly become computationally prohibitive.

Past work has tackled uncertainty analysis of feedback-coupled systems by approximating the coupling
variables and outputs using surrogates. The surrogate models are then used in place of the high-fidelity
FPI simulations to propagate the uncertainty. In particular, stochastic expansion methods using polynomial
chaos expansions combined with dimension reduction have been explored for feedback-coupled systems.16,17

Hybrid methods that combine Monte Carlo sampling and stochastic expansion methods for stochastic coupled
problems have also been studied.18,19 Another approach uses Gaussian Process surrogates to estimate low-
order statistical moments of system outputs in the presence of epistemic and aleatory uncertainties.20 These
methods are efficient if the surrogate predictions of the coupling variables and outputs are accurate; however,
these existing methods all typically lack guarantees of convergence to the fixed point solutions of the original
high-fidelity system.

Decoupling is another approach for dealing with uncertainty analysis of feedback-coupled systems. These
methods include fully decoupled approaches such as collaborative reliability analysis21 and the first order
reliability method (FORM),22 and partially decoupled approaches such as the likelihood-based approach that
approximates a feedback-coupled system as a feed-forward system.23 Decoupling approaches are efficient
because they avoid feedback-coupled system analyses and the associated FPI, but at the cost of neglecting
the dependence between the inputs and the coupling variables. This can be effective if the goal is to
estimate the statistics of the coupling variables or when the sensitivity of the system output to coupling
variables is low. However, it can lead to poor results when sensitivity of the system outputs to the coupling
variables is high. In these cases, even if each discipline model itself is accurate, an improper representation
of the interdependent effects of disciplinary coupling leads to inaccurate estimation of the system output
distribution.

In this work, we introduce an approach that maintains the accuracy of the mapping from the inputs to
the system outputs and uses adaptive surrogates for the coupling variables to reduce the number of cases
for which FPI is executed in the Monte Carlo simulation of a feedback-coupled system. The surrogates
are constructed in terms of the input random variables using multidisciplinary feasible solutions of the cou-
pling variables and are iteratively refined using adaptive sampling based on an information-gain metric and a
residual-error metric. Various adaptive sampling strategies have been previously explored for surrogate-based
optimization.24,25 Adaptive sampling for estimating reliability by refining around the limit state boundary
has been investigated based on expected feasibility functions.26,27 Information-gain-based approaches have
been used previously for global optimization28,29,30 and optimal experimental design.31,32 Our work differs
from previous efforts in that we develop adaptive sampling strategies in the context of uncertainty propa-
gation in coupled multidisciplinary systems—our adaptation approach exploits the particular structure of
the feedback-coupled analysis. Our proposed method increases the computational efficiency for uncertainty
propagation, while not compromising the accuracy relative to the results obtained by using Monte Carlo
simulation with FPI, as we show through a rigorous convergence analysis.

The remainder of the paper is organized as follows. Section II presents the problem statement for
uncertainty analysis of a feedback-coupled system. Section III provides the details of the multifidelity coupled
uncertainty propagation method and its convergence analysis. Section IV presents numerical experiments
that compare the efficiency of the proposed method to that of the standard FPI approach. Section V provides
the conclusions.

II. Multidisciplinary Coupled Uncertainty Propagation: Problem Setup

A generic feedback-coupled multidisciplinary system is shown in Figure 1. For the example depicted, the
number of disciplines ND = 3, with discipline 1 and discipline 2 being feedback-coupled through coupling
variables C1 and C2. Here, the number of coupling variables is NC = 2. The coupling variable C1 is an input
for discipline 2 and an output for discipline 1. The coupling variable C2 is an input for discipline 1 and an
output for discipline 2. Let C∗1 and C∗2 be the multidisciplinary feasible solution of the coupling variables for
the feedback-coupled system, which is achieved when the interdisciplinary coupling constraints are satisfied
(see Cramer et al.13 for a detailed discussion on problem formulation for multidisciplinary systems).
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The variables y(1) and y(2) represent the disciplinary outputs from discipline 1 and 2, respectively, and
S is the system output computed by discipline 3. The multidisciplinary system is described by the set of
high-fidelity models H = {HC1

(C2,x), HC2
(C1,x), Hy(1)(C

∗
1 , C

∗
2 ,x), Hy(2)(C

∗
1 , C

∗
2 ,x), HS(y, C∗1 , C

∗
2 ,x)} with

input vector x ∈ Rdim and disciplinary output vector y = [y(1), y(2)]T . The inputs could be independent
or shared inputs for different disciplines. Note that in this description we treat the coupling variables and
outputs of each discipline as scalars but in general they could be multidimensional vectors. All theories
developed in this work can be extended to such cases. Also note that while Figure 1 shows only two
feedback-coupled disciplines, our approach extends to the case of multiple feedback-coupled disciplines.

 
  

Input realizations, 𝐗 

High-Fidelity Discipline 1 Analysis 

𝐶1 = 𝐻𝐶1
(𝐶2, 𝐗) 

𝑦(1) = 𝐻𝑦(1)(𝐶1
∗, 𝐶2

∗, 𝐗) 
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∗, 𝐶2

∗, 𝐗) 

High-Fidelity Discipline 3 Analysis 

𝑆 = 𝐻𝑆(𝐲, 𝐶1
∗, 𝐶2

∗, 𝐗) 

 

𝐶1 

𝐶2 

𝑦(1), 𝐶1
∗ 𝑦(2), 𝐶2

∗ 

𝑆 

Figure 1. Feedback coupled multidisciplinary system

The aim of this work is to quantify uncertainty in disciplinary outputs y and system output S due to
uncertainty in inputs x. We consider uncertainty in the inputs defined by a probability distribution function,
πx. To estimate the corresponding uncertainty in y and S, we use Monte Carlo simulation. Consider Ntotal
input realizations x1, . . . ,xNtotal

drawn randomly from πx. The Monte Carlo simulation propagates each of
these samples through the system analysis and generates the corresponding output sample y1, . . . ,yNtotal

.
Let X = {x1, . . . ,xNtotal

} be the set of Ntotal input realizations. For each input realization, we must solve
the feedback-coupled multidisciplinary system. As noted before, FPI is a common method to do this. For
the depicted example, at a given realization xi, the FPI is initialized with an arbitrary value of one of the
coupling variables. For example, an initial guess for C1 is used for discipline 2 to calculate the value of
C2 and feed that value of C2 to discipline 1 to calculate C1. The output C1 from discipline 1 is again
fed into discipline 2 and the process iterates until the multidisciplinary feasible solution is reached. A
multidisciplinary feasible solution obtained using FPI is denoted by [CFPI1 , CFPI2 ]T . Note that here we
assume ∀ xi ∈ X ∃ [CFPI1 , CFPI2 ]T , i.e., for each input realization in X there exists at least one fixed point
solution for the feedback-coupled system.

III. Multifidelity Coupled Uncertainty Propagation via Adaptive Surrogates

We propose a multifidelity coupled uncertainty propagation method that reduces the number of cases for
which we need to perform FPI and thus reduces the number of required high-fidelity disciplinary simulations.
This section gives an overview of the approach, describes the adaptive sampling strategies, and discusses
convergence.

A. Approach Overview

Figure 2 presents a flowchart detailing the multifidelity coupled uncertainty propagation method and the
blocks described by Algorithms 1 and 2. This flowchart uses the same definitions from the example described
in Figure 1. Note that the approach applies to multiple disciplines and multi-dimensional coupling variables,
but the simpler case is shown for ease of exposition. The method is an iterative process that uses surrogate
models for approximating the coupling variables, with the approximate coupling variables denoted by C̃.
Here, we use a Kriging surrogate,33,34 but one could use any surrogate that is equipped with an uncertainty
estimate.
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Given the set X of Ntotal input realizations, we first select a subset of Nsur initial samples, X0
sur ⊂ X.

The superscript 0 represents the 0th cycle of the method to denote initial samples for training the surrogates.
The subset selection can be conducted in any way, but here we maximize the minimum distance between the
samples in order to obtain coverage across the input space. Then FPI is conducted for the coupled system at
each of the Nsur samples to obtain the multidisciplinary feasible solutions of the coupling variables at those
samples. We denote the resulting vector of multidisciplinary feasible solutions of the ith coupling variable as
CFPIi (X0

sur). The dataset {X0
sur;C

FPI
i (X0

sur)} is used to build the surrogate for the ith coupling variable.
Since FPI is performed for all the realizations in X0

sur, the multidisciplinary feasible coupled system output
can be calculated for these cases. The system outputs for the realizations obtained through FPI and those
satisfying the residual error tolerance (discussed later in this section) are included in the set of accepted
system outputs, Saccept. The accepted system outputs after the 0th cycle are given by Saccept = {S(X0

sur)}.
The set of remaining input realizations is given by X0

rem = X \X0
sur and the number of remaining samples

is given by N0
rem = Ntotal −Nsur. These initialization steps are shown in Algorithm 1.

Algorithm 1 Initialization for the uncertainty propagation method

1: procedure Initialization(ND, NC , Nsur,X)
2: Select Nsur initial samples for building surrogate, X0

sur ⊂ X, by maximizing the minimum distance
between the samples

3: Perform FPI to get multidisciplinary feasible solution for the NC coupling variables at the selected
X0
sur locations, CFPIi (X0

sur),∀i = 1, . . . , NC

4: Build NC surrogates for coupling variables using the dataset {X0
sur;C

FPI
i (X0

sur)},∀i = 1, . . . , NC

5: Saccept ← {S(X0
sur)} . Set of accepted system outputs for indicated realizations

6: X0
rem ← X \X0

sur . Remaining realizations
7: N0

rem ← Ntotal −Nsur . Number of remaining realizations
8: return X0

rem, N
0
rem,X

0
sur,Saccept

9: end procedure

Then the set of remaining input realizations, X0
rem, and the surrogate predictions for the coupling

variables are propagated through the respective high-fidelity disciplinary analysis to estimate the outputs.
Note that FPI is not performed at this point and the high-fidelity simulations of the coupled disciplines
can be decoupled as seen in Figure 2. A normalized residual error metric et at the current cycle t for the
approximation of the coupling variables is defined as

et(x) =

NC∑
i=1

∣∣∣C̃ti (x)− Couti (x)
∣∣∣

κi
, (1)

where C̃ti is the surrogate model prediction at the current cycle t, Couti is the output from the high-fidelity
analysis of the ith coupling variable, κi is the normalization constant for the residual errors of the ith coupling
variable, and NC is the number of coupling variables. The normalization constants are problem specific and
will be specified with the respective test problems. The system outputs for the realizations x that satisfy the
residual error tolerance criterion et(x) ≤ ε, where ε is a user-defined residual error tolerance, are accepted
(Saccept = Saccept ∪ {S(x),∀x ∈ Xt

rem : et(x) ≤ ε}).
Let Xt

rem = {x ∈ X \ Xt
sur : et(x) > ε} be the set of N t

rem realizations that did not satisfy the error
tolerance. An adaptive sampling strategy (described in detail in Section III. B) is used to select one of these
realizations, x∗t ∈ Xt

rem. For the selected realization, FPI is used to solve for the multidisciplinary feasible
solution, CFPIi (x∗t ), for i = 1, . . . , NC .

The surrogate model for the ith coupling variable is then refined using Xt+1
sur = Xt

sur ∪ {x∗t } and the up-
dated dataset {Xt+1

sur ;CFPIi (Xt+1
sur )}. No additional high-fidelity simulations are required during the selection

of x∗t with the adaptive sampling strategy. In the next cycle, Xt
rem realizations are propagated through the

layers of surrogates and high-fidelity models as described above to find the realizations for which the error in
Equation 1 is not acceptable, Xt+1

rem. This proceeds iteratively till Xt+1
rem = ∅. The uncertainty propagation

procedure is described in Algorithm 2.
Note that the proposed method works by building surrogates for the coupling variables as a function of

the input random variables, rather than building surrogates for the disciplinary outputs or system outputs
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Algorithm 2 Multifidelity coupled uncertainty propagation

1: procedure UncertaintyPropagation(ND, NC , Nsur, N
0
rem,X

0
rem,X

0
sur,Saccept, ε)

2: t← 0 . Cycle number
3: while N t

rem > 1 do

4: Evaluate surrogate predictions for coupling variables, C̃ti ,∀i = 1, . . . , NC

5: Propagate Xt
rem and C̃ti through all high-fidelity disciplinary analysis to estimate outputs

y(k),∀k = 1, . . . , ND and Couti ,∀i = 1, . . . , NC . Decoupled analysis: no FPI performed

6: Evaluate normalized residual error, et(x) using Equation 1
7: Saccept ← Saccept ∪ {S(x),∀x ∈ Xt

rem : et(x) ≤ ε}
8: t← t+ 1
9: Xt

rem ← {x ∈ Xt−1
rem : et(x) > ε}

10: N t
rem ← |Xt

rem|

11: if N t
rem > 1 then . Perform adaptive sampling

12: Find x∗t for the selected adaptive sampling strategy using Equations 2, 10 or 12

13: Perform FPI at x∗t to get CFPIi (x∗t ),∀i = 1, . . . , NC
14: Xt

sur ← Xt−1
sur ∪ {x∗t }

15: Updated surrogates using {Xt
sur;C

FPI
i (Xt

sur)},∀i = 1, . . . , NC
16: Nsur ← Nsur + 1
17: Saccept ← Saccept ∪ {S(x∗t )}
18: Xt

rem ← Xt
rem \ {x∗t }

19: end if
20: end while

21: if N t
rem == 0 then

22: return Saccept
23: else . N t

rem = 1
24: Perform FPI for the one remaining realization in Xt

rem

25: Saccept ← Saccept ∪ {S(Xt
rem)}

26: return Saccept
27: end if
28: end procedure
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directly. The reasons that motivate this choice are two-fold. Firstly, building surrogates for the coupling
variables permits us to exploit the properties of feedback-coupled analyses to design an adaptive sampling
strategy for iteratively refining the surrogates by quantifying the residual error for the convergence of the
coupling variables. Secondly, monitoring the residual error for the coupling variables in order to accept or
reject a solution ensures convergence to the fixed point solutions based on the residual error tolerance. In
contrast, if one were to build surrogates for the disciplinary outputs or the system outputs directly, it is not
clear how to define adaptive sampling strategies or to prove convergence, because there is no obvious method
to quantify the error in the solution.

The major advantage of this method is that it maintains a similar level of accuracy as the uncertainty
analysis of high-fidelity coupled system using FPI for all the realizations in X (analyzed in more detail in
Section III. C). The proposed method does not perform FPI for all x ∈ X. FPI is performed only for the
initial X0

sur realizations and the selected x∗t realizations in each cycle through the adaptive sampling process.
As the results will show, this can lead to substantial computational savings without compromising accuracy.
Another advantage of the method is that, although the high-fidelity coupled disciplinary analyses for FPI
cannot be decoupled, the remainder of the high-fidelity disciplinary analyses can be decoupled as shown in
the flowchart (Figure 2). This would be favorable when communication between the disciplines is difficult
due to their development by different working groups or the analyses running on separate platforms. Even
though we partially decouple the process, we still recover the one-to-one mapping between the inputs and
the system outputs through the iterative process.

B. Adaptive Sampling Strategies

Three different adaptive sampling strategies for selecting the x∗t realization, which is used to update the
surrogate models, are explored for the multifidelity coupled uncertainty propagation method.

1. Maximum Residual Error

In this sampling strategy, the realization x∗t ∈ Xt
rem with maximum normalized residual relative error is

selected as the next sample. For cycle t, the optimization problem for the maximum residual error adaptive
sampling strategy is given by

x∗t = argmax
x∈Xt

rem

NC∑
i=1

∣∣∣C̃ti (x)− Couti (x)
∣∣∣

κi
. (2)

2. Maximum Information Gain

Using information gain as the sampling strategy enables us to use the surrogate prediction as well as the
surrogate prediction standard deviation to make a decision on where to sample next. Note that both of these
quantities are available from the Kriging fit that is used in this work. The Kriging surrogate prediction at
any location in the design space, x, is defined by a Gaussian distribution with mean prediction, µ(x), and
prediction standard deviation, σ(x). This adaptive sampling strategy chooses the next sampling location
such that there will be maximum information gain in the surrogate prediction at the locations corresponding
to the realizations in Xt

rem.
In order to evaluate the information gain, a possible future surrogate is constructed by assuming a

possible future data value at the potential sampling location. Then the change in the predicted Gaussian
distributions from the present and future surrogates at the remaining locations is quantified by the Kullback-
Leibler (KL) divergence, which represents the information gain. We denote the present surrogate predicted
Gaussian distribution as GP (x|d) ∼ N (µP (x|d), σ2

P (x|d)) and a possible future surrogate predicted Gaussian

distribution as GF (x|d,xF , C̃Fi ) ∼ N (µF (x|d,xF , C̃Fi ), σ2
F (x|d,xF , C̃Fi )). C̃Fi is a possible future value at

xF defined here as a realization of the Gaussian distribution GP (xF |d). The KL divergence between GP and

GF at any realization x, given the data d = {Xt
sur;C

FPI
i (Xt

sur)} and possible future data value {xF ; C̃Fi }
for the ith coupling variable, is defined by

DKL(GP (x|d) ‖ GF (x|d,xF , C̃Fi ))

= log

(
σF (x|d,xF , C̃Fi )

σP (x|d)

)
+
σ2
P (x|d) + (µP (x|d)− µF (x|d,xF , C̃Fi ))2

2σ2
F (x|d,xF , C̃Fi )

− 1

2
.

(3)
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Figure 2. Multifidelity coupled uncertainty propagation method (HF1 and HF2 denotes high-fidelity analysis
of disciplines 1 and 2, respectively, and t denotes the current cycle).

DKL is used as the information gain metric. µP and σP are predictions from the present surrogate fit, and
µF and σF are predictions from a possible future surrogate fit.

The total information gain at any x realization can be calculated by integrating over all possible values
of C̃Fi (defined by GP (xF |d)) for xF ∈ Xt

rem. Under the condition that the Kriging hyperparameters are
fixed, one can derive a closed-form solution for calculating the total information gain to further reduce
computational cost. Let the hyper-parameters of the present and future surrogates used for predicting GP
and GF be the same. Then the prediction variance σ2

F is independent of the possible future value C̃Fi . Thus
the KL divergence described in Equation 3 reduces to

DKL(GP (x|d) ‖ GF (x|d,xF , C̃Fi ))

= log

(
σF (x|d,xF )

σP (x|d)

)
+
σ2
P (x|d) + (µP (x|d)− µF (x|d,xF , C̃Fi ))2

2σ2
F (x|d,xF )

− 1

2

= log

(
σF (x|d,xF )

σP (x|d)

)
+
σ2
P (x|d) + µ2

P (x|d)− 2µP (x|d)µF (x|d,xF , C̃Fi ) + µ2
F (x|d,xF , C̃Fi )

2σ2
F (x|d,xF )

− 1

2
.

(4)

Integrating Equation 4 with respect to the Gaussian distribution of C̃Fi (defined by GP (xF |d)) to find the

total information gain amounts to computing the expectation of the terms involving C̃Fi . Thus we only need
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to compute EC̃F
i

[µF (x|d, xF , C̃Fi )] and EC̃F
i

[µ2
F (x|d, xF , C̃Fi )]. The rest of the terms in Equation 4 do not

depend on C̃Fi . The total information gain at any realization x for the ith coupling variable, Di(x,xF ), is
given by

Di(x,xF ) = log

(
σF (x|d,xF )

σP (x|d)

)
+
σ2
P (x|d) + µ2

P (x|d)− 2µP (x|d)Ei[µF ] + Ei[µ2
F ]

2σ2
F (x|d,xF )

− 1

2
, (5)

where Ei [µF ] = EC̃F
i

[
µF (x|d, xF , C̃Fi )

]
and Ei

[
µ2
F

]
= EC̃F

i

[
µ2
F (x|d, xF , C̃Fi )

]
for ease of notation.

Since Kriging is a linear prediction model in observations Y , it is possible to calculate these expectations
in closed-form. Here, Y is a (Nsur + 1)× 1 vector such that Y > = [CFPIi (Xt

sur), C̃
F
i ]> (with Nsur number

of training points in d). The predictive mean can be written as

µF (x|d, xF , C̃Fi ) = V >Y, (6)

where V is a (Nsur + 1)× 1 vector. Thus the predictive mean can be decomposed in two parts as given by

µF (x|d, xF , C̃Fi ) = V >1:Nsur
Y1:Nsur + VNsur+1C̃

F
i . (7)

Now the expectations of the predicted mean and the square of the predicted mean from the future surrogate
can be calculated as

EC̃F
i

[
µF (x|d,xF , C̃Fi )

]
= V >1:Nsur

Y1:Nsur + VNsur+1µP (x|d), (8)

EC̃F
i

[
µ2
F (x|d,xF , C̃Fi )

]
= (V >1:Nsur

Y1:Nsur )2 + 2(V >1:Nsur
Y1:Nsur )VNsur+1µP (x|d)

+ V 2
Nsur+1

[
σ2
P (x|d) + µ2

P (x|d)
]

= E2
C̃F

i

[
µF (x|d,xF , C̃Fi )

]
+ V 2

Nsur+1σ
2
P (x|d).

(9)

Finally, the total information gain can be computed by substituting Equations 8 and 9 in Equation 5. Note
that if one is using a black-box Kriging model with no access to the vector V required in the above equations,
Gauss-Hermite quadrature can also be used to approximate the integral in Equation 4 with respect to the
distribution of C̃Fi for finding total information gain. The drawback of doing that is the substantial increase
in computational effort because of having to refit the surrogate for each possible future data value given by
the Gauss-Hermite quadrature points.

The optimization problem for finding x∗t through the information-gain-based adaptive sampling criterion
combines the information gain at all xremj

∈ Xt
rem for all NC coupling variables, as defined by

x∗t = argmax
xF∈Xt

rem

NC∑
i=1

Nt
rem∑
j=1

Di(xremj |xF ). (10)

3. Maximum Weighted Information Gain

The weighted information gain criterion uses the present normalized residual error at xF ∈ Xt
rem as the

weight for the information gain. The weight at xF for the current cycle t is defined by

W t
F (xF ) =

et(xF )∑Nt
rem

m=1 e
t(xremm

)
, (11)

where xremm ∈ Xt
rem and et(x) is given by Equation 1. This attaches more importance to the input real-

izations that have higher associated residual errors. The optimization problem for the weighted information
gain-based adaptive sampling strategy is given by

x∗t = argmax
xF∈Xt

rem

W t
F (xF )

NC∑
i=1

Nt
rem∑
j=1

Di(xremj
|xF ). (12)
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C. Convergence Analysis

In general, the performance of the proposed algorithm is defined by the rate of convergence of the coupling
variables, which affects the number of high-fidelity simulations. The rate of convergence will depend on the
fidelity of the approximation being used. However, some statements on the convergence properties of the
proposed multifidelity coupled uncertainty propagation algorithm can be made under certain conditions.

The first property to note is that the algorithm terminates in finite number of cycles. For any ε ≥ 0
and ∀x ∈ X,∃t ≤ Ntotal − Nsur, such that et(x) ≤ ε. Thus, in the worst case scenario all Ntotal − Nsur
realizations undergo FPI, which implies that t = Ntotal − Nsur. However, as we show in the results, if
approximations with appropriate fidelity and an intelligent adaptive update strategy are used, the number
of cycles is typically much less than Ntotal−Nsur. The number of cycles depends on the quality of surrogate
and the adaptive sampling strategy.

In order to explain the other convergence properties of the proposed algorithm, we need to first define
FPI convergence. For a given realization x ∈ X, the iterating function on which FPI is implemented in this
work is given by

F (C1, . . . , CNC
) =


HC1(C1, . . . , CNC

,x)
...

HCNC
(C1, . . . , CNC

,x)

 . (13)

Then FPI proceeds through iterations defining
Ck1
...

CkNC

 = F (Ck−11 , . . . , Ck−1NC
), (14)

where k denotes the iteration number for FPI. FPI iterates till it converges to a fixed point depending on
the error threshold for FPI, εFPI , when

NC∑
i=1

∣∣Cki − Ck−1i

∣∣
κi

< εFPI , (15)

where κi are normalization constants for coupling variables i = 1, . . . , NC .
The second property of our multifidelity coupled uncertainty propagation approach is that the algorithm

converges pointwise to an FPI solution of the coupling variable for the case when ε < εFPI . For any given

x ∈ X and all coupling variables i = 1, . . . , NC , let Cεi (x) = Couti (x) when et(x) =
∑NC

i=1
|C̃t

i (x)−C
out
i (x)|

κi
≤ ε.

Then it can be shown that Cεi (x) converges pointwise to CFPIi (x) when ε < εFPI . For accepted coupled
variable output Cεi (x), we have that et(x) ≤ ε, which implies that

NC∑
i=1

∣∣∣C̃ti (x)− Cεi (x)
∣∣∣

κi
≤ ε < εFPI

or,

NC∑
i=1

∣∣∣C̃ti (x)−HCi
(C̃t1(x), . . . , C̃tNC

(x),x)
∣∣∣

κi
< εFPI .

(16)

This is equivalent to satisfying the convergence criterion to a fixed point through FPI as given by Equation 15,
which implies that Cεi (x) = CFPIi (x),∀i = 1, . . . , NC and ∀x ∈ X when ε < εFPI . Note that multiple fixed
points can exist for a given εFPI depending on the initial guess. Here, the fixed point solution obtained
by FPI with initial guess C̃ti is used as the reference to compare to the solution of the proposed algorithm
(where the solution is accepted in cycle t).

The third property of our approach is that, for any finite ε ≥ 0, an upper bound on the error of the
accepted solution from the algorithm, Cεi (x), compared to an FPI solution, CFPIi (x), can be established
when F (C1, . . . , CNC

) is assumed to be a contraction. Note that FPI convergence is guaranteed according
to Banach fixed point theorem only when the iterating function is a contraction.35,36 In metric space (M,d)

9 of 25

American Institute of Aeronautics and Astronautics



with a set M and a metric d on M , a function, say f : M → M , is a contraction if there exists a Lipschitz
constant γ ∈ [0, 1) of f such that for all u and v in M ,

d(f(u), f(v)) ≤ γd(u, v). (17)

In this work, the metric d is defined by a normalized absolute difference of vectors u and v with m elements
as given by

d(u, v) =

m∑
i=1

|ui − vi|
κi

, (18)

where κi is a normalization constant for ith element of the vectors. Thus, the iterating function in Equation 13
can be defined to be a contraction if there exists a Lipschitz constant γ ∈ [0, 1) such that

NC∑
i=1

∣∣Ck+1
i − Cki

∣∣
κi

≤ γ
NC∑
i=1

∣∣Cki − Ck−1i

∣∣
κi

. (19)

For a contraction and a given εFPI > 0, ∃NF ∈ N such that the FPI convergence criterion
∑NC

i=1

∣∣∣CNF
i −CNF −1

i

∣∣∣
κi

<

εFPI (defined in Equation 15) is satisfied for all coupling variables starting with C̃ti (x) as the initial guess.
Note that NF is implicitly dependent on εFPI and ε in this case.

Then for any ε ≥ 0, when the acceptance criterion
∑NC

i=1
|C̃t

i (x)−C
out
i (x)|

κi
≤ ε is met, i.e., Cεi (x) = Couti (x),

it can be shown that
∑NC

i=1
|CFPI

i (x)−Cε
i (x)|

κi
≤ γ(1−γNF −1)

1−γ ε, for all x ∈ X.
The solution from the proposed algorithm is compared to the fixed point obtained by starting with an

initial guess of C0
i = C̃ti , where the solution is accepted in cycle t. Then the coupled variable output after

first iteration is Couti = Cεi and is represented by C1
i , where the numbers in the superscript refer to the

iteration number for FPI. Then for contracting functions defined by Equation 19, it can be shown that

NC∑
i=1

∣∣C2
i − C1

i

∣∣
κi

≤ γ
NC∑
i=1

∣∣C1
i − C0

i

∣∣
κi

NC∑
i=1

∣∣C3
i − C2

i

∣∣
κi

≤ γ2
NC∑
i=1

∣∣C1
i − C0

i

∣∣
κi

...

NC∑
i=1

∣∣∣CNF
i − CNF−1

i

∣∣∣
κi

≤ γNF−1
NC∑
i=1

∣∣C1
i − C0

i

∣∣
κi

,

(20)

where CNF
i is an FPI solution CFPIi for i = 1, . . . , NC .35,36 Note that the superscripts for γ in Equation 20

refer to exponents.
Summing the left and right hand side of Equation 20, we get

NC∑
i=1

∣∣C2
i − C1

i

∣∣+ · · ·+
∣∣∣CNF
i − CNF−1

i

∣∣∣
κi

≤ (γ + γ2 + · · ·+ γNF−1)

NC∑
i=1

∣∣C0
i − C1

i

∣∣
κi

=
γ(1− γNF−1)

1− γ

NC∑
i=1

∣∣C0
i − C1

i

∣∣
κi

.

(21)

Using the triangle inequality on the left hand side of Equation 21, we get an upper bound on the error
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compared to an FPI solution as given by

NC∑
i=1

∣∣∣CNF
i − C1

i

∣∣∣
κi

≤ γ(1− γNF−1)

1− γ

NC∑
i=1

∣∣C0
i − C1

i

∣∣
κi

=
γ(1− γNF−1)

1− γ

NC∑
i=1

∣∣∣C̃ti − Cεi ∣∣∣
κi

≤ γ(1− γNF−1)

1− γ
ε

or,

NC∑
i=1

∣∣CFPIi − Cεi
∣∣

κi
≤ γ(1− γNF−1)

1− γ
ε.

(22)

Note that for ε < εFPI , the FPI converges in one iteration, i.e., NF = 1. This reduces the upper bound
to 0 and this property boils down to Cεi (x) = CFPIi (x),∀i = 1, . . . , NC and ∀x ∈ X, which recovers the
pointwise convergence of our method’s second convergence property. The second convergence property is a
special case of the third one.

In summary, the use of adaptive surrogate refinement means that under certain conditions, our method
recovers the results that would be obtained using high-fidelity FPI on all samples. Yet, as the results in the
next section show, the method can lead to significant reductions in computational cost.

IV. Numerical Experiments

In this section, numerical experiments are presented analyzing the three adaptive sampling strategies
for the multifidelity coupled uncertainty propagation method on an analytic test problem, a fire detection
satellite model analysis, and a wing aero-structural analysis. The developed method is compared to Monte
Carlo simulation with FPI for every realization.

A. Analytic Test Problem

1. Problem setup

The analytic test problem used in this work has five input random variables and two coupling variables
as seen in Figure 3. Each input random variable is modeled as being normally distributed with a mean
of 1 and standard deviation of 0.1. This problem uses κ1 = 6.6259 and κ2 = 7.5370 as the normalization
constants for the residual errors, where these values correspond to the multidisciplinary feasible solution for
the coupling variables at the mean of the input random variables. The residual error tolerance, ε, is set at
1.5e-4. The number of iterations required for FPI convergence for the test problem is ∼ 18 on average for
εFPI = 1.501e− 4. Thus, conducting Monte Carlo simulation with the embedded FPI is expensive.

 
  

Input realizations, X 

𝐶1 = 0.01(𝑥1
2 + 2𝑥2 − 𝑥3) +

𝐴1𝑪

𝑛𝑜𝑟𝑚(𝑪)
 

𝑦(1) = 0.1𝑥1 + 𝑥2 − 0.5𝑥3 + 10𝐶1 

𝐶2 = 0.01(𝑥1𝑥4 + 𝑥4
2 + 𝑥5) +

𝐴2𝑪

𝑛𝑜𝑟𝑚(𝑪)
 

𝑦(2) = 5𝑥4 − 𝑥5 − 5𝐶2 

𝐶2 

𝐶1 

𝑪 =  
𝐶1

𝐶2
  

𝐴1 =  9.7236 0.2486  

𝐴2 =  0.2486 9.7764  

𝑓 𝑦(1), 𝑦(2), 𝑿 = 𝑦(1) + 𝑦(2) 

Figure 3. Analytic test problem

The efficiency of the multifidelity coupled uncertainty propagation method is assessed for total number of
input realizations, Ntotal, values of 104 and 105, and an initial number of surrogate training samples, Nsur,
value of 20, for the test problem. Each case is repeated 10 times with randomly generated Monte Carlo
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samples in order to obtain statistics on the results. The three adaptive sampling strategies are abbreviated
as Max Res, Max IG and Max WIG for maximum residual error, maximum information gain and maximum
weighted information gain, respectively. The effect of surrogate accuracy on the algorithm performance
is presented first, followed by a comparison of the different adaptive sampling strategies. Only the two
feedback-coupled disciplines are considered for calculating the total number of high-fidelity simulations, since
in a typical engineering problem the costs of the disciplinary analyses will dominate the cost of evaluating
the system output.

2. Accuracy of Surrogate

The first test investigates the effect of global accuracy of the initial surrogate being used on the algorithm
performance. Here, algorithm performance is quantified by the number of high-fidelity simulations used by
the algorithm. The results are presented for the case of maximum residual error adaptive sampling criterion
with Ntotal = 104. Two different trend functions for the Kriging surrogate are used: a constant and a linear
polynomial (denoted by ‘Max Res (constant trend)’ and ‘Max Res (linear trend)’, respectively). The mean
leave-one-out cross-validation error of the initial surrogate built with 20 samples (0th cycle) from the 10
experiments is 0.0291 for Kriging with contant trend and 0.0063 for Kriging linear trend. The substantial
difference in the accuracy of the initial surrogates leads to the superior performance of the more accurate
surrogate, as seen Figure 4(a). Although the proposed algorithm using either surrogate performs better than
Monte Carlo simulation with FPI, the more accurate Kriging model with linear trend clearly outperforms
the other surrogate model. Kriging with linear trend leads to considerably fewer remaining samples after
cycle 0, as seen in Figure 4(b), which in turn leads to fewer samples being passed through the remaining
cycles and thus, higher efficiency of the overall uncertainty assessment. This indicates that it pays to invest
in building a good quality initial surrogate. From here on, Kriging with linear trend is used as the surrogate
for generating further results.
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Figure 4. Effect of surrogate accuracy on the algorithm performance for analytic test problem for 10 exper-
iments with Ntotal = 104: (a) boxplot showing performance of different surrogates compared to Monte Carlo
simulation with FPI, and (b) number of remaining samples after using initial surrogate in cycle 0 for each of
the 10 experiments.

3. Comparison of Adaptive Sampling Strategies

Table 1 presents the results for the comparison of different adaptive sampling strategies and Monte Carlo
simulation with FPI for the test problem. For bothNtotal = 104 and 105, the results indicate that all adaptive
sampling strategies lead to a reduction of more than 90% (averaged over 10 experiments) in the total number
of high-fidelity simulations required (considering both the disciplines) as compared to using standard Monte
Carlo simulation with FPI. The residual error and weighted information gain strategies perform almost
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equally well and better than the information gain strategy on average over the 10 experiments, as seen from
Table 1. Figure 5 shows similar performance for the three different adaptive sampling strategies, with the
information gain strategy performing slightly worse than the other two. However, if the performance for
each individual experiment is analyzed as shown in Figure 6, it reveals that in ∼ 30% of experiments for
Ntotal = 104 and ∼ 50% of experiments for Ntotal = 105, information gain performs similar or outperforms
the residual error strategy. This gives more credence to the use of a combined strategy in the form of
weighted information gain. The weighted information gain strategy achieves a good balance between the
residual error and information gain strategies in most cases, while usually being biased towards the better
option as seen in Figure 6 (∼ 80% of the cases).

Table 1. Comparison of efficiency of different adaptive sampling strategies and Monte Carlo simulation with
FPI for analytic test problem.

Ntotal Sampling strategy
Total number of cases for FPI Number of high-fidelity simulations

Mean
Standard
deviation

Mean
Standard
deviation

104 (10
experiments)

Monte Carlo
simulation with FPI

104 – 353,414 2,456

Max Res 37.8 3.7 31,656 (-91%) 5,614

Max IG 41.1 3.3 33,455 (-90.5%) 7,226

Max WIG 38.5 2.6 32,318 (-90.9%) 6,730

105 (10
experiments)

Monte Carlo
simulation with FPI

105 – 3,545,391 5,600

Max Res 50.1 4.7 341,008 (-90.4%) 71,805

Max IG 56.1 7.4 343,812 (-90.3%) 71,498

Max WIG 49.7 3.7 320,038 (-91%) 52,103

Max Res Max IG Max WIG
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Figure 5. Boxplot comparing performance of different adaptive sampling strategies for analytic test problem
for 10 experiments with (a) Ntotal = 104, and (b) Ntotal = 105.

Figure 7 shows a comparison of the empirical CDFs of the system output, f , predicted by the three
adaptive sampling strategies and the empirical CDF of the FPI solution for a particular experiment with
Ntotal = 104. Here, the fixed point is found by starting with the surrogate prediction of the coupled variable
at the accepted cycle and for εFPI = 1.501e4. For all the experiments, the empirical CDF of the FPI solutions
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Figure 6. Performance for each of the 10 experiments for different adaptive sampling strategies for analytic
test problem with (a) Ntotal = 104, and (b) Ntotal = 105.

match the empirical CDFs predicted by the three adaptive sampling strategies. This follows naturally from
the pointwise convergence property of our approach, since ε < εFPI in this case.

Figure 7. Comparison of empirical CDFs of the system output predicted by the three adaptive sampling
strategies to the empirical CDF evaluated using Monte Carlo simulation with FPI solution for analytic test
problem with Ntotal = 104.

The convergence of the algorithm in terms of the number of remaining realizations, N t
rem, that did not

satisfy the residual error tolerance after each cycle is shown in Figure 8. All the strategies have similar
convergence rates. The number of cases of FPI executions is similar for the residual error and weighted
information gain adaptive sampling strategies as seen in Table 1. A comparison of the number of cases of
FPI executions for samples sizes of 104 and 105 indicates only a small increase for the higher sample size.
This indicates an increase in efficiency of the proposed method as the number of samples increases. In all the
cases, the number of realizations where FPI is employed in the multifidelity coupled uncertainty propagation
method is successfully decreased (� Ntotal) as seen in Table 1.

Figures 9 to 11 show the progress of the algorithm through a slice of the design space (input random
variables x1 and x2). The figures show the accepted realizations and sampling locations according to the
choice of adaptive sampling strategy for selective cycles for the test problem for Ntotal = 104. “Initial
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Figure 8. Number of realizations of X that do not satisfy the error tolerance after each cycle for analytic test
problem with (a) Ntotal = 104, and (b) Ntotal = 105.

samples” refers to all the samples in X, “Accepted samples” refer to the set of all those samples for which
the residual error tolerance criterion is satisfied after that cycle, “Adaptive sampling location” refers to x∗t ,
and “FPI locations” refers to all those samples where FPI is used in order to get the true values of coupling
variables to build or refine the surrogates.
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Figure 9. A slice of the design space showing the spread of accepted and remaining X realizations with the
maximum residual error adaptive sampling location for selected cycles for analytic test problem.
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Figure 10. A slice of the design space showing the spread of accepted and remaining X realizations with the
maximum information gain adaptive sampling location for selected cycles for analytic test problem.
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Figure 11. A slice of the design space showing the spread of accepted and remaining X realizations with the
maximum weighted information gain adaptive sampling location for selected cycles for analytic test problem.
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B. Fire Detection Satellite Model

The performance of the multifidelity coupled uncertainty propagation method is analyzed on a three-
discipline satellite model originally described in Ref. 10 and presented in the context of robust optimization
in Ref. 11. Figure 12 illustrates the fire detection satellite model and the five random inputs we used for this
problem. The three disciplines (orbit analysis, attitude control, and power analysis) exchange information
through feed-forward and feedback coupling. More detail about the physics models describing each analysis
can be found in Ref. 11.

The five uncertain input random variables that represent the uncertainty in the system are defined as
Gaussian random variables with mean and standard deviation as shown in Table 3. The surrogates are built
for the feedback coupling variables, the power for the attitude control system (PACS) and the moments of
inertia (Imax, and Imin), defining the interaction between the attitude control and power analysis disciplines.
The total torque (τtot), total power (Ptot) and area of solar array (Asa) are the system outputs that are
analyzed in this work. This problem uses κPACS

= 130, κImax
= 6600, and κImin

= 5100 as the normalization
constants for the residual errors, where these values correspond to the multidisciplinary feasible solution for
the coupling variables at the mean of the input random variables. The residual error tolerance, ε, is set at
1.5e-2. The number of iterations required for FPI convergence for the test problem is approximately three
on average for εFPI = 1.501e− 2. The method is tested for total number of input realizations, Ntotal = 105,
and an initial number of surrogate training samples, Nsur = 40. Note that the orbital analysis needs to
be executed only Ntotal times (independent of the feedback coupled disciplines) since it is only feed-forward
coupled with the other two disciplines. All three disciplines are considered when calculating the total number
of high-fidelity simulations.

 
  

Orbit Period (Δ𝑡𝑜𝑟𝑏𝑖𝑡) 

Eclipse Period (Δ𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒) 
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Area of Solar Array (𝐴𝑠𝑎) 

Figure 12. Multidisciplinary coupled system representing the fire detection satellite problem from Ref. 10,11.

Table 4 presents the results for the comparison of different adaptive sampling strategies and Monte Carlo
simulation with FPI for the satellite problem. The results indicate that all adaptive sampling strategies
lead to a reduction of 53− 54% in the total number of high-fidelity simulations required (considering all the
disciplines) as compared to using standard Monte Carlo simulation with FPI. The weighted information gain
strategy is the most efficient for this problem. There is also significant reduction in the number of cases for
which FPI is executed for all three adaptive sampling strategies. We note that for this case the number of
cases for which FPI is executed is reduced by a factor of > 99%, but the number of high-fidelity simulations
is reduced only by a factor of 53 − 54%. This disparity is due to the relatively low number of iterations
required to reach the fixed point for this problem (three iterations on average) and the need to execute
additional high-fidelity simulations in our accept/reject decisions and our adaptive surrogate updates.

Figure 13 shows a comparison of the empirical CDFs of the system outputs, τtot, Ptot, andAsa, predicted
by the three adaptive sampling strategies and the empirical CDF of the FPI solution for a particular exper-
iment with Ntotal = 105. The fixed point is found by starting with the surrogate prediction of the coupled
variable at the accepted cycle. For all the experiments, the empirical CDF of the FPI solutions match the
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Table 2. Deterministic inputs for fire detection satellite model.

Variable Symbol Unit Numerical Value

Earth’s radius RE m 6,378,140

Gravitational parameter µ m3s−2 3.986 x 1014

Target diameter φtarget m 235,000

Light speed c ms−1 2.9979 x 108

Area reflecting radiation As m2 13.85

Sun incidence angle i deg 0

Slewing time period ∆tslew s 760

Magnetic moment of earth M A m2 7.96 x 1015

Atmospheric density q kg m−3 5.1480 x 1011

Cross-sectional in flight direction A m2 13.85

No. of reaction wheels n – 3

Maximum velocity of a wheel ωmax rpm 6000

Holding power Phold W 20

Inherent degradation of array Id – 0.77

Power efficiency η – 0.22

Lifetime of spacecraft LT Years 15

Degradation in power production capability εdeg % per year 0.0375

Length to width ratio of solar array rlw – 3

Number of solar arrays nsa – 3

Average mass density to arrays ρsa kg m3 700

Thickness of solar panels t m 0.005

Distance between panels D m 2

Moments of inertia of spacecraft body Ibody kg m2 Ibody,X = Ibody,Y =
6200; Ibody,Z = 4700

Deviation of moment axis from vertical θ deg 15

Moment arm: solar radiation torque Lsp m 2

Residual dipole RD A m2 5

Moment arm: aerodynamic torque La m 2

Table 3. Uncertain input random variables for fire detection satellite model.

Variable Symbol Unit Mean Standard deviation

Altitude H m 18,000,000 1,000,000

Average solar flux Fs W/m2 1400 20

Reflectance factor q – 0.5 1

Drag coefficient Cd – 1 0.3

Other power sources Pother W 1000 50
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Table 4. Comparison of efficiency of different adaptive sampling strategies and Monte Carlo simulation with
FPI for fire detection satellite problem.

Ntotal Sampling strategy
Total number of

cases for FPI
Number of high-fidelity

simulations

105

Monte Carlo simulation with FPI 105 697,462

Max Res 66 324,120 (-53.5%)

Max IG 73 321,660 (-53.9%)

Max WIG 60 320,836 (-54%)

empirical CDFs predicted by the three adaptive sampling strategies for all the system outputs. Similar to the
analytic test problem, this follows from the pointwise convergence property of our approach, since ε < εFPI
in this case.

(a) (b) (c)

Figure 13. Comparison of empirical CDFs of system outputs for the fire detection satellite problem predicted
by the three adaptive sampling strategies to the empirical CDF evaluated using Monte Carlo simulation with
FPI solution for Ntotal = 105.

C. Aero-Structural Analysis of Wing

The multifidelity coupled uncertainty propagation method is applied to a coupled aero-structural analysis
of a wing (Figure 14). The aerodynamics analysis uses a vortex lattice method expanded from a modern
adaptation of Prandtl’s classic lifting line theory.37 The structural analysis uses a linear 6-DOF-per-element
spatial beam model. The coupled aero-structural analysis code (OpenAeroStruct38,39) is implemented on
the OpenMDAO architecture.40 In this case, seven spanwise points and two chordwise points are used
to build the wing mesh and the wing is analyzed for Mach number 0.84. The variability in the Young’s
modulus (E) and the shear modulus (G) of the material used for the wing represent the uncertainty in
the system. These input random variables are defined using truncated normal distributions with parameters
described in Table 5. The feedback-coupled variables in this case are the loads and displacements (NC = 84).
This problem uses absolute value of the multidisciplinary feasible solution for the coupling variables at the
mean of the input random variables as the normalization constants for the residual errors (note that if this
calculated value is 0 then it is set to 1). The system outputs of interest are maximum forces in the x-y-z-
directions (Fx, Fy, Fz), maximum moments in the y-z-directions (My,Mz), and maximum displacement in
the z-direction (uz).

The residual error tolerance, ε, is set at 1.5e-5. The number of iterations required for FPI convergence
for the test problem is approximately five on average for εFPI = 1.501e− 5. The method is tested for total
number of input realizations, Ntotal = 104, and an initial number of surrogate training samples, Nsur = 25.

Table 6 presents the results for the comparison of different adaptive sampling strategies and Monte Carlo
simulation with FPI for the aero-structural problem. The results indicate that all adaptive sampling strate-
gies lead to a reduction of around 75% in the total number of high-fidelity simulations required (considering
both disciplines) as compared to using standard Monte Carlo simulation with FPI. There is also signifi-
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Figure 14. Multidisciplinary coupled system for wing aero-structural analysis.

Table 5. Uncertain input random variables for aero-structural wing analysis.

Variable Symbol Unit Mean Standard deviation Lower bound Upper bound

Young’s Modulus E GPa 70 5 60 80

Shear Modulus G GPa 30 1 28 32

cant reduction in the number of cases for which FPI is executed for all three adaptive sampling strategies.
The residual error strategy performs the best for this problem. The pointwise convergence property of our
approach for the system outputs is also observed for this problem (ε < εFPI) as shown in Figure 15.

Table 6. Comparison of efficiency of different adaptive sampling strategies and Monte Carlo simulation with
FPI for wing aero-structural analysis.

Ntotal Sampling strategy
Total number of

cases for FPI
Number of high-fidelity

simulations

104

Monte Carlo simulation with FPI 104 100,000

Max Res 31 24,322 (-75.7%)

Max IG 33 25,354 (-74.6%)

Max WIG 31 24,630 (-75.4%)

V. Concluding Remarks

This paper has developed a new multifidelity coupled uncertainty propagation method for feedback-
coupled multidisciplinary systems. Instead of using fixed point iteration with Monte Carlo simulation for
uncertainty propagation, the proposed method works to reduce the number of realizations for which FPI is
employed. An essential feature of this method is that it maintains the same level of accuracy in the results as
the original coupled high-fidelity system as shown through rigorous convergence analysis. Another advantage
of the proposed method is the ability to partially decouple the process, which is helpful when communication
between different disciplines is cumbersome, while preserving the accuracy of the mapping from the inputs
to the system outputs.

The multifidelity coupled uncertainty propagation method uses surrogates to approximate the coupling
variables and iteratively refines these surrogates using adaptive sampling strategies. An information-gain-
based and a residual-error-based adaptive sampling strategy is explored in this work. The information gain
weighted with the residual errors is used as another adaptive sampling strategy. For the test problem used
in this work, a substantial decrease in the number of high-fidelity simulations as compared to Monte Carlo
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(d) (e) (f)

Figure 15. Comparison of empirical CDFs of system outputs predicted by the three adaptive sampling strate-
gies to the empirical CDF evaluated using Monte Carlo simulation with FPI solution for the wing aero-
structural analysis with Ntotal = 104.

simulation with FPI (> 90%) is obtained for all the adaptive sampling strategies. The weighted information
gain adaptive sampling strategy achieves a good balance by combining the residual error and information gain
strategies. For all cases considered, the multifidelity coupled uncertainty propagation method successfully
decreased the number of realizations where FPI is employed by more than 99% (� Ntotal). A decrease of
more than 50% for the fire detection satellite problem and around 75% for the wing aero-structural analysis
is achieved in the number of high-fidelity simulations. For both application problems, a significant decrease
in total number of cases where FPI is employed is obtained by all three adaptive sampling strategies as
compared to standard Monte Carlo simulation with FPI. For all three problems, the distributions for the
system outputs is shown to converge pointwise to the solution obtained through Monte Carlo simulation
with FPI under the given setting.
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